algo.cpp 10.8 KB
Newer Older
1 2 3 4 5 6 7 8
/**
 * \file dnn/src/cuda/conv_bias/algo.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
 */

#include "src/cuda/conv_bias/algo.h"
#include "src/cuda/utils.h"

using namespace megdnn;
using namespace cuda;

ConvBiasForwardImpl::AlgoPack::AlgoPack() {
    non_cudnn_algos.push_back(&chanwise);
    non_cudnn_algos.push_back(&chanwise_small);

    non_cudnn_algos.push_back(&inplace_matmul);
    non_cudnn_algos.push_back(&matmul);
    non_cudnn_algos.push_back(&matmul8x8x32);
    non_cudnn_algos.push_back(&batched_matmul);
    non_cudnn_algos.push_back(&a1x1);

    fill_cudnn_algos();
    for (auto&& algo : cudnn_conv_bias_activations) {
        all_algos.push_back(&algo);
    }

    //! add conv+nonlinear algos
    std::vector<AlgoBase*> conv_algos;
    conv_algos.push_back(&chanwise);
    conv_algos.push_back(&chanwise_small);
    conv_algos.push_back(&chanwise8x8x32);
    for (auto&& algo : cudnn_convs) {
        conv_algos.push_back(&algo);
    }
    conv_algos.push_back(&inplace_matmul);
    conv_algos.push_back(&matmul);
    conv_algos.push_back(&matmul8x8x32);
    conv_algos.push_back(&batched_matmul);
    conv_algos.push_back(&a1x1);

    conv_algos.reserve(conv_algos.size() * 2);
    //! add gconv algos by AlgoGroupConvGeneral
    size_t algo_size = conv_algos.size();
51
    for (size_t i = 3; i < algo_size; ++i) {
52 53 54 55 56 57 58 59 60 61 62 63 64 65
        gconv_refhold.emplace_back(new AlgoGroupConvGeneral(conv_algos[i]));
        algo2gconv[conv_algos[i]] = gconv_refhold.back().get();
        conv_algos.push_back(gconv_refhold.back().get());
    }

    for (auto&& algo : conv_algos) {
        all_algos.push_back(algo);
    }
    non_cudnn_algos.push_back(all_algos.rbegin()[4]);  // group inplace_matmul
    non_cudnn_algos.push_back(all_algos.rbegin()[3]);  // group matmul
    non_cudnn_algos.push_back(all_algos.rbegin()[2]);  // group matmul_8x8x32
    non_cudnn_algos.push_back(all_algos.rbegin()[1]);  // group batched_matmul
    non_cudnn_algos.push_back(all_algos.rbegin()[0]);  // group 1x1

66 67 68 69 70 71 72
    algo_size = all_algos.size();
    for (size_t i = 0; i < algo_size; ++i) {
        bfloat16_refhold.emplace_back(new AlgoBFloat16(all_algos[i]));
        all_algos.push_back(bfloat16_refhold.back().get());
        bfloat16_algos.push_back(bfloat16_refhold.back().get());
    }

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    size_t all_algo_size = all_algos.size();
#if CUDA_VERSION >= 10000
    fill_imma_algos();
    all_algos.push_back(&wmma_quint4x4x32);
    for (auto&& algo : int8_nchw4_imma) {
        all_algos.push_back(&algo);
    }
    for (auto&& algo : int8_chwn4_imma) {
        all_algos.push_back(&algo);
    }
    for (auto&& algo : int8_chwn4_imma_reorder_filter) {
        all_algos.push_back(&algo);
    }
    for (auto&& algo : int8_chwn4_imma_unroll_width) {
        all_algos.push_back(&algo);
    }
89 90 91 92 93
#if CUDA_VERSION >= 10020
    for (auto&& algo : int8_nchw32_imma) {
        all_algos.push_back(&algo);
    }
#endif
94
#endif
95 96 97 98
    fill_dp4a_algos();
    for (auto&& algo : int8_nchw4_dotprod) {
        all_algos.push_back(&algo);
    }
99 100 101 102
    all_algos.push_back(&int8_chwn4_dotprod);
    for (size_t i = all_algo_size; i < all_algos.size(); ++i) {
        non_cudnn_algos.push_back(all_algos[i]);
    }
103 104 105 106

    for (auto&& algo : all_algos) {
        m_all_algos_map.emplace(algo->info().desc, algo);
    }
107 108 109 110
}

ConvBiasForwardImpl::AlgoPack ConvBiasForwardImpl::sm_algo_pack;

111 112
MEGDNN_DEF_GET_ALGO_FROM_DESC(ConvBiasForwardImpl)

M
Megvii Engine Team 已提交
113 114 115 116 117
ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs(
        ConvBiasForwardImpl* o, const TensorLayout& src,
        const TensorLayout& filter, const TensorLayout& bias,
        const TensorLayout& z, const TensorLayout& dst,
        const PreprocessedFilter* preprocessed_filter)
118
        : SizeArgs(o, src, filter, o->check_layout_fwd(src, filter, dst), bias,
M
Megvii Engine Team 已提交
119
                   z, dst, preprocessed_filter) {}
120 121 122 123 124

ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs(
        ConvBiasForwardImpl* o, const TensorLayout& src,
        const TensorLayout& filter, const CanonizedFilterMeta& filter_meta,
        const TensorLayout& bias, const TensorLayout& z,
M
Megvii Engine Team 已提交
125
        const TensorLayout& dst, const PreprocessedFilter* preprocessed_filter)
126 127 128 129 130 131 132 133
        : BiasForwardSizeArgs{concrete_handle(o->handle()),
                              &src,
                              &filter,
                              &bias,
                              &z,
                              filter_meta,
                              &dst,
                              o->param().nonlineMode},
M
Megvii Engine Team 已提交
134 135
          opr{o},
          preprocessed_filter{preprocessed_filter} {}
136 137 138 139

ConvBiasForwardImpl::AlgoBase::ExecArgs::ExecArgs(
        ConvBiasForwardImpl* opr, _megdnn_tensor_in src,
        _megdnn_tensor_in filter, _megdnn_tensor_in bias, _megdnn_tensor_in z,
M
Megvii Engine Team 已提交
140 141
        _megdnn_tensor_out dst, _megdnn_workspace workspace,
        const PreprocessedFilter* preprocessed_filter)
142
        : SizeArgs(opr, src.layout, filter.layout, bias.layout, z.layout,
M
Megvii Engine Team 已提交
143
                   dst.layout, preprocessed_filter),
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
          src_tensor{&src},
          filter_tensor{&filter},
          bias_tensor{&bias},
          z_tensor{&z},
          dst_tensor{&dst},
          workspace{workspace} {}

std::string ConvBiasForwardImpl::AlgoBase::SizeArgs::to_string() const {
    auto&& fm = filter_meta;
    MEGDNN_MARK_USED_VAR(fm);
    std::string nonlinear_mode_str;
    switch (nonlinear_mode) {
        case param::ConvBias::NonlineMode::RELU:
            nonlinear_mode_str = "RELU";
            break;
        case param::ConvBias::NonlineMode::SIGMOID:
            nonlinear_mode_str = "SIGMOID";
            break;
        case param::ConvBias::NonlineMode::IDENTITY:
            nonlinear_mode_str = "IDENTITY";
            break;
        default:
            megdnn_throw("invalid conv bias nonlinear mode");
    }
    return megdnn_mangle(ssprintf(
169
            "src=%s, filter=%u{%u,%u,%u,%u}, bias=%s, z=%s, dst=%s, "
170 171 172
            "pad=%ux%u, stride=%ux%u, dilate=%ux%u, xcorr=%d, dtype=%s,%s, "
            "nonlinear_mode=%s",
            src_layout->to_string().c_str(), fm.group, fm.ocpg, fm.icpg,
173 174
            fm.spatial[0], fm.spatial[1], bias_layout->to_string().c_str(),
            z_layout->to_string().c_str(), dst_layout->to_string().c_str(),
175 176 177 178 179 180 181
            fm.padding[0], fm.padding[1], fm.stride[0], fm.stride[1],
            fm.dilation[0], fm.dilation[1], !fm.should_flip,
            src_layout->dtype.name(), dst_layout->dtype.name(),
            nonlinear_mode_str.c_str()));
}

void ConvBiasForwardImpl::AlgoPack::fill_cudnn_algos() {
182 183 184 185
    for (auto&& algo : CudnnAlgoPack::conv_fwd_algos()) {
        cudnn_conv_bias_activations.push_back(algo.first);
        cudnn_convs.push_back(algo.first);
    }
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
}

#if CUDA_VERSION >= 10000
void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() {
    int8_chwn4_imma.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemm::MMATileSize::IMMA16x16x16});
    int8_chwn4_imma.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemm::MMATileSize::IMMA32x8x16});
    int8_chwn4_imma.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemm::MMATileSize::IMMA8x32x16});
    int8_nchw4_imma.push_back(
            {AlgoInt8NCHW4IMMAImplicitGemm::MMATileSize::IMMA16x16x16});
    int8_nchw4_imma.push_back(
            {AlgoInt8NCHW4IMMAImplicitGemm::MMATileSize::IMMA32x8x16});
    int8_nchw4_imma.push_back(
            {AlgoInt8NCHW4IMMAImplicitGemm::MMATileSize::IMMA8x32x16});
    int8_chwn4_imma_reorder_filter.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemmReorderFilter::MMATileSize::
                     IMMA16x16x16});
    int8_chwn4_imma_reorder_filter.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemmReorderFilter::MMATileSize::
                     IMMA32x8x16});
    int8_chwn4_imma_reorder_filter.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemmReorderFilter::MMATileSize::
                     IMMA8x32x16});
    int8_chwn4_imma_unroll_width.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth::MMATileSize::
                     IMMA16x16x16});
    int8_chwn4_imma_unroll_width.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth::MMATileSize::
                     IMMA32x8x16});
    int8_chwn4_imma_unroll_width.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth::MMATileSize::
                     IMMA8x32x16});
220 221 222 223 224 225 226 227 228 229 230 231
#if CUDA_VERSION >= 10020
    {
        using AlgoParam = AlgoInt8NCHW32IMMAImplicitGemm::AlgoParam;
        int8_nchw32_imma.emplace_back(AlgoParam{128, 256, 64, 64, 64, 64});
        int8_nchw32_imma.emplace_back(AlgoParam{256, 128, 64, 64, 64, 64});
        int8_nchw32_imma.emplace_back(AlgoParam{128, 128, 64, 64, 64, 64});
        int8_nchw32_imma.emplace_back(AlgoParam{64, 128, 64, 32, 64, 64});
        int8_nchw32_imma.emplace_back(AlgoParam{128, 64, 64, 64, 32, 64});
        int8_nchw32_imma.emplace_back(AlgoParam{64, 64, 64, 32, 32, 64});
        int8_nchw32_imma.emplace_back(AlgoParam{32, 64, 64, 32, 16, 64});
    }
#endif
232 233 234
}
#endif

235 236
void ConvBiasForwardImpl::AlgoPack::fill_dp4a_algos() {
    using AlgoParam = AlgoInt8NCHW4DotProdImplicitGemm::AlgoParam;
237 238 239 240 241 242 243 244 245 246 247
    int8_nchw4_dotprod.emplace_back(AlgoParam{128, 128, 32, 64, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{128, 64, 32, 64, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{64, 128, 32, 64, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{64, 64, 32, 64, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{32, 64, 32, 32, 64, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{64, 32, 32, 64, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{32, 32, 32, 32, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1});
    int8_nchw4_dotprod.emplace_back(AlgoParam{16, 64, 8, 16, 64, 8, 2});
248 249
}

250

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
ConvBiasForwardImpl::AlgoBase*
ConvBiasForwardImpl::AlgoPack::cudnn_conv_from_enum(
        cudnnConvolutionFwdAlgo_t algo) {
    for (auto&& i : cudnn_convs) {
        if (i.cudnn_enum() == algo)
            return &i;
    }
    megdnn_throw(
            megdnn_mangle(ssprintf("can not find cudnn conv fwd algorithm %d",
                                   static_cast<int>(algo))));
}

ConvBiasForwardImpl::AlgoBase*
ConvBiasForwardImpl::AlgoPack::cudnn_conv_bias_act_from_enum(
        cudnnConvolutionFwdAlgo_t algo) {
    for (auto&& i : cudnn_conv_bias_activations) {
        if (i.cudnn_enum() == algo)
            return &i;
    }
    megdnn_throw(megdnn_mangle(
            ssprintf("can not find cudnn conv bias act algorithm %d",
                     static_cast<int>(algo))));
}

// vim: syntax=cpp.doxygen