algo.cpp 10.5 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/cuda/conv_bias/algo.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
 */

#include "src/cuda/conv_bias/algo.h"
#include "src/cuda/utils.h"

using namespace megdnn;
using namespace cuda;

ConvBiasForwardImpl::AlgoPack::AlgoPack() {
    non_cudnn_algos.push_back(&chanwise);
    non_cudnn_algos.push_back(&chanwise_small);

    non_cudnn_algos.push_back(&inplace_matmul);
    non_cudnn_algos.push_back(&matmul);
    non_cudnn_algos.push_back(&matmul8x8x32);
    non_cudnn_algos.push_back(&batched_matmul);

    fill_cudnn_algos();
    for (auto&& algo : cudnn_conv_bias_activations) {
        all_algos.push_back(&algo);
    }

    //! add conv+nonlinear algos
    std::vector<AlgoBase*> conv_algos;
    conv_algos.push_back(&chanwise);
    conv_algos.push_back(&chanwise_small);
    conv_algos.push_back(&chanwise8x8x32);
    for (auto&& algo : cudnn_convs) {
        conv_algos.push_back(&algo);
    }
    conv_algos.push_back(&inplace_matmul);
    conv_algos.push_back(&matmul);
    conv_algos.push_back(&matmul8x8x32);
    conv_algos.push_back(&batched_matmul);

    conv_algos.reserve(conv_algos.size() * 2);
    //! add gconv algos by AlgoGroupConvGeneral
    size_t algo_size = conv_algos.size();
49
    for (size_t i = 3; i < algo_size; ++i) {
50 51 52 53 54 55 56 57 58 59 60 61 62 63
        gconv_refhold.emplace_back(new AlgoGroupConvGeneral(conv_algos[i]));
        algo2gconv[conv_algos[i]] = gconv_refhold.back().get();
        conv_algos.push_back(gconv_refhold.back().get());
    }

    for (auto&& algo : conv_algos) {
        all_algos.push_back(algo);
    }
    non_cudnn_algos.push_back(all_algos.rbegin()[4]);  // group inplace_matmul
    non_cudnn_algos.push_back(all_algos.rbegin()[3]);  // group matmul
    non_cudnn_algos.push_back(all_algos.rbegin()[2]);  // group matmul_8x8x32
    non_cudnn_algos.push_back(all_algos.rbegin()[1]);  // group batched_matmul
    non_cudnn_algos.push_back(all_algos.rbegin()[0]);  // group 1x1

64 65
    all_algos.push_back(&bfloat16);
    bfloat16_algos.push_back(&bfloat16);
66

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    size_t all_algo_size = all_algos.size();
#if CUDA_VERSION >= 10000
    fill_imma_algos();
    all_algos.push_back(&wmma_quint4x4x32);
    for (auto&& algo : int8_nchw4_imma) {
        all_algos.push_back(&algo);
    }
    for (auto&& algo : int8_chwn4_imma) {
        all_algos.push_back(&algo);
    }
    for (auto&& algo : int8_chwn4_imma_reorder_filter) {
        all_algos.push_back(&algo);
    }
    for (auto&& algo : int8_chwn4_imma_unroll_width) {
        all_algos.push_back(&algo);
    }
83 84 85 86 87
#if CUDA_VERSION >= 10020
    for (auto&& algo : int8_nchw32_imma) {
        all_algos.push_back(&algo);
    }
#endif
88
#endif
89 90 91 92
    fill_dp4a_algos();
    for (auto&& algo : int8_nchw4_dotprod) {
        all_algos.push_back(&algo);
    }
93 94 95 96
    all_algos.push_back(&int8_chwn4_dotprod);
    for (size_t i = all_algo_size; i < all_algos.size(); ++i) {
        non_cudnn_algos.push_back(all_algos[i]);
    }
97 98 99 100

    for (auto&& algo : all_algos) {
        m_all_algos_map.emplace(algo->info().desc, algo);
    }
101 102 103 104
}

ConvBiasForwardImpl::AlgoPack ConvBiasForwardImpl::sm_algo_pack;

105 106
MEGDNN_DEF_GET_ALGO_FROM_DESC(ConvBiasForwardImpl)

M
Megvii Engine Team 已提交
107 108 109 110 111
ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs(
        ConvBiasForwardImpl* o, const TensorLayout& src,
        const TensorLayout& filter, const TensorLayout& bias,
        const TensorLayout& z, const TensorLayout& dst,
        const PreprocessedFilter* preprocessed_filter)
112
        : SizeArgs(o, src, filter, o->check_layout_fwd(src, filter, dst), bias,
M
Megvii Engine Team 已提交
113
                   z, dst, preprocessed_filter) {}
114 115 116 117 118

ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs(
        ConvBiasForwardImpl* o, const TensorLayout& src,
        const TensorLayout& filter, const CanonizedFilterMeta& filter_meta,
        const TensorLayout& bias, const TensorLayout& z,
M
Megvii Engine Team 已提交
119
        const TensorLayout& dst, const PreprocessedFilter* preprocessed_filter)
120 121 122 123 124 125 126 127
        : BiasForwardSizeArgs{concrete_handle(o->handle()),
                              &src,
                              &filter,
                              &bias,
                              &z,
                              filter_meta,
                              &dst,
                              o->param().nonlineMode},
M
Megvii Engine Team 已提交
128 129
          opr{o},
          preprocessed_filter{preprocessed_filter} {}
130 131 132 133

ConvBiasForwardImpl::AlgoBase::ExecArgs::ExecArgs(
        ConvBiasForwardImpl* opr, _megdnn_tensor_in src,
        _megdnn_tensor_in filter, _megdnn_tensor_in bias, _megdnn_tensor_in z,
M
Megvii Engine Team 已提交
134 135
        _megdnn_tensor_out dst, _megdnn_workspace workspace,
        const PreprocessedFilter* preprocessed_filter)
136
        : SizeArgs(opr, src.layout, filter.layout, bias.layout, z.layout,
M
Megvii Engine Team 已提交
137
                   dst.layout, preprocessed_filter),
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
          src_tensor{&src},
          filter_tensor{&filter},
          bias_tensor{&bias},
          z_tensor{&z},
          dst_tensor{&dst},
          workspace{workspace} {}

std::string ConvBiasForwardImpl::AlgoBase::SizeArgs::to_string() const {
    auto&& fm = filter_meta;
    MEGDNN_MARK_USED_VAR(fm);
    std::string nonlinear_mode_str;
    switch (nonlinear_mode) {
        case param::ConvBias::NonlineMode::RELU:
            nonlinear_mode_str = "RELU";
            break;
        case param::ConvBias::NonlineMode::SIGMOID:
            nonlinear_mode_str = "SIGMOID";
            break;
        case param::ConvBias::NonlineMode::IDENTITY:
            nonlinear_mode_str = "IDENTITY";
            break;
        default:
            megdnn_throw("invalid conv bias nonlinear mode");
    }
    return megdnn_mangle(ssprintf(
163
            "src=%s, filter=%u{%u,%u,%u,%u}, bias=%s, z=%s, dst=%s, "
164 165 166
            "pad=%ux%u, stride=%ux%u, dilate=%ux%u, xcorr=%d, dtype=%s,%s, "
            "nonlinear_mode=%s",
            src_layout->to_string().c_str(), fm.group, fm.ocpg, fm.icpg,
167 168
            fm.spatial[0], fm.spatial[1], bias_layout->to_string().c_str(),
            z_layout->to_string().c_str(), dst_layout->to_string().c_str(),
169 170 171 172 173 174 175
            fm.padding[0], fm.padding[1], fm.stride[0], fm.stride[1],
            fm.dilation[0], fm.dilation[1], !fm.should_flip,
            src_layout->dtype.name(), dst_layout->dtype.name(),
            nonlinear_mode_str.c_str()));
}

void ConvBiasForwardImpl::AlgoPack::fill_cudnn_algos() {
176 177 178 179
    for (auto&& algo : CudnnAlgoPack::conv_fwd_algos()) {
        cudnn_conv_bias_activations.push_back(algo.first);
        cudnn_convs.push_back(algo.first);
    }
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
}

#if CUDA_VERSION >= 10000
void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() {
    int8_chwn4_imma.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemm::MMATileSize::IMMA16x16x16});
    int8_chwn4_imma.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemm::MMATileSize::IMMA32x8x16});
    int8_chwn4_imma.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemm::MMATileSize::IMMA8x32x16});
    int8_nchw4_imma.push_back(
            {AlgoInt8NCHW4IMMAImplicitGemm::MMATileSize::IMMA16x16x16});
    int8_nchw4_imma.push_back(
            {AlgoInt8NCHW4IMMAImplicitGemm::MMATileSize::IMMA32x8x16});
    int8_nchw4_imma.push_back(
            {AlgoInt8NCHW4IMMAImplicitGemm::MMATileSize::IMMA8x32x16});
    int8_chwn4_imma_reorder_filter.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemmReorderFilter::MMATileSize::
                     IMMA16x16x16});
    int8_chwn4_imma_reorder_filter.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemmReorderFilter::MMATileSize::
                     IMMA32x8x16});
    int8_chwn4_imma_reorder_filter.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemmReorderFilter::MMATileSize::
                     IMMA8x32x16});
    int8_chwn4_imma_unroll_width.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth::MMATileSize::
                     IMMA16x16x16});
    int8_chwn4_imma_unroll_width.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth::MMATileSize::
                     IMMA32x8x16});
    int8_chwn4_imma_unroll_width.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth::MMATileSize::
                     IMMA8x32x16});
214 215 216 217 218 219 220 221 222 223 224 225
#if CUDA_VERSION >= 10020
    {
        using AlgoParam = AlgoInt8NCHW32IMMAImplicitGemm::AlgoParam;
        int8_nchw32_imma.emplace_back(AlgoParam{128, 256, 64, 64, 64, 64});
        int8_nchw32_imma.emplace_back(AlgoParam{256, 128, 64, 64, 64, 64});
        int8_nchw32_imma.emplace_back(AlgoParam{128, 128, 64, 64, 64, 64});
        int8_nchw32_imma.emplace_back(AlgoParam{64, 128, 64, 32, 64, 64});
        int8_nchw32_imma.emplace_back(AlgoParam{128, 64, 64, 64, 32, 64});
        int8_nchw32_imma.emplace_back(AlgoParam{64, 64, 64, 32, 32, 64});
        int8_nchw32_imma.emplace_back(AlgoParam{32, 64, 64, 32, 16, 64});
    }
#endif
226 227 228
}
#endif

229 230
void ConvBiasForwardImpl::AlgoPack::fill_dp4a_algos() {
    using AlgoParam = AlgoInt8NCHW4DotProdImplicitGemm::AlgoParam;
231 232 233 234 235 236 237 238 239 240 241
    int8_nchw4_dotprod.emplace_back(AlgoParam{128, 128, 32, 64, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{128, 64, 32, 64, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{64, 128, 32, 64, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{64, 64, 32, 64, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{32, 64, 32, 32, 64, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{64, 32, 32, 64, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{32, 32, 32, 32, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1});
    int8_nchw4_dotprod.emplace_back(AlgoParam{16, 64, 8, 16, 64, 8, 2});
242 243
}

244

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
ConvBiasForwardImpl::AlgoBase*
ConvBiasForwardImpl::AlgoPack::cudnn_conv_from_enum(
        cudnnConvolutionFwdAlgo_t algo) {
    for (auto&& i : cudnn_convs) {
        if (i.cudnn_enum() == algo)
            return &i;
    }
    megdnn_throw(
            megdnn_mangle(ssprintf("can not find cudnn conv fwd algorithm %d",
                                   static_cast<int>(algo))));
}

ConvBiasForwardImpl::AlgoBase*
ConvBiasForwardImpl::AlgoPack::cudnn_conv_bias_act_from_enum(
        cudnnConvolutionFwdAlgo_t algo) {
    for (auto&& i : cudnn_conv_bias_activations) {
        if (i.cudnn_enum() == algo)
            return &i;
    }
    megdnn_throw(megdnn_mangle(
            ssprintf("can not find cudnn conv bias act algorithm %d",
                     static_cast<int>(algo))));
}

// vim: syntax=cpp.doxygen