test_dataloader.py 11.3 KB
Newer Older
1
# -*- coding: utf-8 -*-
2 3 4 5 6 7 8 9
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import math
10
import multiprocessing
11
import os
12
import platform
13
import subprocess
14 15 16 17 18 19
import time

import numpy as np
import pytest

from megengine.data.collator import Collator
20
from megengine.data.dataloader import DataLoader, get_worker_info
21
from megengine.data.dataset import ArrayDataset, Dataset, StreamDataset
22 23 24 25 26 27 28 29
from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler
from megengine.data.transform import (
    Compose,
    Normalize,
    PseudoTransform,
    ToMode,
    Transform,
)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61


def init_dataset():
    sample_num = 100
    rand_data = np.random.randint(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8)
    label = np.random.randint(0, 10, size=(sample_num,), dtype=int)
    dataset = ArrayDataset(rand_data, label)
    return dataset


def test_dataloader_init():
    dataset = init_dataset()
    with pytest.raises(ValueError):
        dataloader = DataLoader(dataset, num_workers=-1)
    with pytest.raises(ValueError):
        dataloader = DataLoader(dataset, timeout=-1)

    dataloader = DataLoader(dataset)
    assert isinstance(dataloader.sampler, SequentialSampler)
    assert isinstance(dataloader.transform, PseudoTransform)
    assert isinstance(dataloader.collator, Collator)

    dataloader = DataLoader(
        dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=False)
    )
    assert len(dataloader) == 17
    dataloader = DataLoader(
        dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=True)
    )
    assert len(dataloader) == 16


62
class MyStream(StreamDataset):
63
    def __init__(self, number, block=False):
64
        self.number = number
65
        self.block = block
66 67 68

    def __iter__(self):
        for cnt in range(self.number):
69 70 71
            if self.block:
                for _ in range(10):
                    time.sleep(1)
72 73
            data = np.random.randint(0, 256, (2, 2, 3), dtype="uint8")
            yield (data, cnt)
74 75 76
        raise StopIteration


77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
@pytest.mark.skipif(
    platform.system() == "Windows",
    reason="dataloader do not support parallel on windows",
)
@pytest.mark.skipif(
    multiprocessing.get_start_method() != "fork",
    reason="the runtime error is only raised when fork",
)
def test_dataloader_worker_signal_exception():
    dataset = init_dataset()

    class FakeErrorTransform(Transform):
        def __init__(self):
            pass

        def apply(self, input):
            pid = os.getpid()
            subprocess.run(["kill", "-11", str(pid)])
            return input

    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        transform=FakeErrorTransform(),
        num_workers=2,
    )
    with pytest.raises(RuntimeError, match=r"DataLoader worker.* exited unexpectedly"):
        data_iter = iter(dataloader)
        batch_data = next(data_iter)


class IndexErrorTransform(Transform):
    def __init__(self):
        self.array = [0, 1, 2]

    def apply(self, input):
        error_item = self.array[3]
        return input


class TypeErrorTransform(Transform):
    def __init__(self):
        self.adda = 1
        self.addb = "2"

    def apply(self, input):
        error_item = self.adda + self.addb
        return input


@pytest.mark.skipif(
    platform.system() == "Windows",
    reason="dataloader do not support parallel on windows",
)
@pytest.mark.parametrize("transform", [IndexErrorTransform(), TypeErrorTransform()])
def test_dataloader_worker_baseerror(transform):
    dataset = init_dataset()

    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        transform=transform,
        num_workers=2,
    )
    with pytest.raises(RuntimeError, match=r"Caught .*Error in DataLoader worker"):
        data_iter = iter(dataloader)
        batch_data = next(data_iter)


146
@pytest.mark.parametrize("num_workers", [0, 2])
147 148
def test_stream_dataloader(num_workers):
    dataset = MyStream(100)
149 150 151 152 153 154 155 156 157 158 159 160
    sampler = StreamSampler(batch_size=4)
    dataloader = DataLoader(
        dataset,
        sampler,
        Compose([Normalize(mean=(103, 116, 123), std=(57, 57, 58)), ToMode("CHW")]),
        num_workers=num_workers,
    )

    check_set = set()
    for step, data in enumerate(dataloader):
        if step == 10:
            break
161
        assert data[0].shape == (4, 3, 2, 2)
162 163 164 165 166 167 168 169
        assert data[1].shape == (4,)
        for i in data[1]:
            assert i not in check_set
            check_set.add(i)


@pytest.mark.parametrize("num_workers", [0, 2])
def test_stream_dataloader_timeout(num_workers):
170
    dataset = MyStream(100, block=True)
171 172
    sampler = StreamSampler(batch_size=4)

173
    dataloader = DataLoader(dataset, sampler, num_workers=num_workers, timeout=2)
174 175 176 177 178
    with pytest.raises(RuntimeError, match=r".*timeout.*"):
        data_iter = iter(dataloader)
        next(data_iter)


179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
def test_dataloader_serial():
    dataset = init_dataset()
    dataloader = DataLoader(
        dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False)
    )
    for (data, label) in dataloader:
        assert data.shape == (4, 1, 32, 32)
        assert label.shape == (4,)


def test_dataloader_parallel():
    # set max shared memory to 100M
    os.environ["MGE_PLASMA_MEMORY"] = "100000000"

    dataset = init_dataset()
    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        num_workers=2,
    )
    for (data, label) in dataloader:
        assert data.shape == (4, 1, 32, 32)
        assert label.shape == (4,)


204 205 206 207
@pytest.mark.skipif(
    platform.system() == "Windows",
    reason="dataloader do not support parallel on windows",
)
208 209 210 211
@pytest.mark.skipif(
    multiprocessing.get_start_method() != "fork",
    reason="the runtime error is only raised when fork",
)
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
def test_dataloader_parallel_timeout():
    dataset = init_dataset()

    class TimeoutTransform(Transform):
        def __init__(self):
            pass

        def apply(self, input):
            time.sleep(10)
            return input

    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        transform=TimeoutTransform(),
        num_workers=2,
        timeout=2,
    )
    with pytest.raises(RuntimeError, match=r".*timeout.*"):
        data_iter = iter(dataloader)
        batch_data = next(data_iter)


235 236 237 238
@pytest.mark.skipif(
    platform.system() == "Windows",
    reason="dataloader do not support parallel on windows",
)
239 240 241 242
@pytest.mark.skipif(
    multiprocessing.get_start_method() != "fork",
    reason="the runtime error is only raised when fork",
)
243 244 245 246 247 248 249 250
def test_dataloader_parallel_worker_exception():
    dataset = init_dataset()

    class FakeErrorTransform(Transform):
        def __init__(self):
            pass

        def apply(self, input):
251
            raise RuntimeError("test raise error")
252 253 254 255 256 257 258 259
            return input

    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        transform=FakeErrorTransform(),
        num_workers=2,
    )
260 261 262
    with pytest.raises(
        RuntimeError, match=r"Caught RuntimeError in DataLoader worker process"
    ):
263 264 265 266 267 268 269
        data_iter = iter(dataloader)
        batch_data = next(data_iter)


def _multi_instances_parallel_dataloader_worker():
    dataset = init_dataset()

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    train_dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        num_workers=2,
    )
    val_dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=10, drop_last=False),
        num_workers=2,
    )
    for idx, (data, label) in enumerate(train_dataloader):
        assert data.shape == (4, 1, 32, 32)
        assert label.shape == (4,)
        if idx % 5 == 0:
            for val_data, val_label in val_dataloader:
                assert val_data.shape == (10, 1, 32, 32)
                assert val_label.shape == (10,)
287 288 289 290 291 292 293 294 295


def test_dataloader_parallel_multi_instances():
    # set max shared memory to 100M
    os.environ["MGE_PLASMA_MEMORY"] = "100000000"

    _multi_instances_parallel_dataloader_worker()


296
@pytest.mark.isolated_distributed
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
def test_dataloader_parallel_multi_instances_multiprocessing():
    # set max shared memory to 100M
    os.environ["MGE_PLASMA_MEMORY"] = "100000000"

    import multiprocessing as mp

    # mp.set_start_method("spawn")
    processes = []
    for i in range(4):
        p = mp.Process(target=_multi_instances_parallel_dataloader_worker)
        p.start()
        processes.append(p)

    for p in processes:
        p.join()
312
        assert p.exitcode == 0
313 314


315 316
def partition(ls, size):
    return [ls[i : i + size] for i in range(0, len(ls), size)]
317

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

class MyPreStream(StreamDataset):
    def __init__(self, number, block=False):
        self.number = [i for i in range(number)]
        self.block = block
        self.data = []
        for i in range(100):
            self.data.append(np.random.randint(0, 256, (2, 2, 3), dtype="uint8"))

    def __iter__(self):
        worker_info = get_worker_info()
        per_worker = int(math.ceil((len(self.data)) / float(worker_info.worker)))
        pre_data = iter(partition(self.data, per_worker)[worker_info.idx])
        pre_cnt = partition(self.number, per_worker)[worker_info.idx]
        for cnt in pre_cnt:
            if self.block:
                for _ in range(10):
                    time.sleep(1)
            yield (next(pre_data), cnt)
        raise StopIteration


@pytest.mark.skipif(
    platform.system() == "Windows",
    reason="dataloader do not support parallel on windows",
)
def test_prestream_dataloader_multiprocessing():
    dataset = MyPreStream(100)
346
    sampler = StreamSampler(batch_size=4)
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    dataloader = DataLoader(
        dataset,
        sampler,
        Compose([Normalize(mean=(103, 116, 123), std=(57, 57, 58)), ToMode("CHW")]),
        num_workers=2,
        parallel_stream=True,
    )

    check_set = set()

    for step, data in enumerate(dataloader):
        if step == 10:
            break
        assert data[0].shape == (4, 3, 2, 2)
        assert data[1].shape == (4,)
        for i in data[1]:
            assert i not in check_set
            check_set.add(i)


@pytest.mark.skipif(
    platform.system() == "Windows",
    reason="dataloader do not support parallel on windows",
)
371 372 373 374
@pytest.mark.skipif(
    multiprocessing.get_start_method() != "fork",
    reason="the runtime error is only raised when fork",
)
375 376 377 378 379 380 381 382 383 384
def test_predataloader_parallel_worker_exception():
    dataset = MyPreStream(100)

    class FakeErrorTransform(Transform):
        def __init__(self):
            pass

        def apply(self, input):
            raise RuntimeError("test raise error")
            return input
385 386

    dataloader = DataLoader(
387 388 389 390 391
        dataset,
        sampler=StreamSampler(batch_size=4),
        transform=FakeErrorTransform(),
        num_workers=2,
        parallel_stream=True,
392
    )
393 394 395
    with pytest.raises(
        RuntimeError, match=r"Caught RuntimeError in DataLoader worker process"
    ):
396 397 398
        data_iter = iter(dataloader)
        batch_data = next(data_iter)
        print(batch_data.shape)