test_dataloader.py 9.4 KB
Newer Older
1
# -*- coding: utf-8 -*-
2 3 4 5 6 7 8 9
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import math
10
import multiprocessing
11
import os
12
import platform
13 14 15 16 17 18
import time

import numpy as np
import pytest

from megengine.data.collator import Collator
19
from megengine.data.dataloader import DataLoader, get_worker_info
20 21 22 23 24 25 26 27 28
from megengine.data.dataset import ArrayDataset, StreamDataset
from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler
from megengine.data.transform import (
    Compose,
    Normalize,
    PseudoTransform,
    ToMode,
    Transform,
)
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60


def init_dataset():
    sample_num = 100
    rand_data = np.random.randint(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8)
    label = np.random.randint(0, 10, size=(sample_num,), dtype=int)
    dataset = ArrayDataset(rand_data, label)
    return dataset


def test_dataloader_init():
    dataset = init_dataset()
    with pytest.raises(ValueError):
        dataloader = DataLoader(dataset, num_workers=-1)
    with pytest.raises(ValueError):
        dataloader = DataLoader(dataset, timeout=-1)

    dataloader = DataLoader(dataset)
    assert isinstance(dataloader.sampler, SequentialSampler)
    assert isinstance(dataloader.transform, PseudoTransform)
    assert isinstance(dataloader.collator, Collator)

    dataloader = DataLoader(
        dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=False)
    )
    assert len(dataloader) == 17
    dataloader = DataLoader(
        dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=True)
    )
    assert len(dataloader) == 16


61
class MyStream(StreamDataset):
62
    def __init__(self, number, block=False):
63
        self.number = number
64
        self.block = block
65 66 67

    def __iter__(self):
        for cnt in range(self.number):
68 69 70
            if self.block:
                for _ in range(10):
                    time.sleep(1)
71 72
            data = np.random.randint(0, 256, (2, 2, 3), dtype="uint8")
            yield (data, cnt)
73 74 75 76
        raise StopIteration


@pytest.mark.parametrize("num_workers", [0, 2])
77 78
def test_stream_dataloader(num_workers):
    dataset = MyStream(100)
79 80 81 82 83 84 85 86 87 88 89 90
    sampler = StreamSampler(batch_size=4)
    dataloader = DataLoader(
        dataset,
        sampler,
        Compose([Normalize(mean=(103, 116, 123), std=(57, 57, 58)), ToMode("CHW")]),
        num_workers=num_workers,
    )

    check_set = set()
    for step, data in enumerate(dataloader):
        if step == 10:
            break
91
        assert data[0].shape == (4, 3, 2, 2)
92 93 94 95 96 97 98 99
        assert data[1].shape == (4,)
        for i in data[1]:
            assert i not in check_set
            check_set.add(i)


@pytest.mark.parametrize("num_workers", [0, 2])
def test_stream_dataloader_timeout(num_workers):
100
    dataset = MyStream(100, block=True)
101 102
    sampler = StreamSampler(batch_size=4)

103
    dataloader = DataLoader(dataset, sampler, num_workers=num_workers, timeout=2)
104 105 106 107 108
    with pytest.raises(RuntimeError, match=r".*timeout.*"):
        data_iter = iter(dataloader)
        next(data_iter)


109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
def test_dataloader_serial():
    dataset = init_dataset()
    dataloader = DataLoader(
        dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False)
    )
    for (data, label) in dataloader:
        assert data.shape == (4, 1, 32, 32)
        assert label.shape == (4,)


def test_dataloader_parallel():
    # set max shared memory to 100M
    os.environ["MGE_PLASMA_MEMORY"] = "100000000"

    dataset = init_dataset()
    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        num_workers=2,
    )
    for (data, label) in dataloader:
        assert data.shape == (4, 1, 32, 32)
        assert label.shape == (4,)


134 135 136 137
@pytest.mark.skipif(
    platform.system() == "Windows",
    reason="dataloader do not support parallel on windows",
)
138 139 140 141
@pytest.mark.skipif(
    multiprocessing.get_start_method() != "fork",
    reason="the runtime error is only raised when fork",
)
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
def test_dataloader_parallel_timeout():
    dataset = init_dataset()

    class TimeoutTransform(Transform):
        def __init__(self):
            pass

        def apply(self, input):
            time.sleep(10)
            return input

    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        transform=TimeoutTransform(),
        num_workers=2,
        timeout=2,
    )
    with pytest.raises(RuntimeError, match=r".*timeout.*"):
        data_iter = iter(dataloader)
        batch_data = next(data_iter)


165 166 167 168
@pytest.mark.skipif(
    platform.system() == "Windows",
    reason="dataloader do not support parallel on windows",
)
169 170 171 172
@pytest.mark.skipif(
    multiprocessing.get_start_method() != "fork",
    reason="the runtime error is only raised when fork",
)
173 174 175 176 177 178 179 180
def test_dataloader_parallel_worker_exception():
    dataset = init_dataset()

    class FakeErrorTransform(Transform):
        def __init__(self):
            pass

        def apply(self, input):
181
            raise RuntimeError("test raise error")
182 183 184 185 186 187 188 189
            return input

    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        transform=FakeErrorTransform(),
        num_workers=2,
    )
190
    with pytest.raises(RuntimeError, match=r"exited unexpectedly"):
191 192 193 194 195 196 197
        data_iter = iter(dataloader)
        batch_data = next(data_iter)


def _multi_instances_parallel_dataloader_worker():
    dataset = init_dataset()

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    train_dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        num_workers=2,
    )
    val_dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=10, drop_last=False),
        num_workers=2,
    )
    for idx, (data, label) in enumerate(train_dataloader):
        assert data.shape == (4, 1, 32, 32)
        assert label.shape == (4,)
        if idx % 5 == 0:
            for val_data, val_label in val_dataloader:
                assert val_data.shape == (10, 1, 32, 32)
                assert val_label.shape == (10,)
215 216 217 218 219 220 221 222 223


def test_dataloader_parallel_multi_instances():
    # set max shared memory to 100M
    os.environ["MGE_PLASMA_MEMORY"] = "100000000"

    _multi_instances_parallel_dataloader_worker()


224
@pytest.mark.isolated_distributed
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
def test_dataloader_parallel_multi_instances_multiprocessing():
    # set max shared memory to 100M
    os.environ["MGE_PLASMA_MEMORY"] = "100000000"

    import multiprocessing as mp

    # mp.set_start_method("spawn")
    processes = []
    for i in range(4):
        p = mp.Process(target=_multi_instances_parallel_dataloader_worker)
        p.start()
        processes.append(p)

    for p in processes:
        p.join()
240
        assert p.exitcode == 0
241 242


243 244
def partition(ls, size):
    return [ls[i : i + size] for i in range(0, len(ls), size)]
245

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

class MyPreStream(StreamDataset):
    def __init__(self, number, block=False):
        self.number = [i for i in range(number)]
        self.block = block
        self.data = []
        for i in range(100):
            self.data.append(np.random.randint(0, 256, (2, 2, 3), dtype="uint8"))

    def __iter__(self):
        worker_info = get_worker_info()
        per_worker = int(math.ceil((len(self.data)) / float(worker_info.worker)))
        pre_data = iter(partition(self.data, per_worker)[worker_info.idx])
        pre_cnt = partition(self.number, per_worker)[worker_info.idx]
        for cnt in pre_cnt:
            if self.block:
                for _ in range(10):
                    time.sleep(1)
            yield (next(pre_data), cnt)
        raise StopIteration


@pytest.mark.skipif(
    platform.system() == "Windows",
    reason="dataloader do not support parallel on windows",
)
def test_prestream_dataloader_multiprocessing():
    dataset = MyPreStream(100)
274
    sampler = StreamSampler(batch_size=4)
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    dataloader = DataLoader(
        dataset,
        sampler,
        Compose([Normalize(mean=(103, 116, 123), std=(57, 57, 58)), ToMode("CHW")]),
        num_workers=2,
        parallel_stream=True,
    )

    check_set = set()

    for step, data in enumerate(dataloader):
        if step == 10:
            break
        assert data[0].shape == (4, 3, 2, 2)
        assert data[1].shape == (4,)
        for i in data[1]:
            assert i not in check_set
            check_set.add(i)


@pytest.mark.skipif(
    platform.system() == "Windows",
    reason="dataloader do not support parallel on windows",
)
299 300 301 302
@pytest.mark.skipif(
    multiprocessing.get_start_method() != "fork",
    reason="the runtime error is only raised when fork",
)
303 304 305 306 307 308 309 310 311 312
def test_predataloader_parallel_worker_exception():
    dataset = MyPreStream(100)

    class FakeErrorTransform(Transform):
        def __init__(self):
            pass

        def apply(self, input):
            raise RuntimeError("test raise error")
            return input
313 314

    dataloader = DataLoader(
315 316 317 318 319
        dataset,
        sampler=StreamSampler(batch_size=4),
        transform=FakeErrorTransform(),
        num_workers=2,
        parallel_stream=True,
320
    )
321 322 323 324
    with pytest.raises(RuntimeError, match=r"exited unexpectedly"):
        data_iter = iter(dataloader)
        batch_data = next(data_iter)
        print(batch_data.shape)