test_dataloader.py 9.0 KB
Newer Older
1
# -*- coding: utf-8 -*-
2 3 4 5 6 7 8 9
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import math
10
import os
11
import platform
12 13 14 15 16 17
import time

import numpy as np
import pytest

from megengine.data.collator import Collator
18
from megengine.data.dataloader import DataLoader, get_worker_info
19 20 21 22 23 24 25 26 27
from megengine.data.dataset import ArrayDataset, StreamDataset
from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler
from megengine.data.transform import (
    Compose,
    Normalize,
    PseudoTransform,
    ToMode,
    Transform,
)
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59


def init_dataset():
    sample_num = 100
    rand_data = np.random.randint(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8)
    label = np.random.randint(0, 10, size=(sample_num,), dtype=int)
    dataset = ArrayDataset(rand_data, label)
    return dataset


def test_dataloader_init():
    dataset = init_dataset()
    with pytest.raises(ValueError):
        dataloader = DataLoader(dataset, num_workers=-1)
    with pytest.raises(ValueError):
        dataloader = DataLoader(dataset, timeout=-1)

    dataloader = DataLoader(dataset)
    assert isinstance(dataloader.sampler, SequentialSampler)
    assert isinstance(dataloader.transform, PseudoTransform)
    assert isinstance(dataloader.collator, Collator)

    dataloader = DataLoader(
        dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=False)
    )
    assert len(dataloader) == 17
    dataloader = DataLoader(
        dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=True)
    )
    assert len(dataloader) == 16


60
class MyStream(StreamDataset):
61
    def __init__(self, number, block=False):
62
        self.number = number
63
        self.block = block
64 65 66

    def __iter__(self):
        for cnt in range(self.number):
67 68 69
            if self.block:
                for _ in range(10):
                    time.sleep(1)
70 71
            data = np.random.randint(0, 256, (2, 2, 3), dtype="uint8")
            yield (data, cnt)
72 73 74 75
        raise StopIteration


@pytest.mark.parametrize("num_workers", [0, 2])
76 77
def test_stream_dataloader(num_workers):
    dataset = MyStream(100)
78 79 80 81 82 83 84 85 86 87 88 89
    sampler = StreamSampler(batch_size=4)
    dataloader = DataLoader(
        dataset,
        sampler,
        Compose([Normalize(mean=(103, 116, 123), std=(57, 57, 58)), ToMode("CHW")]),
        num_workers=num_workers,
    )

    check_set = set()
    for step, data in enumerate(dataloader):
        if step == 10:
            break
90
        assert data[0].shape == (4, 3, 2, 2)
91 92 93 94 95 96 97 98
        assert data[1].shape == (4,)
        for i in data[1]:
            assert i not in check_set
            check_set.add(i)


@pytest.mark.parametrize("num_workers", [0, 2])
def test_stream_dataloader_timeout(num_workers):
99
    dataset = MyStream(100, block=True)
100 101
    sampler = StreamSampler(batch_size=4)

102
    dataloader = DataLoader(dataset, sampler, num_workers=num_workers, timeout=2)
103 104 105 106 107
    with pytest.raises(RuntimeError, match=r".*timeout.*"):
        data_iter = iter(dataloader)
        next(data_iter)


108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
def test_dataloader_serial():
    dataset = init_dataset()
    dataloader = DataLoader(
        dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False)
    )
    for (data, label) in dataloader:
        assert data.shape == (4, 1, 32, 32)
        assert label.shape == (4,)


def test_dataloader_parallel():
    # set max shared memory to 100M
    os.environ["MGE_PLASMA_MEMORY"] = "100000000"

    dataset = init_dataset()
    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        num_workers=2,
    )
    for (data, label) in dataloader:
        assert data.shape == (4, 1, 32, 32)
        assert label.shape == (4,)


133 134 135 136
@pytest.mark.skipif(
    platform.system() == "Windows",
    reason="dataloader do not support parallel on windows",
)
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
def test_dataloader_parallel_timeout():
    dataset = init_dataset()

    class TimeoutTransform(Transform):
        def __init__(self):
            pass

        def apply(self, input):
            time.sleep(10)
            return input

    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        transform=TimeoutTransform(),
        num_workers=2,
        timeout=2,
    )
    with pytest.raises(RuntimeError, match=r".*timeout.*"):
        data_iter = iter(dataloader)
        batch_data = next(data_iter)


160 161 162 163
@pytest.mark.skipif(
    platform.system() == "Windows",
    reason="dataloader do not support parallel on windows",
)
164 165 166 167 168 169 170 171
def test_dataloader_parallel_worker_exception():
    dataset = init_dataset()

    class FakeErrorTransform(Transform):
        def __init__(self):
            pass

        def apply(self, input):
172
            raise RuntimeError("test raise error")
173 174 175 176 177 178 179 180
            return input

    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        transform=FakeErrorTransform(),
        num_workers=2,
    )
181
    with pytest.raises(RuntimeError, match=r"exited unexpectedly"):
182 183 184 185 186 187 188
        data_iter = iter(dataloader)
        batch_data = next(data_iter)


def _multi_instances_parallel_dataloader_worker():
    dataset = init_dataset()

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    train_dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        num_workers=2,
    )
    val_dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=10, drop_last=False),
        num_workers=2,
    )
    for idx, (data, label) in enumerate(train_dataloader):
        assert data.shape == (4, 1, 32, 32)
        assert label.shape == (4,)
        if idx % 5 == 0:
            for val_data, val_label in val_dataloader:
                assert val_data.shape == (10, 1, 32, 32)
                assert val_label.shape == (10,)
206 207 208 209 210 211 212 213 214


def test_dataloader_parallel_multi_instances():
    # set max shared memory to 100M
    os.environ["MGE_PLASMA_MEMORY"] = "100000000"

    _multi_instances_parallel_dataloader_worker()


215
@pytest.mark.isolated_distributed
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
def test_dataloader_parallel_multi_instances_multiprocessing():
    # set max shared memory to 100M
    os.environ["MGE_PLASMA_MEMORY"] = "100000000"

    import multiprocessing as mp

    # mp.set_start_method("spawn")
    processes = []
    for i in range(4):
        p = mp.Process(target=_multi_instances_parallel_dataloader_worker)
        p.start()
        processes.append(p)

    for p in processes:
        p.join()
231
        assert p.exitcode == 0
232 233


234 235
def partition(ls, size):
    return [ls[i : i + size] for i in range(0, len(ls), size)]
236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

class MyPreStream(StreamDataset):
    def __init__(self, number, block=False):
        self.number = [i for i in range(number)]
        self.block = block
        self.data = []
        for i in range(100):
            self.data.append(np.random.randint(0, 256, (2, 2, 3), dtype="uint8"))

    def __iter__(self):
        worker_info = get_worker_info()
        per_worker = int(math.ceil((len(self.data)) / float(worker_info.worker)))
        pre_data = iter(partition(self.data, per_worker)[worker_info.idx])
        pre_cnt = partition(self.number, per_worker)[worker_info.idx]
        for cnt in pre_cnt:
            if self.block:
                for _ in range(10):
                    time.sleep(1)
            yield (next(pre_data), cnt)
        raise StopIteration


@pytest.mark.skipif(
    platform.system() == "Windows",
    reason="dataloader do not support parallel on windows",
)
def test_prestream_dataloader_multiprocessing():
    dataset = MyPreStream(100)
265
    sampler = StreamSampler(batch_size=4)
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    dataloader = DataLoader(
        dataset,
        sampler,
        Compose([Normalize(mean=(103, 116, 123), std=(57, 57, 58)), ToMode("CHW")]),
        num_workers=2,
        parallel_stream=True,
    )

    check_set = set()

    for step, data in enumerate(dataloader):
        if step == 10:
            break
        assert data[0].shape == (4, 3, 2, 2)
        assert data[1].shape == (4,)
        for i in data[1]:
            assert i not in check_set
            check_set.add(i)


@pytest.mark.skipif(
    platform.system() == "Windows",
    reason="dataloader do not support parallel on windows",
)
def test_predataloader_parallel_worker_exception():
    dataset = MyPreStream(100)

    class FakeErrorTransform(Transform):
        def __init__(self):
            pass

        def apply(self, input):
            raise RuntimeError("test raise error")
            return input
300 301

    dataloader = DataLoader(
302 303 304 305 306
        dataset,
        sampler=StreamSampler(batch_size=4),
        transform=FakeErrorTransform(),
        num_workers=2,
        parallel_stream=True,
307
    )
308 309 310 311
    with pytest.raises(RuntimeError, match=r"exited unexpectedly"):
        data_iter = iter(dataloader)
        batch_data = next(data_iter)
        print(batch_data.shape)