grad.cpp 21.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/**
 * \file imperative/src/impl/transformations/grad.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/imperative/transformations/grad.h"

14 15
#include <variant>

16
#include "megbrain/imperative/graph_cache.h"
17
#include "megbrain/imperative/resource_manager.h"
18 19 20 21 22 23 24

#include <range/v3/all.hpp>

namespace mgb {
namespace imperative {

static std::shared_ptr<OptimizedBackwardGraphResult> make_optimized_backward_graph(
25
        const OpDef& op, Span<ValueRef> inputs, Span<ValueRef> outputs,
26 27 28 29
        Span<bool> inputs_require_grad) {
    // hash
    using OptimizedBackwardGraphCache = OpMethResultCache<
            std::shared_ptr<OptimizedBackwardGraphResult>, SmallVector<bool>>;
30 31
    thread_local auto& cache =
            *ResourceManager::create_local<OptimizedBackwardGraphCache>();
32
    OptimizedBackwardGraphCache::key_t cache_key{op.shared_from_this()};
33
    SmallVector<LogicalTensorDesc>& input_descs = cache_key.inputs;
34
    cache_key.extra<0>() = inputs_require_grad.copy_into<SmallVector<bool>>();
35
    input_descs.resize(inputs.size());
36
    // some overhead, consider simplify LogicalTensorDesc
37
    for (size_t i = 0; i < inputs.size(); ++i) {
38 39
        input_descs[i].layout.dtype = *inputs[i].dtype();
        input_descs[i].comp_node = *inputs[i].device();
40 41
    }

42 43
    auto iter = cache.find(cache_key);
    if (iter != cache.end()) {
44 45 46 47 48 49 50
        return iter->second;
    }

    // slow path
    SmallVector<bool> output_has_grad(outputs.size(), true);
    std::shared_ptr<OptimizedBackwardGraphResult> ret;
    auto bg = OpDef::make_backward_graph(
51
            op, input_descs, std::get<0>(cache_key.extras), output_has_grad);
52 53 54
    if (!bg.graph.empty()) {
        ret = std::make_shared<OptimizedBackwardGraphResult>(bg);
    }
55
    cache.emplace(cache_key, ret);
56 57 58 59 60 61 62 63
    return ret;
}

BackwardGraphWithClosure::BackwardGraphWithClosure(
        std::shared_ptr<OptimizedBackwardGraphResult> backward_graph,
        std::shared_ptr<OpDef> op, Span<ValueRef> inputs, Span<ValueRef> outputs)
        : backward_graph(backward_graph),
          output_mask_offset(inputs.size()),
64 65
          grad_mask_offset(inputs.size() + outputs.size()),
          op(op) {
66 67 68 69 70
    auto& save_for_backward = backward_graph->save_for_backward;
    mgb_assert(save_for_backward.size() == inputs.size() + 2 * outputs.size());
    size_t count = std::count_if(
            save_for_backward.begin(), save_for_backward.end(), ranges::identity{});
    if (!backward_graph->precomp.empty()) {
71
        SmallVector<ValueRef> inputs_and_outputs(inputs.size() + outputs.size());
72
        auto it = inputs_and_outputs.begin();
73
        for (auto&& input : inputs) {
74
            *it++ = input;
75 76
        }
        for (auto&& output : outputs) {
77
            *it++ = output;
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        }
        auto precomp = imperative::apply(backward_graph->precomp, inputs_and_outputs);
        closure.reserve(precomp.size() + count);
        std::copy(precomp.begin(), precomp.end(), std::back_inserter(closure));
    } else {
        closure.reserve(count);
    }
    for (size_t i = 0; i < inputs.size(); ++i) {
        if (save_for_backward[i]) {
            closure.push_back(inputs[i]);
        }
    }
    for (size_t i = 0; i < outputs.size(); ++i) {
        if (save_for_backward[inputs.size() + i]) {
            closure.push_back(outputs[i]);
        }
    }
95 96 97 98 99 100 101
    if (outputs.size() > 1) {
        output_descs.reserve(outputs.size());
        for (auto&& output : outputs) {
            auto symbolic_shape = imperative::apply(*GetVarShape::make(), output)[0];
            output_descs.push_back({symbolic_shape, output.dtype(), output.device()});
        }
    }
102 103
}
void BackwardGraphWithClosure::operator()(
104
        Span<ValueRef> grads, std::function<void(size_t, ValueRef)> receiver) {
105 106 107 108 109
    ValueRef args[closure.size() + grads.size()];
    size_t nargs = 0;
    for (auto&& value : closure) {
        args[nargs++] = value;
    }
110 111
    size_t null_grad = 0;
    size_t valid_grad = 0;
112 113 114
    for (size_t i = 0; i < grads.size(); ++i) {
        if (backward_graph->save_for_backward[grad_mask_offset + i]) {
            if (grads[i]) {
115
                valid_grad++;
116 117
                args[nargs++] = grads[i];
            } else {
118 119
                null_grad++;
                nargs++;
120 121 122
            }
        }
    }
123
    if (valid_grad == 0) {
124 125
        return;
    }
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    if (null_grad > 0) {
        auto zeros_like = [](const OutputDesc& desc) {
            HostTensorStorage storage(*desc.device);
            storage.ensure_size(desc.dtype->size());
            std::memset(storage.ptr(), 0, desc.dtype->size());
            auto t = imperative::apply(
                    CreateTensor(
                            CreateTensor::Unique, *desc.device, *desc.dtype,
                            ValueShape()),
                    HostStorage::make(storage))[0];
            auto res = imperative::apply(*Broadcast::make(), t, desc.shape)[0];
            return res;
        };
        nargs = closure.size();
        for (size_t i = 0; i < grads.size(); ++i) {
            if (backward_graph->save_for_backward[grad_mask_offset + i]) {
                if (!grads[i]) {
                    args[nargs] = zeros_like(output_descs[i]);
                }
                nargs++;
            }
        }
    }
    auto igrads = imperative::apply(backward_graph->backward, Span(args, nargs));
150 151 152 153 154 155 156 157 158 159
    auto&& iter = igrads.begin();
    for (auto [i, p] : ranges::views::enumerate(backward_graph->input_has_grad)) {
        if (p) {
            receiver(i, std::move(*iter));
            ++iter;
        }
    }
}

void CustomBackward::operator()(
160
        Span<ValueRef> grads, std::function<void(size_t, ValueRef)> receiver) {
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    size_t nargs = grads.size();
    ValueRef args[nargs];
    for (size_t i = 0; i < nargs; ++i) {
        args[i] = grads[i];
    }
    auto ret = m_backward({args, nargs});
    for (size_t i = 0; i < ret.size(); ++i) {
        if (auto&& t = ret[i]) {
            receiver(i, std::move(t));
        }
    }
}

std::string GradSlot::to_string() const {
    bool has_callback = bool(callback);
    return ssprintf(
            "GradSlot{grad=%s, has_callback=%d}", m_grad.to_string().c_str(),
            (int)has_callback);
}

std::string GradFn::to_string() const {
    return ssprintf("GradFn{dests=%s}", imperative::to_string(m_dests).c_str());
}

std::string GradSlotPtr::to_string() const {
    if (!m_fn) {
        return "<empty>";
    }
    return (*this)->to_string();
}

std::string GradValue::to_string() const {
    return ssprintf(
            "GradValue{key=\"%s\", slot=%s, value=%s}", m_key->name().c_str(),
            m_slot.to_string().c_str(), m_value.to_string().c_str());
}

static std::unordered_map<Typeinfo*, CustomBackward::BackwardRule>&
get_backward_rule_storage() {
    static std::unordered_map<Typeinfo*, CustomBackward::BackwardRule> sl_storage;
    return sl_storage;
}

bool CustomBackward::register_grad_rule(Typeinfo* typeinfo, BackwardRule rule) {
    return get_backward_rule_storage().insert({typeinfo, rule}).second;
}

auto CustomBackward::lookup_grad_rule(Typeinfo* typeinfo) -> BackwardRule {
    auto iter = get_backward_rule_storage().find(typeinfo);
    if (iter == get_backward_rule_storage().end()) {
        return {};
    }
    return iter->second;
}

void GradKey::backward() {
    mgb_assert(m_frozen);
    auto& tape = m_frozen_tape;
    for (std::ptrdiff_t k = tape.size() - 1; k >= 0; --k) {
        auto& [grad_fn, op] = tape[k];
        auto grad_receiver = [&, grad_fn = grad_fn](size_t i, ValueRef grad) {
            auto& dest = grad_fn->m_dests[i];
            if (dest) {
                auto& existing_grad = dest->m_grad;
                if (!existing_grad) {
                    existing_grad = grad;
                } else {
                    existing_grad = imperative::apply(
                            ApplyOp(*Elemwise::make(Elemwise::Mode::ADD)),
                            existing_grad, grad)[0];
                }
            }
        };
        // clang-format off
        std::visit([&, grad_fn = grad_fn, op = op](auto&& backward) {
            using T = std::decay_t<decltype(backward)>;
            if constexpr (std::is_same_v<T, std::monostate>) {
                mgb_throw(AssertionError, "invalid backward");
            } else {
                mgb_assert(grad_fn->m_slots.size() > 0);
241
                SmallVector<ValueRef> grads (grad_fn->m_slots.size());
242
                auto iter = grads.begin();
243
                for (auto&& slot : grad_fn->m_slots) {
244
                    *iter++ = slot.m_grad;
245 246 247 248 249 250 251 252 253
                }
                backward(grads, grad_receiver);
            }
        }, grad_fn->m_backward);
        // clang-format on
        for (auto&& dest : grad_fn->m_dests) {
            if (!dest) {
                continue;
            }
254
            if (!dest.m_producer_record.next && dest->callback) {
255
                // I'm the last grad producer, invoke callback
256 257 258
                if (dest->m_grad) {
                    dest->callback(dest->m_grad);
                }
259 260 261 262 263 264 265 266 267
            }
        }
        grad_fn->clear();
    }
    tape.clear();
}

GradValue::ref_t GradKey::attach(
        ValueRef tensor, std::function<void(ValueRef)> callback) {
268 269 270 271 272 273 274 275 276 277 278 279 280
    // always create a new grad value
    GradSlotPtr grad_slot;
    auto& grad_fn = grad_slot.m_fn;
    grad_fn = LocalPtr<GradFn>::make();
    grad_fn->m_key = shared_from_this();
    grad_fn->m_slots.resize(1);
    grad_fn->m_slots[0].callback = callback;
    grad_slot.m_index = 0;
    if (auto&& grad_value = tensor.as_ref(m_value_type)) {
        grad_fn->m_backward.emplace<IdentityBackward>();
        grad_fn->m_dests.push_back(grad_value->m_slot);
        tensor = grad_value->m_value;
        m_tape.emplace_back(grad_fn, nullptr);
281
    }
282
    return m_value_type.make(tensor, shared_from_this(), grad_slot);
283 284 285 286 287 288 289 290 291 292 293 294 295
}

void GradKey::freeze() {
    mgb_assert(m_frozen_tape.empty() && !m_frozen);
    for (auto&& [grad_fn, op] : m_tape) {
        if (auto valid_grad_fn = grad_fn.lock()) {
            m_frozen_tape.push_back({valid_grad_fn, op});
        }
    }
    m_tape.clear();
    m_frozen = true;
}

296
ValueRefList GradTransformation::apply_transformation(
297
        const Operator& op, Span<ValueRef> inputs) {
298
    auto fallback = [&] {
299
        SmallVector<ValueRef> unwrapped_inputs(inputs.size());
300 301 302 303 304 305 306 307
        {
            // overhead
            for (size_t i = 0; i < inputs.size(); ++i) {
                if (auto&& grad_value = as_grad_value(inputs[i])) {
                    unwrapped_inputs[i] = grad_value->m_value;
                } else {
                    unwrapped_inputs[i] = inputs[i];
                }
308 309
            }
        }
310
        return imperative::apply(op, unwrapped_inputs);
311
    };
312 313 314
    if (op.is<GetAttr>()) {
        // overhead
        if (auto&& grad_value = as_grad_value(inputs.item())) {
315 316 317 318 319
            return imperative::apply(op, grad_value->m_value);
        } else {
            return imperative::apply(op, inputs);
        }
    }
320
    if (m_suppressed) {
321
        return fallback();
322 323 324
    }
    if (auto* op_val = op.as<ApplyOp>()) {
        size_t nr_require_grad = 0;
325 326 327
        SmallVector<bool> require_grads(inputs.size());
        for (size_t i = 0; i < inputs.size(); ++i) {
            if (is_grad_value(inputs[i])) {
328
                nr_require_grad++;
329
                require_grads[i] = true;
330
            } else {
331
                require_grads[i] = false;
332 333 334 335 336
            }
        }
        if (nr_require_grad == 0) {
            return imperative::apply(op, inputs);
        }
337
        SmallVector<ValueRef> captured_inputs(inputs.size());
338
        SmallVector<bool> inputs_require_grad(inputs.size());
339
        // capture value so that trace could assume input as same
340
        auto capture_value = [](const ValueRef& value) {
341
            // TODO: fastpath copy shouldn't be an OpDef
342 343
            static auto fastpath_copy = FastpathCopy::make();
            return imperative::apply(ApplyOp(*fastpath_copy), value)[0];
344
        };
345 346
        for (size_t i = 0; i < inputs.size(); ++i) {
            auto& input = inputs[i];
347
            if (auto&& grad_value = as_grad_value(input)) {
348 349
                captured_inputs[i] = capture_value(grad_value->m_value);
                inputs_require_grad[i] = true;
350
            } else {
351 352
                captured_inputs[i] = capture_value(input);
                inputs_require_grad[i] = false;
353 354
            }
        }
355 356 357
        // copy grad_fn->m_backward is expensive
        auto grad_fn = LocalPtr<GradFn>::make();
        auto& backward_storage = grad_fn->m_backward;
358 359 360 361 362 363
        auto outputs = [&] {
            auto backward_rule =
                    CustomBackward::lookup_grad_rule(op_val->op().dyn_typeinfo());
            if (backward_rule) {
                CustomBackward backward;
                auto optional_outputs = backward_rule(
364
                        op_val->op(), captured_inputs, inputs_require_grad, backward);
365 366 367 368 369 370
                if (optional_outputs) {
                    backward_storage = backward;
                    // backward by rule
                    return *optional_outputs;
                }
            }
371
            auto outputs = imperative::apply(op, captured_inputs);
372
            auto backward_graph = make_optimized_backward_graph(
373
                    op_val->op(), captured_inputs, outputs, inputs_require_grad);
374 375
            if (backward_graph) {
                backward_storage = BackwardGraphWithClosure(
376
                        backward_graph, op_val->op().shared_from_this(),
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
                        {captured_inputs.begin(), captured_inputs.end()},
                        {outputs.data(), outputs.size()});
                // backward by make_backward_graph
                return outputs;
            } else {
                // no backward
                return outputs;
            }
        }();
        if (std::holds_alternative<std::monostate>(backward_storage)) {
            return outputs;
        }
        grad_fn->m_key = m_key;
        grad_fn->m_slots.resize(outputs.size());
        mgb_assert(!outputs.empty());
        grad_fn->m_dests.reserve(inputs.size());
        // clang-format off
394
        auto visitor = [&](auto& backward) {
395 396 397 398
            using T = std::decay_t<decltype(backward)>;
            if constexpr (std::is_same_v<T, std::monostate>) {
                mgb_throw(AssertionError, "invalid backward");
            } else {
399
                // little overhead
400 401 402
                for (size_t i = 0; i < inputs.size(); ++i) {
                    if (backward.input_has_grad(i) && require_grads[i]) {
                        auto& input_grad_slot =
403
                                inputs[i].cast(m_value_type).slot();
404 405 406 407 408 409 410 411 412
                        grad_fn->m_dests.emplace_back(input_grad_slot);
                        grad_fn->m_dests.back().m_producer_record.insert_after(
                                input_grad_slot->m_producer_head);
                    } else {
                        grad_fn->m_dests.emplace_back();
                    }
                }
                for (size_t i = 0; i < outputs.size(); ++i) {
                    if (backward.output_requires_grad(i)) {
413
                        // little overhead: Value::make
414
                        auto grad_value = m_value_type.make(outputs[i], m_key, GradSlotPtr{grad_fn, i});
415 416 417 418
                        outputs[i] = record_grad(grad_value);
                    }
                }
            }
419 420 421
        };
        // std::visit may be slightly slower than direct if
        std::visit(visitor, backward_storage);
422 423 424 425
        // clang-format on
        mgb_assert(!grad_fn->m_slots.empty());
        m_key->m_tape.push_back({grad_fn, op_val->op().shared_from_this()});
        return outputs;
426 427
    } else if (op.is<CreateTensor>()) {
        return imperative::apply(op, inputs);
428 429
    } else if (auto* attach_grad = op.as<AttachGrad>()) {
        if (!has_key(attach_grad->key())) {
430
            return fallback();
431 432 433
        } else {
            GenericFunction callback =
                    (GenericFunction&)inputs[1].cast<FunctionValue>();
434 435 436 437 438
            auto output =
                    attach_grad->key()->attach(inputs[0], [callback](ValueRef grad) {
                        auto ret = callback({&grad, 1});
                        mgb_assert(ret.empty());
                    });
439
            return {record_grad(output)};
440 441 442
        }
    } else if (auto* grad_backward = op.as<GradBackward>()) {
        if (!has_key(grad_backward->key())) {
443
            return fallback();
444 445 446 447 448 449 450 451 452
        }
        size_t nr_grads = inputs.size() / 2;
        mgb_assert(nr_grads * 2 == inputs.size());
        auto values = inputs.sub(0, nr_grads);
        auto grads = inputs.sub(nr_grads, nr_grads);
        make_backward_closure(values)(grads);
        return {};
    } else if (auto* is_attached_to = op.as<IsAttachedTo>()) {
        if (has_key(is_attached_to->key())) {
453
            if (auto&& grad_value = as_grad_value(inputs[0])) {
454 455 456 457 458 459 460
                // TODO: assert grad_fn
                return {BoolValue::make(true)};
            }
        }
        return {BoolValue::make(false)};
    } else if (auto* set_grad = op.as<SetGrad>()) {
        // TODO: merge SetGrad and ApplyOp
461
        auto grad_fn = LocalPtr<GradFn>::make();
462 463 464 465 466 467
        auto& backward =
                std::get<CustomBackward>(grad_fn->m_backward = CustomBackward());
        size_t nr_inputs = set_grad->nr_inputs();
        mgb_assert(inputs.size() > nr_inputs);
        size_t nr_outputs = inputs.size() - nr_inputs;
        Span<ValueRef> inputs_ = {inputs.data(), nr_inputs};
468 469 470 471
        auto outputs_ = fallback();
        backward.m_input_has_grad.resize(nr_inputs, true);
        backward.m_output_attrs.resize(
                nr_outputs, CustomBackward::OutputAttr{true, true});
472 473 474 475
        backward.m_backward = [fn = set_grad->grad_fn()](Span<ValueRef> inputs) {
            auto result = fn(inputs);
            return SmallVector<ValueRef>(result.begin(), result.end());
        };
476
        ValueRefList outputs(nr_outputs);
477 478 479 480
        grad_fn->m_key = m_key;
        grad_fn->m_slots.resize(nr_outputs);
        grad_fn->m_dests.reserve(nr_inputs);
        for (size_t i = 0; i < nr_inputs; ++i) {
481
            if (auto&& grad_value = as_grad_value(inputs_[i])) {
482 483 484 485 486 487 488 489 490 491 492 493
                auto& input_grad_slot = grad_value->m_slot;
                grad_fn->m_dests.emplace_back(grad_value->m_slot);
                grad_fn->m_dests.back().m_producer_record.insert_after(
                        input_grad_slot->m_producer_head);
            } else {
                grad_fn->m_dests.emplace_back();
            }
        }
        for (size_t i = 0; i < nr_outputs; ++i) {
            auto& output = outputs_[i];
            auto grad_value = as_grad_value(output);
            if (grad_value) {
494
                grad_value = m_value_type.make(
495 496
                        grad_value->m_value, m_key, GradSlotPtr(grad_fn, i));
            } else {
497
                grad_value = m_value_type.make(output, m_key, GradSlotPtr(grad_fn, i));
498
            }
499
            outputs[i] = record_grad(grad_value);
500 501 502 503 504
        }
        m_key->m_tape.push_back({grad_fn, nullptr});
        return outputs;
    } else if (auto* gbc = op.as<GetBackwardColsure>()) {
        if (gbc->key() != m_key) {
505
            return fallback();
506 507 508
        }
        return {FunctionValue::make(make_backward_closure(inputs))};
    } else if (op.is<DetachGrad>()) {
509
        if (auto&& grad_value = as_grad_value(inputs[0])) {
510 511 512 513 514 515
            return {grad_value->m_value};
        } else {
            return {inputs[0]};
        }
    } else if (op.is<GetGradKey>()) {
        for (auto&& input : inputs) {
516
            if (auto&& grad_value = as_grad_value(input)) {
517 518 519 520 521 522
                return {GradKeyValue::make(grad_value->m_key)};
            }
        }
        return imperative::apply(op, inputs);
    } else if (op.kind() == Operator::IdentityLike) {
        mgb_assert(inputs.size() == 1);
523
        if (auto&& grad_value = as_grad_value(inputs[0])) {
524
            auto output = imperative::apply(op, grad_value->m_value)[0];
525
            auto grad_output = m_value_type.make(output, m_key, grad_value->slot());
526 527 528 529 530
            return {record_grad(grad_output)};
        } else {
            return imperative::apply(op, inputs);
        }
    } else {
531
        return fallback();
532 533 534 535 536 537 538 539
    }
}

GenericFunction GradTransformation::make_backward_closure(Span<ValueRef> ys) {
    // reset GradKey
    auto grad_key = m_key;
    std::vector<GradSlotPtr> y_slots;
    for (auto&& y : ys) {
540
        if (auto&& grad_value = as_grad_value(y)) {
541
            y_slots.push_back(grad_value->slot());
542 543 544 545
        } else {
            y_slots.emplace_back();
        }
    }
546
    GenericFunction closure = [grad_key, y_slots](Span<ValueRef> dys) -> ValueRefList {
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
        size_t nr_grads = y_slots.size();
        mgb_assert(dys.size() == nr_grads);
        for (size_t i = 0; i < nr_grads; ++i) {
            if (y_slots[i]) {
                y_slots[i]->m_grad = dys[i];
            }
        }
        grad_key->backward();
        return {};
    };
    grad_key->freeze();
    cleanup();
    return closure;
}

void GradTransformation::on_unregister() noexcept {
    cleanup();
}

void GradTransformation::cleanup() {
    for (auto&& weak_value : m_weak_values) {
        auto grad_value = weak_value.lock();
        if (grad_value) {
            mgb_assert(grad_value->m_key == m_key);
            grad_value.reset(grad_value->m_value);
        }
    }
    m_weak_values.clear();
    m_key = {};
}

void GradTransformation::suppress() {
    m_suppressed++;
}

void GradTransformation::resume() {
    m_suppressed--;
}

}  // namespace imperative
}  // namespace mgb