grad.cpp 20.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/**
 * \file imperative/src/impl/transformations/grad.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/imperative/transformations/grad.h"

#include "megbrain/imperative/graph_cache.h"
15
#include "megbrain/imperative/resource_manager.h"
16 17 18 19 20 21 22 23 24 25 26 27

#include <range/v3/all.hpp>

namespace mgb {
namespace imperative {

static std::shared_ptr<OptimizedBackwardGraphResult> make_optimized_backward_graph(
        std::shared_ptr<OpDef> op, Span<ValueRef> inputs, Span<ValueRef> outputs,
        Span<bool> inputs_require_grad) {
    // hash
    using OptimizedBackwardGraphCache = OpMethResultCache<
            std::shared_ptr<OptimizedBackwardGraphResult>, SmallVector<bool>>;
28 29
    thread_local auto& cache =
            *ResourceManager::create_local<OptimizedBackwardGraphCache>();
30 31 32 33 34 35 36 37 38
    OptimizedBackwardGraphCache::key_t cache_key{op};
    SmallVector<LogicalTensorDesc>& input_descs = cache_key.inputs;
    std::get<0>(cache_key.extras) = inputs_require_grad.copy_into<SmallVector<bool>>();
    input_descs.resize(inputs.size());
    for (size_t i = 0; i < inputs.size(); ++i) {
        input_descs[i].layout.dtype = inputs[i].dtype().cast<DTypeValue>();
        input_descs[i].comp_node = inputs[i].device().cast<CompNodeValue>();
    }

39 40
    auto iter = cache.find(cache_key);
    if (iter != cache.end()) {
41 42 43 44 45 46 47 48 49 50 51
        return iter->second;
    }

    // slow path
    SmallVector<bool> output_has_grad(outputs.size(), true);
    std::shared_ptr<OptimizedBackwardGraphResult> ret;
    auto bg = OpDef::make_backward_graph(
            *op, input_descs, std::get<0>(cache_key.extras), output_has_grad);
    if (!bg.graph.empty()) {
        ret = std::make_shared<OptimizedBackwardGraphResult>(bg);
    }
52
    cache.emplace(cache_key, ret);
53 54 55 56 57 58 59 60 61 62 63 64 65 66
    return ret;
}

BackwardGraphWithClosure::BackwardGraphWithClosure(
        std::shared_ptr<OptimizedBackwardGraphResult> backward_graph,
        std::shared_ptr<OpDef> op, Span<ValueRef> inputs, Span<ValueRef> outputs)
        : backward_graph(backward_graph),
          output_mask_offset(inputs.size()),
          grad_mask_offset(inputs.size() + outputs.size()) {
    auto& save_for_backward = backward_graph->save_for_backward;
    mgb_assert(save_for_backward.size() == inputs.size() + 2 * outputs.size());
    size_t count = std::count_if(
            save_for_backward.begin(), save_for_backward.end(), ranges::identity{});
    if (!backward_graph->precomp.empty()) {
67 68
        ValueRefList inputs_and_outputs(inputs.size() + outputs.size());
        auto it = inputs_and_outputs.begin();
69
        for (auto&& input : inputs) {
70
            *it++ = input;
71 72
        }
        for (auto&& output : outputs) {
73
            *it++ = output;
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        }
        auto precomp = imperative::apply(backward_graph->precomp, inputs_and_outputs);
        closure.reserve(precomp.size() + count);
        std::copy(precomp.begin(), precomp.end(), std::back_inserter(closure));
    } else {
        closure.reserve(count);
    }
    for (size_t i = 0; i < inputs.size(); ++i) {
        if (save_for_backward[i]) {
            closure.push_back(inputs[i]);
        }
    }
    for (size_t i = 0; i < outputs.size(); ++i) {
        if (save_for_backward[inputs.size() + i]) {
            closure.push_back(outputs[i]);
        }
    }
}
void BackwardGraphWithClosure::operator()(
93
        ValueRefList grads, std::function<void(size_t, ValueRef)> receiver) {
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    ValueRef args[closure.size() + grads.size()];
    size_t nargs = 0;
    for (auto&& value : closure) {
        args[nargs++] = value;
    }
    bool null_grad = false;
    for (size_t i = 0; i < grads.size(); ++i) {
        if (backward_graph->save_for_backward[grad_mask_offset + i]) {
            if (grads[i]) {
                mgb_assert(!null_grad, "null_grad");
                args[nargs++] = grads[i];
            } else {
                null_grad = true;
            }
        }
    }
    if (null_grad) {
        return;
    }
    auto igrads = imperative::apply(backward_graph->backward, Span(args, nargs));
    auto&& iter = igrads.begin();
    for (auto [i, p] : ranges::views::enumerate(backward_graph->input_has_grad)) {
        if (p) {
            receiver(i, std::move(*iter));
            ++iter;
        }
    }
}

void CustomBackward::operator()(
124
        ValueRefList grads, std::function<void(size_t, ValueRef)> receiver) {
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    size_t nargs = grads.size();
    ValueRef args[nargs];
    for (size_t i = 0; i < nargs; ++i) {
        args[i] = grads[i];
    }
    auto ret = m_backward({args, nargs});
    for (size_t i = 0; i < ret.size(); ++i) {
        if (auto&& t = ret[i]) {
            receiver(i, std::move(t));
        }
    }
}

std::string GradSlot::to_string() const {
    bool has_callback = bool(callback);
    return ssprintf(
            "GradSlot{grad=%s, has_callback=%d}", m_grad.to_string().c_str(),
            (int)has_callback);
}

std::string GradFn::to_string() const {
    return ssprintf("GradFn{dests=%s}", imperative::to_string(m_dests).c_str());
}

std::string GradSlotPtr::to_string() const {
    if (!m_fn) {
        return "<empty>";
    }
    return (*this)->to_string();
}

std::string GradValue::to_string() const {
    return ssprintf(
            "GradValue{key=\"%s\", slot=%s, value=%s}", m_key->name().c_str(),
            m_slot.to_string().c_str(), m_value.to_string().c_str());
}

static std::unordered_map<Typeinfo*, CustomBackward::BackwardRule>&
get_backward_rule_storage() {
    static std::unordered_map<Typeinfo*, CustomBackward::BackwardRule> sl_storage;
    return sl_storage;
}

bool CustomBackward::register_grad_rule(Typeinfo* typeinfo, BackwardRule rule) {
    return get_backward_rule_storage().insert({typeinfo, rule}).second;
}

auto CustomBackward::lookup_grad_rule(Typeinfo* typeinfo) -> BackwardRule {
    auto iter = get_backward_rule_storage().find(typeinfo);
    if (iter == get_backward_rule_storage().end()) {
        return {};
    }
    return iter->second;
}

void GradKey::backward() {
    mgb_assert(m_frozen);
    auto& tape = m_frozen_tape;
    for (std::ptrdiff_t k = tape.size() - 1; k >= 0; --k) {
        auto& [grad_fn, op] = tape[k];
        auto grad_receiver = [&, grad_fn = grad_fn](size_t i, ValueRef grad) {
            auto& dest = grad_fn->m_dests[i];
            if (dest) {
                auto& existing_grad = dest->m_grad;
                if (!existing_grad) {
                    existing_grad = grad;
                } else {
                    existing_grad = imperative::apply(
                            ApplyOp(*Elemwise::make(Elemwise::Mode::ADD)),
                            existing_grad, grad)[0];
                }
            }
        };
        // clang-format off
        std::visit([&, grad_fn = grad_fn, op = op](auto&& backward) {
            using T = std::decay_t<decltype(backward)>;
            if constexpr (std::is_same_v<T, std::monostate>) {
                mgb_throw(AssertionError, "invalid backward");
            } else {
                mgb_assert(grad_fn->m_slots.size() > 0);
205 206
                ValueRefList grads (grad_fn->m_slots.size());
                auto iter = grads.begin();
207
                for (auto&& slot : grad_fn->m_slots) {
208
                    *iter++ = slot.m_grad;
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
                }
                backward(grads, grad_receiver);
            }
        }, grad_fn->m_backward);
        // clang-format on
        for (auto&& dest : grad_fn->m_dests) {
            if (!dest) {
                continue;
            }
            if (!dest.m_producer_record.next && dest->callback && dest->m_grad) {
                // I'm the last grad producer, invoke callback
                dest->callback(dest->m_grad);
            }
        }
        grad_fn->clear();
    }
    tape.clear();
}

GradValue::ref_t GradKey::attach(
        ValueRef tensor, std::function<void(ValueRef)> callback) {
    auto grad_value = tensor.as_ref<GradValue>();
    if (grad_value && grad_value->has_key(shared_from_this())) {
        mgb_assert(
                !tensor.cast<GradValue>().slot_for(shared_from_this())->callback,
                "callback exists");
    } else {
        GradSlotPtr grad_slot;
        auto& grad_fn = grad_slot.m_fn;
        grad_fn = std::make_shared<GradFn>();
        grad_fn->m_key = shared_from_this();
        grad_fn->m_slots.resize(1);
        grad_slot.m_index = 0;
        grad_value = GradValue::make(tensor, shared_from_this(), grad_slot);
    }
    grad_value->slot_for(shared_from_this()).m_fn->m_slots[0].callback = callback;
    return grad_value;
}

void GradKey::freeze() {
    mgb_assert(m_frozen_tape.empty() && !m_frozen);
    for (auto&& [grad_fn, op] : m_tape) {
        if (auto valid_grad_fn = grad_fn.lock()) {
            m_frozen_tape.push_back({valid_grad_fn, op});
        }
    }
    m_tape.clear();
    m_frozen = true;
}

259
ValueRefList GradTransformation::apply_transformation(
260
        const Operator& op, Span<ValueRef> inputs) {
261 262 263 264 265
    auto fallback = [&] {
        ValueRefList unwrapped_inputs(inputs.size());
        for (size_t i = 0; i < inputs.size(); ++i) {
            if (auto grad_value = as_grad_value(inputs[i])) {
                unwrapped_inputs[i] = grad_value->m_value;
266
            } else {
267
                unwrapped_inputs[i] = inputs[i];
268 269
            }
        }
270
        return imperative::apply(op, unwrapped_inputs);
271
    };
272 273 274 275 276 277 278
    if (auto* get_attr = op.as<GetAttr>()) {
        if (auto grad_value = as_grad_value(inputs.item())) {
            return imperative::apply(op, grad_value->m_value);
        } else {
            return imperative::apply(op, inputs);
        }
    }
279
    if (m_suppressed) {
280
        return fallback();
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    }
    if (auto* op_val = op.as<ApplyOp>()) {
        size_t nr_require_grad = 0;
        SmallVector<bool> require_grads;
        for (auto&& input : inputs) {
            if (is_grad_value(input)) {
                nr_require_grad++;
                require_grads.push_back(true);
            } else {
                require_grads.push_back(false);
            }
        }
        if (nr_require_grad == 0) {
            return imperative::apply(op, inputs);
        }
296 297
        ValueRefList captured_inputs(inputs.size());
        SmallVector<bool> inputs_require_grad(inputs.size());
298 299 300 301 302
        // capture value so that trace could assume input as same
        auto capture_value = [](ValueRef value) {
            // TODO: fastpath copy shouldn't be an OpDef
            return imperative::apply(ApplyOp(*FastpathCopy::make()), {&value, 1})[0];
        };
303 304
        for (size_t i = 0; i < inputs.size(); ++i) {
            auto& input = inputs[i];
305
            if (auto grad_value = as_grad_value(input)) {
306 307
                captured_inputs[i] = capture_value(grad_value->m_value);
                inputs_require_grad[i] = true;
308
            } else {
309 310
                captured_inputs[i] = capture_value(input);
                inputs_require_grad[i] = false;
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
            }
        }
        decltype(std::declval<GradFn>().m_backward) backward_storage;
        auto outputs = [&] {
            auto backward_rule =
                    CustomBackward::lookup_grad_rule(op_val->op().dyn_typeinfo());
            if (backward_rule) {
                CustomBackward backward;
                auto optional_outputs = backward_rule(
                        op_val->op(), {captured_inputs.data(), captured_inputs.size()},
                        {inputs_require_grad.data(), inputs_require_grad.size()},
                        backward);
                if (optional_outputs) {
                    backward_storage = backward;
                    // backward by rule
                    return *optional_outputs;
                }
            }
            auto outputs = imperative::apply(
                    op, {captured_inputs.begin(), captured_inputs.end()});
            auto backward_graph = make_optimized_backward_graph(
                    op.cast<ApplyOp>().op().shared_from_this(),
                    {captured_inputs.begin(), captured_inputs.end()},
                    {outputs.data(), outputs.size()},
                    {inputs_require_grad.data(), inputs_require_grad.size()});
            if (backward_graph) {
                backward_storage = BackwardGraphWithClosure(
                        backward_graph, op.cast<ApplyOp>().op().shared_from_this(),
                        {captured_inputs.begin(), captured_inputs.end()},
                        {outputs.data(), outputs.size()});
                // backward by make_backward_graph
                return outputs;
            } else {
                // no backward
                return outputs;
            }
        }();
        if (std::holds_alternative<std::monostate>(backward_storage)) {
            return outputs;
        }
        auto grad_fn = std::make_shared<GradFn>();
        grad_fn->m_key = m_key;
        grad_fn->m_slots.resize(outputs.size());
        grad_fn->m_backward = backward_storage;
        mgb_assert(!outputs.empty());
        grad_fn->m_dests.reserve(inputs.size());
        // clang-format off
        std::visit([&](auto& backward) {
            using T = std::decay_t<decltype(backward)>;
            if constexpr (std::is_same_v<T, std::monostate>) {
                mgb_throw(AssertionError, "invalid backward");
            } else {
                for (size_t i = 0; i < inputs.size(); ++i) {
                    if (backward.input_has_grad(i) && require_grads[i]) {
                        auto& input_grad_slot =
                                inputs[i].cast<GradValue>().slot_for(m_key);
                        grad_fn->m_dests.emplace_back(input_grad_slot);
                        grad_fn->m_dests.back().m_producer_record.insert_after(
                                input_grad_slot->m_producer_head);
                    } else {
                        grad_fn->m_dests.emplace_back();
                    }
                }
                for (size_t i = 0; i < outputs.size(); ++i) {
                    if (backward.output_requires_grad(i)) {
                        auto grad_value = GradValue::make(outputs[i], m_key, GradSlotPtr{grad_fn, i});
                        outputs[i] = record_grad(grad_value);
                    }
                }
            }
        }, grad_fn->m_backward);
        // clang-format on
        mgb_assert(!grad_fn->m_slots.empty());
        m_key->m_tape.push_back({grad_fn, op_val->op().shared_from_this()});
        return outputs;
386 387
    } else if (op.is<CreateTensor>()) {
        return imperative::apply(op, inputs);
388 389
    } else if (auto* attach_grad = op.as<AttachGrad>()) {
        if (!has_key(attach_grad->key())) {
390
            return fallback();
391 392 393 394 395 396 397 398 399 400
        }
        auto tensor = inputs[0];
        GenericFunction callback = (GenericFunction&)inputs[1].cast<FunctionValue>();
        auto output = attach_grad->key()->attach(tensor, [callback](ValueRef grad) {
            auto ret = callback({&grad, 1});
            assert(ret.empty());
        });
        return {record_grad(output)};
    } else if (auto* grad_backward = op.as<GradBackward>()) {
        if (!has_key(grad_backward->key())) {
401
            return fallback();
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
        }
        size_t nr_grads = inputs.size() / 2;
        mgb_assert(nr_grads * 2 == inputs.size());
        auto values = inputs.sub(0, nr_grads);
        auto grads = inputs.sub(nr_grads, nr_grads);
        make_backward_closure(values)(grads);
        return {};
    } else if (auto* is_attached_to = op.as<IsAttachedTo>()) {
        if (has_key(is_attached_to->key())) {
            if (auto grad_value = as_grad_value(inputs[0])) {
                // TODO: assert grad_fn
                return {BoolValue::make(true)};
            }
        }
        return {BoolValue::make(false)};
    } else if (auto* set_grad = op.as<SetGrad>()) {
        // TODO: merge SetGrad and ApplyOp
        auto grad_fn = std::make_shared<GradFn>();
        auto& backward =
                std::get<CustomBackward>(grad_fn->m_backward = CustomBackward());
        size_t nr_inputs = set_grad->nr_inputs();
        mgb_assert(inputs.size() > nr_inputs);
        size_t nr_outputs = inputs.size() - nr_inputs;
        Span<ValueRef> inputs_ = {inputs.data(), nr_inputs};
        Span<ValueRef> outputs_ = {inputs.data() + nr_inputs, nr_outputs};
        backward.m_input_has_grad = SmallVector(nr_inputs, true);
        backward.m_output_attrs =
                SmallVector(nr_outputs, CustomBackward::OutputAttr{true, true});
        backward.m_backward = set_grad->grad_fn();
431
        ValueRefList outputs(nr_outputs);
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        grad_fn->m_key = m_key;
        grad_fn->m_slots.resize(nr_outputs);
        grad_fn->m_dests.reserve(nr_inputs);
        for (size_t i = 0; i < nr_inputs; ++i) {
            if (auto grad_value = as_grad_value(inputs_[i])) {
                auto& input_grad_slot = grad_value->m_slot;
                grad_fn->m_dests.emplace_back(grad_value->m_slot);
                grad_fn->m_dests.back().m_producer_record.insert_after(
                        input_grad_slot->m_producer_head);
            } else {
                grad_fn->m_dests.emplace_back();
            }
        }
        for (size_t i = 0; i < nr_outputs; ++i) {
            auto& output = outputs_[i];
            auto grad_value = as_grad_value(output);
            if (grad_value) {
                grad_value = GradValue::make(
                        grad_value->m_value, m_key, GradSlotPtr(grad_fn, i));
            } else {
                grad_value = GradValue::make(output, m_key, GradSlotPtr(grad_fn, i));
            }
454
            outputs[i] = record_grad(grad_value);
455 456 457 458 459
        }
        m_key->m_tape.push_back({grad_fn, nullptr});
        return outputs;
    } else if (auto* gbc = op.as<GetBackwardColsure>()) {
        if (gbc->key() != m_key) {
460
            return fallback();
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
        }
        return {FunctionValue::make(make_backward_closure(inputs))};
    } else if (op.is<DetachGrad>()) {
        if (auto grad_value = as_grad_value(inputs[0])) {
            return {grad_value->m_value};
        } else {
            return {inputs[0]};
        }
    } else if (op.is<GetGradKey>()) {
        for (auto&& input : inputs) {
            if (auto grad_value = as_grad_value(input)) {
                return {GradKeyValue::make(grad_value->m_key)};
            }
        }
        return imperative::apply(op, inputs);
    } else if (op.kind() == Operator::IdentityLike) {
        mgb_assert(inputs.size() == 1);
        if (auto grad_value = as_grad_value(inputs[0])) {
            auto output = imperative::apply(op, grad_value->m_value)[0];
            auto grad_output = GradValue::make(
                    output, grad_value->key(), grad_value->slot_for(m_key));
            return {record_grad(grad_output)};
        } else {
            return imperative::apply(op, inputs);
        }
    } else {
487
        return fallback();
488 489 490 491 492 493 494 495 496 497 498 499 500 501
    }
}

GenericFunction GradTransformation::make_backward_closure(Span<ValueRef> ys) {
    // reset GradKey
    auto grad_key = m_key;
    std::vector<GradSlotPtr> y_slots;
    for (auto&& y : ys) {
        if (auto grad_value = as_grad_value(y)) {
            y_slots.push_back(grad_value->slot_for(grad_key));
        } else {
            y_slots.emplace_back();
        }
    }
502
    GenericFunction closure = [grad_key, y_slots](Span<ValueRef> dys) -> ValueRefList {
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
        size_t nr_grads = y_slots.size();
        mgb_assert(dys.size() == nr_grads);
        for (size_t i = 0; i < nr_grads; ++i) {
            if (y_slots[i]) {
                y_slots[i]->m_grad = dys[i];
            }
        }
        grad_key->backward();
        return {};
    };
    grad_key->freeze();
    cleanup();
    return closure;
}

void GradTransformation::on_unregister() noexcept {
    cleanup();
}

void GradTransformation::cleanup() {
    for (auto&& weak_value : m_weak_values) {
        auto grad_value = weak_value.lock();
        if (grad_value) {
            mgb_assert(grad_value->m_key == m_key);
            grad_value.reset(grad_value->m_value);
        }
    }
    m_weak_values.clear();
    m_key = {};
}

void GradTransformation::suppress() {
    m_suppressed++;
}

void GradTransformation::resume() {
    m_suppressed--;
}

}  // namespace imperative
}  // namespace mgb