grad.cpp 20.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/**
 * \file imperative/src/impl/transformations/grad.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/imperative/transformations/grad.h"

14 15
#include <variant>

16
#include "megbrain/imperative/graph_cache.h"
17
#include "megbrain/imperative/resource_manager.h"
18
#include "megbrain/imperative/utils/stats.h"
19 20 21 22 23 24 25

#include <range/v3/all.hpp>

namespace mgb {
namespace imperative {

static std::shared_ptr<OptimizedBackwardGraphResult> make_optimized_backward_graph(
26
        const OpDef& op, Span<ValueRef> inputs, Span<ValueRef> outputs,
27 28 29 30
        Span<bool> inputs_require_grad) {
    // hash
    using OptimizedBackwardGraphCache = OpMethResultCache<
            std::shared_ptr<OptimizedBackwardGraphResult>, SmallVector<bool>>;
31 32
    thread_local auto& cache =
            *ResourceManager::create_local<OptimizedBackwardGraphCache>();
33
    OptimizedBackwardGraphCache::key_t cache_key{op.shared_from_this()};
34
    SmallVector<LogicalTensorDesc>& input_descs = cache_key.inputs;
35
    cache_key.extra<0>() = inputs_require_grad.copy_into<SmallVector<bool>>();
36
    input_descs.resize(inputs.size());
37
    // some overhead, consider simplify LogicalTensorDesc
38
    for (size_t i = 0; i < inputs.size(); ++i) {
39 40
        input_descs[i].layout.dtype = *inputs[i].dtype();
        input_descs[i].comp_node = *inputs[i].device();
41 42
    }

43 44
    auto iter = cache.find(cache_key);
    if (iter != cache.end()) {
45 46 47 48 49 50 51
        return iter->second;
    }

    // slow path
    SmallVector<bool> output_has_grad(outputs.size(), true);
    std::shared_ptr<OptimizedBackwardGraphResult> ret;
    auto bg = OpDef::make_backward_graph(
52
            op, input_descs, std::get<0>(cache_key.extras), output_has_grad);
53 54 55
    if (!bg.graph.empty()) {
        ret = std::make_shared<OptimizedBackwardGraphResult>(bg);
    }
56
    cache.emplace(cache_key, ret);
57 58 59 60 61 62 63 64 65 66 67 68 69 70
    return ret;
}

BackwardGraphWithClosure::BackwardGraphWithClosure(
        std::shared_ptr<OptimizedBackwardGraphResult> backward_graph,
        std::shared_ptr<OpDef> op, Span<ValueRef> inputs, Span<ValueRef> outputs)
        : backward_graph(backward_graph),
          output_mask_offset(inputs.size()),
          grad_mask_offset(inputs.size() + outputs.size()) {
    auto& save_for_backward = backward_graph->save_for_backward;
    mgb_assert(save_for_backward.size() == inputs.size() + 2 * outputs.size());
    size_t count = std::count_if(
            save_for_backward.begin(), save_for_backward.end(), ranges::identity{});
    if (!backward_graph->precomp.empty()) {
71 72
        ValueRefList inputs_and_outputs(inputs.size() + outputs.size());
        auto it = inputs_and_outputs.begin();
73
        for (auto&& input : inputs) {
74
            *it++ = input;
75 76
        }
        for (auto&& output : outputs) {
77
            *it++ = output;
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
        }
        auto precomp = imperative::apply(backward_graph->precomp, inputs_and_outputs);
        closure.reserve(precomp.size() + count);
        std::copy(precomp.begin(), precomp.end(), std::back_inserter(closure));
    } else {
        closure.reserve(count);
    }
    for (size_t i = 0; i < inputs.size(); ++i) {
        if (save_for_backward[i]) {
            closure.push_back(inputs[i]);
        }
    }
    for (size_t i = 0; i < outputs.size(); ++i) {
        if (save_for_backward[inputs.size() + i]) {
            closure.push_back(outputs[i]);
        }
    }
}
void BackwardGraphWithClosure::operator()(
97
        ValueRefList grads, std::function<void(size_t, ValueRef)> receiver) {
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    ValueRef args[closure.size() + grads.size()];
    size_t nargs = 0;
    for (auto&& value : closure) {
        args[nargs++] = value;
    }
    bool null_grad = false;
    for (size_t i = 0; i < grads.size(); ++i) {
        if (backward_graph->save_for_backward[grad_mask_offset + i]) {
            if (grads[i]) {
                mgb_assert(!null_grad, "null_grad");
                args[nargs++] = grads[i];
            } else {
                null_grad = true;
            }
        }
    }
    if (null_grad) {
        return;
    }
    auto igrads = imperative::apply(backward_graph->backward, Span(args, nargs));
    auto&& iter = igrads.begin();
    for (auto [i, p] : ranges::views::enumerate(backward_graph->input_has_grad)) {
        if (p) {
            receiver(i, std::move(*iter));
            ++iter;
        }
    }
}

void CustomBackward::operator()(
128
        ValueRefList grads, std::function<void(size_t, ValueRef)> receiver) {
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    size_t nargs = grads.size();
    ValueRef args[nargs];
    for (size_t i = 0; i < nargs; ++i) {
        args[i] = grads[i];
    }
    auto ret = m_backward({args, nargs});
    for (size_t i = 0; i < ret.size(); ++i) {
        if (auto&& t = ret[i]) {
            receiver(i, std::move(t));
        }
    }
}

std::string GradSlot::to_string() const {
    bool has_callback = bool(callback);
    return ssprintf(
            "GradSlot{grad=%s, has_callback=%d}", m_grad.to_string().c_str(),
            (int)has_callback);
}

std::string GradFn::to_string() const {
    return ssprintf("GradFn{dests=%s}", imperative::to_string(m_dests).c_str());
}

std::string GradSlotPtr::to_string() const {
    if (!m_fn) {
        return "<empty>";
    }
    return (*this)->to_string();
}

std::string GradValue::to_string() const {
    return ssprintf(
            "GradValue{key=\"%s\", slot=%s, value=%s}", m_key->name().c_str(),
            m_slot.to_string().c_str(), m_value.to_string().c_str());
}

static std::unordered_map<Typeinfo*, CustomBackward::BackwardRule>&
get_backward_rule_storage() {
    static std::unordered_map<Typeinfo*, CustomBackward::BackwardRule> sl_storage;
    return sl_storage;
}

bool CustomBackward::register_grad_rule(Typeinfo* typeinfo, BackwardRule rule) {
    return get_backward_rule_storage().insert({typeinfo, rule}).second;
}

auto CustomBackward::lookup_grad_rule(Typeinfo* typeinfo) -> BackwardRule {
    auto iter = get_backward_rule_storage().find(typeinfo);
    if (iter == get_backward_rule_storage().end()) {
        return {};
    }
    return iter->second;
}

void GradKey::backward() {
    mgb_assert(m_frozen);
    auto& tape = m_frozen_tape;
    for (std::ptrdiff_t k = tape.size() - 1; k >= 0; --k) {
        auto& [grad_fn, op] = tape[k];
        auto grad_receiver = [&, grad_fn = grad_fn](size_t i, ValueRef grad) {
            auto& dest = grad_fn->m_dests[i];
            if (dest) {
                auto& existing_grad = dest->m_grad;
                if (!existing_grad) {
                    existing_grad = grad;
                } else {
                    existing_grad = imperative::apply(
                            ApplyOp(*Elemwise::make(Elemwise::Mode::ADD)),
                            existing_grad, grad)[0];
                }
            }
        };
        // clang-format off
        std::visit([&, grad_fn = grad_fn, op = op](auto&& backward) {
            using T = std::decay_t<decltype(backward)>;
            if constexpr (std::is_same_v<T, std::monostate>) {
                mgb_throw(AssertionError, "invalid backward");
            } else {
                mgb_assert(grad_fn->m_slots.size() > 0);
209 210
                ValueRefList grads (grad_fn->m_slots.size());
                auto iter = grads.begin();
211
                for (auto&& slot : grad_fn->m_slots) {
212
                    *iter++ = slot.m_grad;
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
                }
                backward(grads, grad_receiver);
            }
        }, grad_fn->m_backward);
        // clang-format on
        for (auto&& dest : grad_fn->m_dests) {
            if (!dest) {
                continue;
            }
            if (!dest.m_producer_record.next && dest->callback && dest->m_grad) {
                // I'm the last grad producer, invoke callback
                dest->callback(dest->m_grad);
            }
        }
        grad_fn->clear();
    }
    tape.clear();
}

GradValue::ref_t GradKey::attach(
        ValueRef tensor, std::function<void(ValueRef)> callback) {
    auto grad_value = tensor.as_ref<GradValue>();
    if (grad_value && grad_value->has_key(shared_from_this())) {
        mgb_assert(
                !tensor.cast<GradValue>().slot_for(shared_from_this())->callback,
                "callback exists");
    } else {
        GradSlotPtr grad_slot;
        auto& grad_fn = grad_slot.m_fn;
242
        grad_fn = LocalPtr<GradFn>::make();
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
        grad_fn->m_key = shared_from_this();
        grad_fn->m_slots.resize(1);
        grad_slot.m_index = 0;
        grad_value = GradValue::make(tensor, shared_from_this(), grad_slot);
    }
    grad_value->slot_for(shared_from_this()).m_fn->m_slots[0].callback = callback;
    return grad_value;
}

void GradKey::freeze() {
    mgb_assert(m_frozen_tape.empty() && !m_frozen);
    for (auto&& [grad_fn, op] : m_tape) {
        if (auto valid_grad_fn = grad_fn.lock()) {
            m_frozen_tape.push_back({valid_grad_fn, op});
        }
    }
    m_tape.clear();
    m_frozen = true;
}

263
ValueRefList GradTransformation::apply_transformation(
264
        const Operator& op, Span<ValueRef> inputs) {
265 266
    auto fallback = [&] {
        ValueRefList unwrapped_inputs(inputs.size());
267 268 269 270 271 272 273 274
        {
            // overhead
            for (size_t i = 0; i < inputs.size(); ++i) {
                if (auto&& grad_value = as_grad_value(inputs[i])) {
                    unwrapped_inputs[i] = grad_value->m_value;
                } else {
                    unwrapped_inputs[i] = inputs[i];
                }
275 276
            }
        }
277
        return imperative::apply(op, unwrapped_inputs);
278
    };
279 280 281
    if (op.is<GetAttr>()) {
        // overhead
        if (auto&& grad_value = as_grad_value(inputs.item())) {
282 283 284 285 286
            return imperative::apply(op, grad_value->m_value);
        } else {
            return imperative::apply(op, inputs);
        }
    }
287
    if (m_suppressed) {
288
        return fallback();
289 290 291
    }
    if (auto* op_val = op.as<ApplyOp>()) {
        size_t nr_require_grad = 0;
292 293 294
        SmallVector<bool> require_grads(inputs.size());
        for (size_t i = 0; i < inputs.size(); ++i) {
            if (is_grad_value(inputs[i])) {
295
                nr_require_grad++;
296
                require_grads[i] = true;
297
            } else {
298
                require_grads[i] = false;
299 300 301 302 303
            }
        }
        if (nr_require_grad == 0) {
            return imperative::apply(op, inputs);
        }
304
        SmallVector<ValueRef> captured_inputs(inputs.size());
305
        SmallVector<bool> inputs_require_grad(inputs.size());
306
        // capture value so that trace could assume input as same
307
        auto capture_value = [](const ValueRef& value) {
308
            // TODO: fastpath copy shouldn't be an OpDef
309 310
            static auto fastpath_copy = FastpathCopy::make();
            return imperative::apply(ApplyOp(*fastpath_copy), value)[0];
311
        };
312 313
        for (size_t i = 0; i < inputs.size(); ++i) {
            auto& input = inputs[i];
314
            if (auto&& grad_value = as_grad_value(input)) {
315 316
                captured_inputs[i] = capture_value(grad_value->m_value);
                inputs_require_grad[i] = true;
317
            } else {
318 319
                captured_inputs[i] = capture_value(input);
                inputs_require_grad[i] = false;
320 321
            }
        }
322 323 324
        // copy grad_fn->m_backward is expensive
        auto grad_fn = LocalPtr<GradFn>::make();
        auto& backward_storage = grad_fn->m_backward;
325 326 327 328 329 330
        auto outputs = [&] {
            auto backward_rule =
                    CustomBackward::lookup_grad_rule(op_val->op().dyn_typeinfo());
            if (backward_rule) {
                CustomBackward backward;
                auto optional_outputs = backward_rule(
331
                        op_val->op(), captured_inputs, inputs_require_grad, backward);
332 333 334 335 336 337
                if (optional_outputs) {
                    backward_storage = backward;
                    // backward by rule
                    return *optional_outputs;
                }
            }
338
            auto outputs = imperative::apply(op, captured_inputs);
339
            auto backward_graph = make_optimized_backward_graph(
340
                    op_val->op(), captured_inputs, outputs, inputs_require_grad);
341 342
            if (backward_graph) {
                backward_storage = BackwardGraphWithClosure(
343
                        backward_graph, op_val->op().shared_from_this(),
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
                        {captured_inputs.begin(), captured_inputs.end()},
                        {outputs.data(), outputs.size()});
                // backward by make_backward_graph
                return outputs;
            } else {
                // no backward
                return outputs;
            }
        }();
        if (std::holds_alternative<std::monostate>(backward_storage)) {
            return outputs;
        }
        grad_fn->m_key = m_key;
        grad_fn->m_slots.resize(outputs.size());
        mgb_assert(!outputs.empty());
        grad_fn->m_dests.reserve(inputs.size());
        // clang-format off
361
        auto visitor = [&](auto& backward) {
362 363 364 365
            using T = std::decay_t<decltype(backward)>;
            if constexpr (std::is_same_v<T, std::monostate>) {
                mgb_throw(AssertionError, "invalid backward");
            } else {
366
                // little overhead
367 368 369 370 371 372 373 374 375 376 377 378 379
                for (size_t i = 0; i < inputs.size(); ++i) {
                    if (backward.input_has_grad(i) && require_grads[i]) {
                        auto& input_grad_slot =
                                inputs[i].cast<GradValue>().slot_for(m_key);
                        grad_fn->m_dests.emplace_back(input_grad_slot);
                        grad_fn->m_dests.back().m_producer_record.insert_after(
                                input_grad_slot->m_producer_head);
                    } else {
                        grad_fn->m_dests.emplace_back();
                    }
                }
                for (size_t i = 0; i < outputs.size(); ++i) {
                    if (backward.output_requires_grad(i)) {
380
                        // little overhead: Value::make
381 382 383 384 385
                        auto grad_value = GradValue::make(outputs[i], m_key, GradSlotPtr{grad_fn, i});
                        outputs[i] = record_grad(grad_value);
                    }
                }
            }
386 387 388
        };
        // std::visit may be slightly slower than direct if
        std::visit(visitor, backward_storage);
389 390 391 392
        // clang-format on
        mgb_assert(!grad_fn->m_slots.empty());
        m_key->m_tape.push_back({grad_fn, op_val->op().shared_from_this()});
        return outputs;
393 394
    } else if (op.is<CreateTensor>()) {
        return imperative::apply(op, inputs);
395 396
    }
    if (auto* attach_grad = op.as<AttachGrad>()) {
397
        if (!has_key(attach_grad->key())) {
398
            return fallback();
399 400 401 402 403 404 405 406 407 408
        }
        auto tensor = inputs[0];
        GenericFunction callback = (GenericFunction&)inputs[1].cast<FunctionValue>();
        auto output = attach_grad->key()->attach(tensor, [callback](ValueRef grad) {
            auto ret = callback({&grad, 1});
            assert(ret.empty());
        });
        return {record_grad(output)};
    } else if (auto* grad_backward = op.as<GradBackward>()) {
        if (!has_key(grad_backward->key())) {
409
            return fallback();
410 411 412 413 414 415 416 417 418
        }
        size_t nr_grads = inputs.size() / 2;
        mgb_assert(nr_grads * 2 == inputs.size());
        auto values = inputs.sub(0, nr_grads);
        auto grads = inputs.sub(nr_grads, nr_grads);
        make_backward_closure(values)(grads);
        return {};
    } else if (auto* is_attached_to = op.as<IsAttachedTo>()) {
        if (has_key(is_attached_to->key())) {
419
            if (auto&& grad_value = as_grad_value(inputs[0])) {
420 421 422 423 424 425 426
                // TODO: assert grad_fn
                return {BoolValue::make(true)};
            }
        }
        return {BoolValue::make(false)};
    } else if (auto* set_grad = op.as<SetGrad>()) {
        // TODO: merge SetGrad and ApplyOp
427
        auto grad_fn = LocalPtr<GradFn>::make();
428 429 430 431 432 433 434 435 436 437 438
        auto& backward =
                std::get<CustomBackward>(grad_fn->m_backward = CustomBackward());
        size_t nr_inputs = set_grad->nr_inputs();
        mgb_assert(inputs.size() > nr_inputs);
        size_t nr_outputs = inputs.size() - nr_inputs;
        Span<ValueRef> inputs_ = {inputs.data(), nr_inputs};
        Span<ValueRef> outputs_ = {inputs.data() + nr_inputs, nr_outputs};
        backward.m_input_has_grad = SmallVector(nr_inputs, true);
        backward.m_output_attrs =
                SmallVector(nr_outputs, CustomBackward::OutputAttr{true, true});
        backward.m_backward = set_grad->grad_fn();
439
        ValueRefList outputs(nr_outputs);
440 441 442 443
        grad_fn->m_key = m_key;
        grad_fn->m_slots.resize(nr_outputs);
        grad_fn->m_dests.reserve(nr_inputs);
        for (size_t i = 0; i < nr_inputs; ++i) {
444
            if (auto&& grad_value = as_grad_value(inputs_[i])) {
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
                auto& input_grad_slot = grad_value->m_slot;
                grad_fn->m_dests.emplace_back(grad_value->m_slot);
                grad_fn->m_dests.back().m_producer_record.insert_after(
                        input_grad_slot->m_producer_head);
            } else {
                grad_fn->m_dests.emplace_back();
            }
        }
        for (size_t i = 0; i < nr_outputs; ++i) {
            auto& output = outputs_[i];
            auto grad_value = as_grad_value(output);
            if (grad_value) {
                grad_value = GradValue::make(
                        grad_value->m_value, m_key, GradSlotPtr(grad_fn, i));
            } else {
                grad_value = GradValue::make(output, m_key, GradSlotPtr(grad_fn, i));
            }
462
            outputs[i] = record_grad(grad_value);
463 464 465 466 467
        }
        m_key->m_tape.push_back({grad_fn, nullptr});
        return outputs;
    } else if (auto* gbc = op.as<GetBackwardColsure>()) {
        if (gbc->key() != m_key) {
468
            return fallback();
469 470 471
        }
        return {FunctionValue::make(make_backward_closure(inputs))};
    } else if (op.is<DetachGrad>()) {
472
        if (auto&& grad_value = as_grad_value(inputs[0])) {
473 474 475 476 477 478
            return {grad_value->m_value};
        } else {
            return {inputs[0]};
        }
    } else if (op.is<GetGradKey>()) {
        for (auto&& input : inputs) {
479
            if (auto&& grad_value = as_grad_value(input)) {
480 481 482 483 484 485
                return {GradKeyValue::make(grad_value->m_key)};
            }
        }
        return imperative::apply(op, inputs);
    } else if (op.kind() == Operator::IdentityLike) {
        mgb_assert(inputs.size() == 1);
486
        if (auto&& grad_value = as_grad_value(inputs[0])) {
487 488 489 490 491 492 493 494
            auto output = imperative::apply(op, grad_value->m_value)[0];
            auto grad_output = GradValue::make(
                    output, grad_value->key(), grad_value->slot_for(m_key));
            return {record_grad(grad_output)};
        } else {
            return imperative::apply(op, inputs);
        }
    } else {
495
        return fallback();
496 497 498 499 500 501 502 503
    }
}

GenericFunction GradTransformation::make_backward_closure(Span<ValueRef> ys) {
    // reset GradKey
    auto grad_key = m_key;
    std::vector<GradSlotPtr> y_slots;
    for (auto&& y : ys) {
504
        if (auto&& grad_value = as_grad_value(y)) {
505 506 507 508 509
            y_slots.push_back(grad_value->slot_for(grad_key));
        } else {
            y_slots.emplace_back();
        }
    }
510
    GenericFunction closure = [grad_key, y_slots](Span<ValueRef> dys) -> ValueRefList {
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
        size_t nr_grads = y_slots.size();
        mgb_assert(dys.size() == nr_grads);
        for (size_t i = 0; i < nr_grads; ++i) {
            if (y_slots[i]) {
                y_slots[i]->m_grad = dys[i];
            }
        }
        grad_key->backward();
        return {};
    };
    grad_key->freeze();
    cleanup();
    return closure;
}

void GradTransformation::on_unregister() noexcept {
    cleanup();
}

void GradTransformation::cleanup() {
    for (auto&& weak_value : m_weak_values) {
        auto grad_value = weak_value.lock();
        if (grad_value) {
            mgb_assert(grad_value->m_key == m_key);
            grad_value.reset(grad_value->m_value);
        }
    }
    m_weak_values.clear();
    m_key = {};
}

void GradTransformation::suppress() {
    m_suppressed++;
}

void GradTransformation::resume() {
    m_suppressed--;
}

}  // namespace imperative
}  // namespace mgb