opr_impl.cpp 6.6 KB
Newer Older
1 2 3 4 5 6 7 8
/**
 * \file dnn/src/x86/conv_bias/opr_impl.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18
 */

#include "src/x86/conv_bias/opr_impl.h"
#include <algorithm>
#include <memory>
#include "src/common/metahelper.h"
#include "src/common/opr_delegate.h"
#include "src/x86/conv_bias/f32/algos.h"
19
#include "src/x86/conv_bias/int8/algo_usable_preferred.h"
20
#include "src/x86/conv_bias/int8/algos.h"
21
#include "src/x86/matrix_mul/opr_impl.h"
22 23 24 25 26 27 28 29

using namespace megdnn;
using namespace x86;

namespace {
uint8_t x86_algo_type_storage;
void* x86_algo_type = &x86_algo_type_storage;
}  // anonymous namespace
30
#if MEGDNN_X86_WITH_MKL_DNN
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
void* ConvBiasImpl::AlgoMkldnnQint8::type() const {
    return x86_algo_type;
}
void* ConvBiasImpl::AlgoMkldnnMatmulQint8::type() const {
    return x86_algo_type;
}
void* ConvBiasImpl::AlgoMkldnnConv::type() const {
    return x86_algo_type;
}
#endif

void* ConvBiasImpl::AlgoDirect::type() const {
    return x86_algo_type;
}

void* ConvBiasImpl::AlgoDirectStride2::type() const {
    return x86_algo_type;
}

void* ConvBiasImpl::AlgoMatrixMul::type() const {
    return x86_algo_type;
}

void* ConvBiasImpl::AlgoDirectAvx2Stride1Int8::type() const {
    return x86_algo_type;
}

void* ConvBiasImpl::AlgoFP32WinogradF63_8x8::type() const {
    return x86_algo_type;
}

void* ConvBiasImpl::AlgoFP32WinogradF23_8x8::type() const {
    return x86_algo_type;
}

void* ConvBiasImpl::AlgoAVX2DirectConvStride2::type() const {
    return x86_algo_type;
}

70 71 72 73
void* ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8::type() const {
    return x86_algo_type;
}

74 75 76 77
void* ConvBiasImpl::AlgoChanWiseAvx2Stride2Qint8::type() const {
    return x86_algo_type;
}

78 79 80 81 82 83 84
class ConvBiasImpl::AlgoPack : NonCopyableObj {
    AlgoDirect stride1_direct_large_group{true};
    AlgoDirect stride1_direct_small_group{false};
    AlgoDirectStride2 stride2_direct_large_group{true};
    AlgoDirectStride2 stride2_direct_small_group{false};
    AlgoDirectAvx2Stride1Int8 avx2_stride1_direct_int8;
    AlgoAVX2DirectConvStride2 avx2_stride2_direct;
85
    AlgoChanWiseAvx2Stride1Qint8 avx2_stride1_chanwsie_qint8;
86
    AlgoChanWiseAvx2Stride2Qint8 avx2_stride2_chanwsie_qint8;
87
    AlgoMatrixMul matmul;
88
#if MEGDNN_X86_WITH_MKL_DNN
89 90 91 92 93 94
    AlgoMkldnnMatmulQint8 mkldnn_matmul_qint8;
    //! Because the mkldnnconv need handle
    AlgoMkldnnQint8 mkldnn_qint8;
    AlgoMkldnnConv mkldnn_conv_fp32;
#endif
    SmallVector<std::unique_ptr<AlgoBase>> refhold;
95

96 97
public:
    AlgoPack() {
98 99 100 101 102 103 104 105
        //! FIXME: preference to use mkldnn algo on VNNI devices
        //! But now mkldnn algo preference issue with NCHW->NHWC->NCHW
#if MEGDNN_X86_WITH_MKL_DNN
        //! Create the mkldnn algo
        all_algos.emplace_back(&mkldnn_conv_fp32);
        all_algos.emplace_back(&mkldnn_matmul_qint8);
        all_algos.emplace_back(&mkldnn_qint8);
#endif
106 107 108 109 110 111
        all_algos.emplace_back(&stride1_direct_large_group);
        all_algos.emplace_back(&stride1_direct_small_group);
        all_algos.emplace_back(&stride2_direct_large_group);
        all_algos.emplace_back(&stride2_direct_small_group);
        all_algos.emplace_back(&avx2_stride1_direct_int8);
        all_algos.emplace_back(&avx2_stride2_direct);
112
        all_algos.emplace_back(&avx2_stride1_chanwsie_qint8);
113
        all_algos.emplace_back(&avx2_stride2_chanwsie_qint8);
114 115 116 117 118 119 120
        all_algos.emplace_back(&matmul);

        static CpuOprDelegationStorage<> storage;
        auto matmul_opr = storage.get<MatrixMul>();
        auto&& matmul_algos =
                static_cast<MatrixMulImpl*>(matmul_opr)->algo_pack();
        for (auto&& algo : matmul_algos) {
121 122
            if (algo->type() == nullptr)
                continue;
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            for (uint32_t tile_size : {8, 16, 24}) {
                refhold.emplace_back(new AlgoFP32WinogradF63_8x8(
                        static_cast<fallback::MatrixMulImpl::AlgoBase*>(algo),
                        tile_size));
                winograd_algos.emplace_back(refhold.back().get());
                refhold.emplace_back(new AlgoFP32WinogradF23_8x8(
                        static_cast<fallback::MatrixMulImpl::AlgoBase*>(algo),
                        tile_size));
                winograd_algos.emplace_back(refhold.back().get());
            }
        }
    }
    SmallVector<AlgoBase*> all_algos;
    SmallVector<AlgoBase*> winograd_algos;
};

SmallVector<ConvBiasImpl::AlgoBase*> ConvBiasImpl::algo_pack() {
    static AlgoPack sl_algo_pack;
    auto&& algos = fallback::ConvBiasImpl::algo_pack();
    algos.insert(algos.begin(), sl_algo_pack.all_algos.begin(),
                 sl_algo_pack.all_algos.end());
    algos.insert(algos.end(), sl_algo_pack.winograd_algos.begin(),
                 sl_algo_pack.winograd_algos.end());
    return std::move(algos);
}

void ConvBiasImpl::get_rectified_img_size(size_t IH, size_t IW, size_t FH,
                                          size_t FW, size_t OH, size_t OW,
                                          size_t PH, size_t PW, size_t& IH2,
                                          size_t& IW2, size_t& OH2,
                                          size_t& OW2) {
    OW2 = (OW + 7) >> 3 << 3;
    OH2 = OH;
    IH2 = std::max(IH, OH2 + FH - 1 + 2 * PH);
    IW2 = std::max(IW, OW2 + FW - 1 + 2 * PW);
}

const char* ConvBiasImpl::get_algorithm_set_name() const {
    // x86 version 0
    return "X0";
}

165 166 167 168 169 170 171 172 173 174 175
bool ConvBiasImpl::is_matmul_quantized_prefer(
        const ConvBiasImpl::NCBKernSizeParam& param) {
    bool conv_direct_chanwise_mkldnn_usable = true;
    if (param.dst_type.enumv() == DTypeEnum::QuantizedS8 ||
        param.dst_type.enumv() == DTypeEnum::QuantizedS32) {
        conv_direct_chanwise_mkldnn_usable =
                chanwise_avx2_stride1_qint8_usable_preferred(param) ||
                chanwise_avx2_stride2_qint8_usable_preferred(param) ||
                direct_avx2_stride1_int8_usable_preferred(param) ||
                direct_avx2_stride2_int8_usable_preferred(param);
#if MEGDNN_X86_WITH_MKL_DNN
176 177 178 179
        conv_direct_chanwise_mkldnn_usable =
                conv_direct_chanwise_mkldnn_usable ||
                mkldnn_qint8_usable_preferred(param) ||
                mkldnn_matmul_qint8_usable_preferred(param);
180
#endif
181
    }
182

183 184 185 186
    return !conv_direct_chanwise_mkldnn_usable ||
           (is_supported(SIMDType::VNNI) &&
            !chanwise_avx2_stride1_qint8_usable_preferred(param) &&
            !chanwise_avx2_stride2_qint8_usable_preferred(param));
187 188
}

189
// vim: syntax=cpp.doxygen