opr_impl.cpp 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/**
 * \file dnn/src/x86/conv_bias/opr_impl.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "src/x86/conv_bias/opr_impl.h"
#include <algorithm>
#include <memory>
#include "src/x86/matrix_mul/opr_impl.h"
#include "src/common/metahelper.h"
#include "src/common/opr_delegate.h"
#include "src/x86/conv_bias/f32/algos.h"
#include "src/x86/conv_bias/int8/algos.h"

using namespace megdnn;
using namespace x86;

namespace {
uint8_t x86_algo_type_storage;
void* x86_algo_type = &x86_algo_type_storage;
}  // anonymous namespace
28
#if MEGDNN_X86_WITH_MKL_DNN
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
void* ConvBiasImpl::AlgoMkldnnQint8::type() const {
    return x86_algo_type;
}
void* ConvBiasImpl::AlgoMkldnnMatmulQint8::type() const {
    return x86_algo_type;
}
void* ConvBiasImpl::AlgoMkldnnConv::type() const {
    return x86_algo_type;
}
#endif

void* ConvBiasImpl::AlgoDirect::type() const {
    return x86_algo_type;
}

void* ConvBiasImpl::AlgoDirectStride2::type() const {
    return x86_algo_type;
}

void* ConvBiasImpl::AlgoMatrixMul::type() const {
    return x86_algo_type;
}

void* ConvBiasImpl::AlgoDirectAvx2Stride1Int8::type() const {
    return x86_algo_type;
}

void* ConvBiasImpl::AlgoFP32WinogradF63_8x8::type() const {
    return x86_algo_type;
}

void* ConvBiasImpl::AlgoFP32WinogradF23_8x8::type() const {
    return x86_algo_type;
}

void* ConvBiasImpl::AlgoAVX2DirectConvStride2::type() const {
    return x86_algo_type;
}

68 69 70 71
void* ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8::type() const {
    return x86_algo_type;
}

72 73 74 75 76 77 78
class ConvBiasImpl::AlgoPack : NonCopyableObj {
    AlgoDirect stride1_direct_large_group{true};
    AlgoDirect stride1_direct_small_group{false};
    AlgoDirectStride2 stride2_direct_large_group{true};
    AlgoDirectStride2 stride2_direct_small_group{false};
    AlgoDirectAvx2Stride1Int8 avx2_stride1_direct_int8;
    AlgoAVX2DirectConvStride2 avx2_stride2_direct;
79
    AlgoChanWiseAvx2Stride1Qint8 avx2_stride1_chanwsie_qint8;
80
    AlgoMatrixMul matmul;
81
#if MEGDNN_X86_WITH_MKL_DNN
82 83 84 85 86 87 88 89
    AlgoMkldnnMatmulQint8 mkldnn_matmul_qint8;
    //! Because the mkldnnconv need handle
    AlgoMkldnnQint8 mkldnn_qint8;
    AlgoMkldnnConv mkldnn_conv_fp32;
#endif
    SmallVector<std::unique_ptr<AlgoBase>> refhold;
public:
    AlgoPack() {
90
#if MEGDNN_X86_WITH_MKL_DNN
91 92 93 94 95 96 97 98 99 100 101
        //! Create the mkldnn algo
        all_algos.emplace_back(&mkldnn_conv_fp32);
        all_algos.emplace_back(&mkldnn_matmul_qint8);
        all_algos.emplace_back(&mkldnn_qint8);
#endif
        all_algos.emplace_back(&stride1_direct_large_group);
        all_algos.emplace_back(&stride1_direct_small_group);
        all_algos.emplace_back(&stride2_direct_large_group);
        all_algos.emplace_back(&stride2_direct_small_group);
        all_algos.emplace_back(&avx2_stride1_direct_int8);
        all_algos.emplace_back(&avx2_stride2_direct);
102
        all_algos.emplace_back(&avx2_stride1_chanwsie_qint8);
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        all_algos.emplace_back(&matmul);

        static CpuOprDelegationStorage<> storage;
        auto matmul_opr = storage.get<MatrixMul>();
        auto&& matmul_algos =
                static_cast<MatrixMulImpl*>(matmul_opr)->algo_pack();
        for (auto&& algo : matmul_algos) {
            if (algo->type() == nullptr) continue;
            for (uint32_t tile_size : {8, 16, 24}) {
                refhold.emplace_back(new AlgoFP32WinogradF63_8x8(
                        static_cast<fallback::MatrixMulImpl::AlgoBase*>(algo),
                        tile_size));
                winograd_algos.emplace_back(refhold.back().get());
                refhold.emplace_back(new AlgoFP32WinogradF23_8x8(
                        static_cast<fallback::MatrixMulImpl::AlgoBase*>(algo),
                        tile_size));
                winograd_algos.emplace_back(refhold.back().get());
            }
        }
    }
    SmallVector<AlgoBase*> all_algos;
    SmallVector<AlgoBase*> winograd_algos;
};

SmallVector<ConvBiasImpl::AlgoBase*> ConvBiasImpl::algo_pack() {
    static AlgoPack sl_algo_pack;
    auto&& algos = fallback::ConvBiasImpl::algo_pack();
    algos.insert(algos.begin(), sl_algo_pack.all_algos.begin(),
                 sl_algo_pack.all_algos.end());
    algos.insert(algos.end(), sl_algo_pack.winograd_algos.begin(),
                 sl_algo_pack.winograd_algos.end());
    return std::move(algos);
}

void ConvBiasImpl::get_rectified_img_size(size_t IH, size_t IW, size_t FH,
                                          size_t FW, size_t OH, size_t OW,
                                          size_t PH, size_t PW, size_t& IH2,
                                          size_t& IW2, size_t& OH2,
                                          size_t& OW2) {
    OW2 = (OW + 7) >> 3 << 3;
    OH2 = OH;
    IH2 = std::max(IH, OH2 + FH - 1 + 2 * PH);
    IW2 = std::max(IW, OW2 + FW - 1 + 2 * PW);
}

const char* ConvBiasImpl::get_algorithm_set_name() const {
    // x86 version 0
    return "X0";
}

// vim: syntax=cpp.doxygen