/** * \file dnn/src/x86/conv_bias/opr_impl.cpp * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") * * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. */ #include "src/x86/conv_bias/opr_impl.h" #include #include #include "src/common/metahelper.h" #include "src/common/opr_delegate.h" #include "src/x86/conv_bias/f32/algos.h" #include "src/x86/conv_bias/int8/algo_usable_preferred.h" #include "src/x86/conv_bias/int8/algos.h" #include "src/x86/matrix_mul/opr_impl.h" using namespace megdnn; using namespace x86; namespace { uint8_t x86_algo_type_storage; void* x86_algo_type = &x86_algo_type_storage; } // anonymous namespace #if MEGDNN_X86_WITH_MKL_DNN void* ConvBiasImpl::AlgoMkldnnQint8::type() const { return x86_algo_type; } void* ConvBiasImpl::AlgoMkldnnMatmulQint8::type() const { return x86_algo_type; } void* ConvBiasImpl::AlgoMkldnnConv::type() const { return x86_algo_type; } #endif void* ConvBiasImpl::AlgoDirect::type() const { return x86_algo_type; } void* ConvBiasImpl::AlgoDirectStride2::type() const { return x86_algo_type; } void* ConvBiasImpl::AlgoMatrixMul::type() const { return x86_algo_type; } void* ConvBiasImpl::AlgoDirectAvx2Stride1Int8::type() const { return x86_algo_type; } void* ConvBiasImpl::AlgoFP32WinogradF63_8x8::type() const { return x86_algo_type; } void* ConvBiasImpl::AlgoFP32WinogradF23_8x8::type() const { return x86_algo_type; } void* ConvBiasImpl::AlgoAVX2DirectConvStride2::type() const { return x86_algo_type; } void* ConvBiasImpl::AlgoChanWiseAvx2Stride1Qint8::type() const { return x86_algo_type; } void* ConvBiasImpl::AlgoChanWiseAvx2Stride2Qint8::type() const { return x86_algo_type; } class ConvBiasImpl::AlgoPack : NonCopyableObj { AlgoDirect stride1_direct_large_group{true}; AlgoDirect stride1_direct_small_group{false}; AlgoDirectStride2 stride2_direct_large_group{true}; AlgoDirectStride2 stride2_direct_small_group{false}; AlgoDirectAvx2Stride1Int8 avx2_stride1_direct_int8; AlgoAVX2DirectConvStride2 avx2_stride2_direct; AlgoChanWiseAvx2Stride1Qint8 avx2_stride1_chanwsie_qint8; AlgoChanWiseAvx2Stride2Qint8 avx2_stride2_chanwsie_qint8; AlgoMatrixMul matmul; #if MEGDNN_X86_WITH_MKL_DNN AlgoMkldnnMatmulQint8 mkldnn_matmul_qint8; //! Because the mkldnnconv need handle AlgoMkldnnQint8 mkldnn_qint8; AlgoMkldnnConv mkldnn_conv_fp32; #endif SmallVector> refhold; public: AlgoPack() { //! FIXME: preference to use mkldnn algo on VNNI devices //! But now mkldnn algo preference issue with NCHW->NHWC->NCHW #if MEGDNN_X86_WITH_MKL_DNN //! Create the mkldnn algo all_algos.emplace_back(&mkldnn_conv_fp32); all_algos.emplace_back(&mkldnn_matmul_qint8); all_algos.emplace_back(&mkldnn_qint8); #endif all_algos.emplace_back(&stride1_direct_large_group); all_algos.emplace_back(&stride1_direct_small_group); all_algos.emplace_back(&stride2_direct_large_group); all_algos.emplace_back(&stride2_direct_small_group); all_algos.emplace_back(&avx2_stride1_direct_int8); all_algos.emplace_back(&avx2_stride2_direct); all_algos.emplace_back(&avx2_stride1_chanwsie_qint8); all_algos.emplace_back(&avx2_stride2_chanwsie_qint8); all_algos.emplace_back(&matmul); static CpuOprDelegationStorage<> storage; auto matmul_opr = storage.get(); auto&& matmul_algos = static_cast(matmul_opr)->algo_pack(); for (auto&& algo : matmul_algos) { if (algo->type() == nullptr) continue; for (uint32_t tile_size : {8, 16, 24}) { refhold.emplace_back(new AlgoFP32WinogradF63_8x8( static_cast(algo), tile_size)); winograd_algos.emplace_back(refhold.back().get()); refhold.emplace_back(new AlgoFP32WinogradF23_8x8( static_cast(algo), tile_size)); winograd_algos.emplace_back(refhold.back().get()); } } } SmallVector all_algos; SmallVector winograd_algos; }; SmallVector ConvBiasImpl::algo_pack() { static AlgoPack sl_algo_pack; auto&& algos = fallback::ConvBiasImpl::algo_pack(); algos.insert(algos.begin(), sl_algo_pack.all_algos.begin(), sl_algo_pack.all_algos.end()); algos.insert(algos.end(), sl_algo_pack.winograd_algos.begin(), sl_algo_pack.winograd_algos.end()); return std::move(algos); } void ConvBiasImpl::get_rectified_img_size(size_t IH, size_t IW, size_t FH, size_t FW, size_t OH, size_t OW, size_t PH, size_t PW, size_t& IH2, size_t& IW2, size_t& OH2, size_t& OW2) { OW2 = (OW + 7) >> 3 << 3; OH2 = OH; IH2 = std::max(IH, OH2 + FH - 1 + 2 * PH); IW2 = std::max(IW, OW2 + FW - 1 + 2 * PW); } const char* ConvBiasImpl::get_algorithm_set_name() const { // x86 version 0 return "X0"; } bool ConvBiasImpl::is_matmul_quantized_prefer( const ConvBiasImpl::NCBKernSizeParam& param) { bool conv_direct_chanwise_mkldnn_usable = true; if (param.dst_type.enumv() == DTypeEnum::QuantizedS8 || param.dst_type.enumv() == DTypeEnum::QuantizedS32) { conv_direct_chanwise_mkldnn_usable = chanwise_avx2_stride1_qint8_usable_preferred(param) || chanwise_avx2_stride2_qint8_usable_preferred(param) || direct_avx2_stride1_int8_usable_preferred(param) || direct_avx2_stride2_int8_usable_preferred(param); #if MEGDNN_X86_WITH_MKL_DNN conv_direct_chanwise_mkldnn_usable = conv_direct_chanwise_mkldnn_usable || mkldnn_qint8_usable_preferred(param) || mkldnn_matmul_qint8_usable_preferred(param); #endif } return !conv_direct_chanwise_mkldnn_usable || (is_supported(SIMDType::VNNI) && !chanwise_avx2_stride1_qint8_usable_preferred(param) && !chanwise_avx2_stride2_qint8_usable_preferred(param)); } // vim: syntax=cpp.doxygen