winograd.h 37.6 KB
Newer Older
1 2 3 4 5 6 7 8
/**
 * \file dnn/src/fallback/conv_bias/winograd/winograd.h
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21
 */

#pragma once

#include <cstddef>
#include "include/megdnn/basic_types.h"
#include "include/megdnn/dtype.h"
#include "include/megdnn/thin/small_vector.h"
#include "src/fallback/conv_bias/opr_impl.h"
#include "src/fallback/matrix_mul/opr_impl.h"

22 23 24
#include "midout.h"
MIDOUT_DECL(megdnn_fallback_conv_bias_winograd_common)

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
namespace megdnn {
namespace winograd {

/**
 * \brief Winograd convolution
 *
 * The algo is refer to https://arxiv.org/abs/1509.09308.
 *
 * Format: DEFAULT
 * filter: (OC, IC, FH, FW) -> (alpha, alpha, IC, OC)
 * src: (N, C, H, W) -> (N, NR_TILES, alpha, alpha, TILE_SIZE, IC)
 *
 * We will perform gemm on:
 * (TILE_SIZE, IC) x (IC, OC) -> (TILE_SIZE, OC)
 *
 * Format: MK4
 * filter: (OC, IC, FH, FW) -> (alpha, alpha, OCB, ICB, IC_BLOCK_SIZE,
 * OC_BLOCK_SIZE)
 * src: (N, C, H, W) -> (N, NR_TILES, alpha, alpha, ICB, TILE_SIZE,
 * IC_BLOCK_SIZE)
 *
 * We will perform gemm on:
 * (OCB, ICB, IC_BLOCK_SIZE, OC_BLOCK_SIZE) x (ICB, TILE_SIZE, IC_BLOCK_SIZE)
 * = (OCB, TILE_SIZE, OC_BLOCK_SIZE)
 */
//! The default oc size of one thread in multi-threads mode
constexpr static size_t UNIT_OC_SIZE_DEFAULT = 1024;
template <typename Strategy,
          param::MatrixMul::Format format = param::MatrixMul::Format::DEFAULT>
class ConvBias {
    using output_compute_type = typename Strategy::output_compute_type;
    using input_filter_compute_type =
            typename Strategy::input_filter_compute_type;
    using stype = typename Strategy::stype;
    using dst_type = typename Strategy::dst_type;
    using NCBKernSizeParam = fallback::ConvBiasImpl::NCBKernSizeParam;
    using NCBKernParam = fallback::ConvBiasImpl::NCBKernParam;
    using NCBKernIndex = fallback::ConvBiasImpl::NCBKernIndex;
    using NCBKern = fallback::ConvBiasImpl::NCBKern;
    static_assert(
            format == param::MatrixMul::Format::DEFAULT ||
                    (format == param::MatrixMul::Format::MK4 &&
                     Strategy::IC_BLOCK_SIZE == 4 &&
                     Strategy::OC_BLOCK_SIZE == 4) ||
                    (format == param::MatrixMul::Format::MK8 &&
                     Strategy::IC_BLOCK_SIZE == 8 &&
                     Strategy::OC_BLOCK_SIZE == 8),
            "format should be default, mk4 and mk8, if mk4 IC_BLOCK_SIZE and "
            "OC_BLOCK_SIZE should be 4, if mk8 IC_BLOCK_SIZE and "
            "OC_BLOCK_SIZE should be 8");

    Strategy m_strategy;
    size_t m_unit_tile_size;
    //! m_unit_oc_size is must be times of Strategy::OC_BLOCK_SIZE
    size_t m_unit_oc_size;

    WorkspaceBundle get_wbundle(
            const NCBKernSizeParam& param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo) const {
        size_t OC = param.filter_meta.ocpg;
        size_t IC = param.filter_meta.icpg;
        size_t GROUP = param.filter_meta.group;
        size_t nr_threads = param.nr_threads;
        size_t filter_transform_buf_size = 0;
        //! filter : (alpha, alpha, IC, OC) or (OCB, ICB, IC_BLOCK_SIZE,
        //! OC_BLOCK_SIZE)
91 92
        if (param.preprocessed_filter == nullptr &&
            param.filter_meta.format !=
93 94
                    param::ConvBias::Format::NCHW_WINOGRAD &&
            param.filter_meta.format !=
95 96 97
                    param::ConvBias::Format::NCHW88_WINOGRAD &&
            param.filter_meta.format !=
                    param::ConvBias::Format::NCHW44_WINOGRAD) {
98 99 100 101 102 103 104
            filter_transform_buf_size = Strategy::ALPHA * Strategy::ALPHA * OC *
                                        IC * sizeof(input_filter_compute_type);
        }
        size_t winograd_comput_size =
                get_wbundle_compute(param, matmul_algo).total_size_in_bytes() *
                nr_threads;
        if (param.filter_meta.format == param::ConvBias::Format::NCHW ||
105 106
            param.filter_meta.format == param::ConvBias::Format::NCHW88 ||
            param.filter_meta.format == param::ConvBias::Format::NCHW44) {
107 108 109 110 111 112 113
            return WorkspaceBundle(
                    nullptr,
                    {winograd_comput_size, filter_transform_buf_size * GROUP});
        } else {
            megdnn_assert(param.filter_meta.format ==
                                  param::ConvBias::Format::NCHW_WINOGRAD ||
                          param.filter_meta.format ==
114 115 116
                                  param::ConvBias::Format::NCHW88_WINOGRAD ||
                          param.filter_meta.format ==
                                  param::ConvBias::Format::NCHW44_WINOGRAD);
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
            return WorkspaceBundle(nullptr, {winograd_comput_size});
        }
    }

    WorkspaceBundle get_wbundle_compute(
            const NCBKernSizeParam& param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo) const {
        size_t OC = param.filter_meta.ocpg;
        size_t IC = param.filter_meta.icpg;
        size_t oc_size = std::min(OC, m_unit_oc_size);
        //! input : (alpha, alpha, unit_tile_size, IC) or (alpha, alpha,
        //! ICB, unit_tile_size, IC_BLOCK_SIZE)
        size_t input_transform_buf_size = Strategy::ALPHA * Strategy::ALPHA *
                                          IC * m_unit_tile_size *
                                          sizeof(input_filter_compute_type);
        //! output : (alpha, alpha, unit_tile_size, OC) or
        //! (alpha, alpha, OCB, unit_tile_size, OC_BLOCK_SIZE)
        size_t output_transform_buf_size = Strategy::ALPHA * Strategy::ALPHA *
                                           oc_size * m_unit_tile_size *
                                           sizeof(output_compute_type);

        //! use for inner temporary usage
        size_t transform_mid_buf_size =
                2 * Strategy::ALPHA * Strategy::ALPHA *
                sizeof(output_compute_type) *
                std::max(Strategy::IC_BLOCK_SIZE, Strategy::OC_BLOCK_SIZE);

144 145
        size_t matmul_workspace_size = matmul_algo->get_workspace(
                get_matmul_kern_param(param, m_unit_oc_size));
146 147 148 149 150 151 152 153

        //! compute workspace is independent and separated as far as possible
        //! in case of false cache line sharing
        return WorkspaceBundle(
                nullptr, {input_transform_buf_size, output_transform_buf_size,
                          transform_mid_buf_size, matmul_workspace_size});
    }

154 155 156 157 158 159 160 161 162 163 164 165
    WorkspaceBundle get_preprocess_wbundle(
            const NCBKernSizeParam& param) const {
        //! use for inner temporary usage
        size_t transform_mid_buf_size =
                2 * Strategy::ALPHA * Strategy::ALPHA *
                sizeof(output_compute_type) *
                std::max(Strategy::IC_BLOCK_SIZE, Strategy::OC_BLOCK_SIZE);
        size_t nr_threads = param.nr_threads;
        SmallVector<size_t> space_vec(nr_threads, transform_mid_buf_size);
        return WorkspaceBundle{nullptr, space_vec};
    }

166 167 168 169
public:
    //! Get the m_unit_oc_size, according to the nr_threads and
    //! output_featuremap_size. When single thread the m_unit_oc_size is set
    //! 2048 heuristicly, When multi-threads, the m_unit_oc_size is set
170 171 172
    //! according to nr_threads and out_featuremap_size
    ConvBias(const Strategy& strategy, size_t unit_tile_size,
             const NCBKernSizeParam& param)
173
            : m_strategy{strategy}, m_unit_tile_size{unit_tile_size} {
174 175 176 177
        size_t nr_threads = param.nr_threads;
        size_t OC = param.filter_meta.ocpg;
        size_t OH = param.osz[0];
        size_t OW = param.osz[1];
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        if (nr_threads > 1) {
            size_t units_h = div_ceil<size_t>(OH, Strategy::OUTPUT_BLOCK_SIZE);
            size_t units_w = div_ceil<size_t>(OW, Strategy::OUTPUT_BLOCK_SIZE);
            size_t nr_units = units_h * units_w;
            size_t nr_parallism_unit =
                    div_ceil<size_t>(nr_units, unit_tile_size);
            if (nr_parallism_unit < nr_threads) {
                m_unit_oc_size = div_ceil<size_t>(OC, nr_threads);
                if (format == param::MatrixMul::Format::MK8) {
                    m_unit_oc_size = round_up<size_t>(m_unit_oc_size, 8);
                } else {
                    m_unit_oc_size = round_up<size_t>(m_unit_oc_size, 4);
                }
            } else {
                m_unit_oc_size = UNIT_OC_SIZE_DEFAULT;
            }
        } else {
            m_unit_oc_size = UNIT_OC_SIZE_DEFAULT;
        }
    }
198 199 200 201
    ConvBias(const Strategy& strategy, size_t unit_tile_size)
            : m_strategy{strategy}, m_unit_tile_size{unit_tile_size} {
        m_unit_oc_size = UNIT_OC_SIZE_DEFAULT;
    }
202 203 204 205 206 207

    size_t get_workspace_size(
            const NCBKernSizeParam& param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo) const {
        return get_wbundle(param, matmul_algo).total_size_in_bytes();
    }
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

    size_t get_preprocess_workspace_size(
            const NCBKernSizeParam& param,
            fallback::MatrixMulImpl::AlgoBase*) const {
        return get_preprocess_wbundle(param).total_size_in_bytes();
    }

    SmallVector<TensorLayout> deduce_preprocessed_filter_layout(
            const NCBKernSizeParam& param, fallback::MatrixMulImpl::AlgoBase*) {
        size_t OC = param.filter_meta.ocpg;
        size_t IC = param.filter_meta.icpg;
        size_t GROUP = param.filter_meta.group;
        SmallVector<TensorLayout> preprocessed_layouts;
        DType dtype = m_strategy.filter_dtype;
        if (dtype.category() == DTypeCategory::QUANTIZED) {
            if (format == param::MatrixMul::Format::MK4) {
                dtype = dtype::Float32();
            } else if (format == param::MatrixMul::Format::MK8) {
                dtype = dtype::Int16();
            }
        }
        if (format == param::MatrixMul::Format::DEFAULT) {
            preprocessed_layouts.push_back(
                    {{GROUP, Strategy::ALPHA, Strategy::ALPHA, OC, IC}, dtype});
        } else if (format == param::MatrixMul::Format::MK4) {
            preprocessed_layouts.push_back(
                    {{GROUP, Strategy::ALPHA, Strategy::ALPHA, OC / 4, IC / 4,
                      4, 4},
                     dtype});
        } else {
            megdnn_assert(format == param::MatrixMul::Format::MK8);
            preprocessed_layouts.push_back(
                    {{GROUP, Strategy::ALPHA, Strategy::ALPHA, OC / 8, IC / 8,
                      8, 8},
                     dtype});
        }
        return preprocessed_layouts;
    }

247 248 249 250 251 252 253 254 255 256
    //! Used by winograd_filter_preprocess opr
    void filter_process(const stype* filter_ptr,
                        input_filter_compute_type* filter_transform_buf,
                        void* transform_mid_buf, size_t OC, size_t IC) {
        m_strategy.filter(
                filter_ptr, filter_transform_buf,
                static_cast<input_filter_compute_type*>(transform_mid_buf), OC,
                IC, 0, OC);
    }

257 258 259
    static void filter_process(Strategy strategy,
                               const WorkspaceBundle& bundle_top,
                               const WorkspaceBundle& bundle_compute,
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
                               const NCBKernParam& kern_param,
                               const NCBKernIndex& ncb_index) {
        size_t compute_workspace_size_per_thread =
                bundle_compute.total_size_in_bytes();
        size_t thread_id = ncb_index.thread_id;
        size_t oc_id = ncb_index.ndrange_id[2];
        size_t group_id = ncb_index.ndrange_id[0];
        size_t OC = kern_param.filter_meta.ocpg;
        size_t IC = kern_param.filter_meta.icpg;
        size_t filter_group_size = Strategy::ALPHA * Strategy::ALPHA * OC * IC *
                                   sizeof(input_filter_compute_type);
        //! Filter trans dst ptr
        input_filter_compute_type* filter_transform_buf =
                reinterpret_cast<input_filter_compute_type*>(
                        reinterpret_cast<uintptr_t>(bundle_top.get(1)) +
                        group_id * filter_group_size);
        //! Filter trans src ptr
        input_filter_compute_type* transform_mid_buf =
                reinterpret_cast<input_filter_compute_type*>(
                        reinterpret_cast<uintptr_t>(bundle_compute.get(2)) +
                        compute_workspace_size_per_thread * thread_id);
281

282
        const stype* filter_ptr = kern_param.filter<stype>(group_id);
283 284
        size_t oc_start = oc_id, oc_end = oc_id + 1;

285 286 287
        if (kern_param.filter_meta.format == param::ConvBias::Format::NCHW88) {
            oc_start = 8 * oc_id;
            oc_end = oc_start + 8;
288 289 290 291
        } else if (kern_param.filter_meta.format ==
                   param::ConvBias::Format::NCHW44) {
            oc_start = 4 * oc_id;
            oc_end = oc_start + 4;
292 293 294 295 296
        }
        strategy.filter(filter_ptr, filter_transform_buf, transform_mid_buf, OC,
                        IC, oc_start, oc_end);
    }

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    static void filter_preprocess(Strategy strategy,
                                  const WorkspaceBundle& bundle,
                                  const TensorND& preprocessed_tensor,
                                  const NCBKernParam& kern_param,
                                  const NCBKernIndex& ncb_index) {
        size_t thread_id = ncb_index.thread_id;
        size_t oc_id = ncb_index.ndrange_id[1];
        size_t group_id = ncb_index.ndrange_id[0];
        size_t OC = kern_param.filter_meta.ocpg;
        size_t IC = kern_param.filter_meta.icpg;
        size_t filter_group_size = Strategy::ALPHA * Strategy::ALPHA * OC * IC *
                                   sizeof(input_filter_compute_type);
        //! Filter trans dst ptr
        input_filter_compute_type* filter_transform_buf =
                reinterpret_cast<input_filter_compute_type*>(
                        reinterpret_cast<uintptr_t>(
                                preprocessed_tensor.raw_ptr) +
                        group_id * filter_group_size);
        //! Filter trans src ptr
        input_filter_compute_type* transform_mid_buf =
                reinterpret_cast<input_filter_compute_type*>(
                        reinterpret_cast<uintptr_t>(bundle.get(thread_id)));

        const stype* filter_ptr = kern_param.filter<stype>(group_id);
        size_t oc_start, oc_end;

        if (kern_param.filter_meta.format == param::ConvBias::Format::NCHW88) {
            oc_start = 8 * oc_id;
            oc_end = oc_start + 8;
        } else if (kern_param.filter_meta.format ==
                   param::ConvBias::Format::NCHW44) {
            oc_start = 4 * oc_id;
            oc_end = oc_start + 4;
        } else {
            oc_start = oc_id;
            oc_end = oc_id + 1;
        }
        strategy.filter(filter_ptr, filter_transform_buf, transform_mid_buf, OC,
                        IC, oc_start, oc_end);
    }

338
    static void winograd_compute(
339 340
            Strategy strategy, const WorkspaceBundle& bundle_top,
            const WorkspaceBundle& bundle_compute,
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
            fallback::MatrixMulImpl::AlgoBase* matmul_algo,
            fallback::MatrixMulImpl::KernParam matmul_param,
            size_t unit_tile_size, size_t unit_oc_size,
            const NCBKernParam& ncb_param, const NCBKernIndex& ncb_index) {
        size_t OC = ncb_param.filter_meta.ocpg;
        size_t IC = ncb_param.filter_meta.icpg;
        size_t IH = ncb_param.isz[0];
        size_t IW = ncb_param.isz[1];
        size_t OH = ncb_param.osz[0];
        size_t OW = ncb_param.osz[1];
        size_t PH = ncb_param.filter_meta.padding[0];
        size_t PW = ncb_param.filter_meta.padding[1];
        size_t filter_group_size = Strategy::ALPHA * Strategy::ALPHA * OC * IC *
                                   sizeof(input_filter_compute_type);
        size_t compute_workspace_size_per_thread =
                bundle_compute.total_size_in_bytes();

        size_t units_h = div_ceil<size_t>(OH, Strategy::OUTPUT_BLOCK_SIZE);
        size_t units_w = div_ceil<size_t>(OW, Strategy::OUTPUT_BLOCK_SIZE);
        size_t nr_units = units_h * units_w;

        size_t oc_block_id = ncb_index.ndrange_id[3];
        size_t tile_id = ncb_index.ndrange_id[2];
364
        size_t batch_id = ncb_index.ndrange_id[1];
365 366 367
        size_t group_id = ncb_index.ndrange_id[0];
        size_t thread_id = ncb_index.thread_id;

368 369
        const stype* src_ptr = ncb_param.src<stype>(batch_id, group_id);
        dst_type* dst_ptr = ncb_param.dst<dst_type>(batch_id, group_id);
370
        const output_compute_type* bias_ptr =
371 372 373
                static_cast<const output_compute_type*>(
                        ncb_param.bias<output_compute_type>(batch_id,
                                                            group_id));
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

        input_filter_compute_type* input_transform_buf =
                reinterpret_cast<input_filter_compute_type*>(
                        reinterpret_cast<uintptr_t>(bundle_compute.get(0)) +
                        compute_workspace_size_per_thread * thread_id);

        output_compute_type* output_transform_buf =
                reinterpret_cast<output_compute_type*>(
                        reinterpret_cast<uintptr_t>(bundle_compute.get(1)) +
                        compute_workspace_size_per_thread * thread_id);
        input_filter_compute_type* transform_mid_buf =
                reinterpret_cast<input_filter_compute_type*>(
                        reinterpret_cast<uintptr_t>(bundle_compute.get(2)) +
                        compute_workspace_size_per_thread * thread_id);

389
        //! NCHW88_WINOGRAD and NCHW_WINOGRAD is the same offset
390 391 392 393
        const input_filter_compute_type* filter_transform_buf = nullptr;
        if (nullptr != ncb_param.preprocessed_filter) {
            auto preprocess_raw_ptr =
                    ncb_param.preprocessed_filter->tensors[0].raw_ptr;
394
            filter_transform_buf = reinterpret_cast<input_filter_compute_type*>(
395
                    reinterpret_cast<uintptr_t>(preprocess_raw_ptr) +
396
                    group_id * filter_group_size);
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
        } else {
            filter_transform_buf =
                    static_cast<const input_filter_compute_type*>(
                            ncb_param.filter<input_filter_compute_type>(
                                    group_id));
            if (ncb_param.filter_meta.format == param::ConvBias::Format::NCHW ||
                ncb_param.filter_meta.format ==
                        param::ConvBias::Format::NCHW88 ||
                ncb_param.filter_meta.format ==
                        param::ConvBias::Format::NCHW44) {
                filter_transform_buf =
                        reinterpret_cast<input_filter_compute_type*>(
                                reinterpret_cast<uintptr_t>(bundle_top.get(1)) +
                                group_id * filter_group_size);
            }
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
        }
        //! prepare matmul param
        matmul_param.workspace_ptr = reinterpret_cast<void*>(
                reinterpret_cast<uintptr_t>(bundle_compute.get(3)) +
                compute_workspace_size_per_thread * thread_id);
        matmul_param.workspace_size = bundle_compute.get_size(3);
        fallback::MatrixMulImpl::kern_t matmul_kern =
                matmul_algo->get_kern(matmul_param);

        size_t unit_start_idx = tile_id * unit_tile_size;
        size_t nr_tiles_in_unit =
                std::min(nr_units - unit_start_idx, unit_tile_size);
        size_t oc_start_idx = oc_block_id * unit_oc_size;
        size_t nr_oc_in_unit = std::min(OC - oc_start_idx, unit_oc_size);
        megdnn_assert(nr_oc_in_unit % Strategy::OC_BLOCK_SIZE == 0,
                      "The winograd remain oc is not times of OC_BLOCK_SIZE");
        if (format == param::MatrixMul::Format::MK4 ||
            format == param::MatrixMul::Format::MK8) {
#if !MEGDNN_X86
            nr_tiles_in_unit = round_up<size_t>(nr_tiles_in_unit, 4);
#endif
            megdnn_assert(nr_tiles_in_unit <= unit_tile_size,
                          "nr_tiles_in_unit: %zu TILE_SIZE:%zu",
                          nr_tiles_in_unit, unit_tile_size);
        }
437 438 439 440
        //! BTdB
        strategy.input(src_ptr, input_transform_buf, transform_mid_buf,
                       IH, IW, IC, PH, PW, unit_start_idx, nr_tiles_in_unit);

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
        rep(i, Strategy::ALPHA) rep(j, Strategy::ALPHA) {
            if (format == param::MatrixMul::Format::DEFAULT) {
                matmul_param.A_ptr =
                        input_transform_buf +
                        (i * Strategy::ALPHA + j) * nr_tiles_in_unit * IC;
                matmul_param.B_ptr = filter_transform_buf +
                                     (i * Strategy::ALPHA + j) * OC * IC +
                                     oc_start_idx;

                matmul_param.C_ptr = output_transform_buf +
                                     (i * Strategy::ALPHA + j) *
                                             nr_tiles_in_unit * nr_oc_in_unit;

                matmul_param.M = nr_tiles_in_unit;
                matmul_param.N = nr_oc_in_unit;
                matmul_param.LDB = OC;
                matmul_param.LDC = nr_oc_in_unit;
            } else {
                matmul_param.A_ptr = filter_transform_buf +
                                     (i * Strategy::ALPHA + j) * OC * IC +
                                     oc_start_idx * IC;

                matmul_param.B_ptr =
                        input_transform_buf +
                        (i * Strategy::ALPHA + j) * nr_tiles_in_unit * IC;

                matmul_param.C_ptr = output_transform_buf +
                                     (i * Strategy::ALPHA + j) *
                                             nr_tiles_in_unit * nr_oc_in_unit;
                matmul_param.N = nr_tiles_in_unit;
                matmul_param.M = nr_oc_in_unit;
                matmul_param.LDB = matmul_param.N * Strategy::IC_BLOCK_SIZE;
                matmul_param.LDC = matmul_param.N * Strategy::IC_BLOCK_SIZE;
            }
            matmul_kern(matmul_param);
        }
477 478 479 480 481 482 483 484

        //! Y = ATmA
        size_t oc_end_idx = oc_start_idx + nr_oc_in_unit;
        strategy.output(
                output_transform_buf, bias_ptr, dst_ptr,
                reinterpret_cast<output_compute_type*>(transform_mid_buf),
                ncb_param.bias_mode, ncb_param.nonlineMode, OH, OW,
                oc_start_idx, oc_end_idx, unit_start_idx, nr_tiles_in_unit);
485 486
    };

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
    SmallVector<NCBKern> get_preprocess_kerns(
            const NCBKernSizeParam& param, fallback::MatrixMulImpl::AlgoBase*) {
        megdnn_assert(
                param.filter_meta.format == param::ConvBias::Format::NCHW ||
                param.filter_meta.format == param::ConvBias::Format::NCHW88 ||
                param.filter_meta.format == param::ConvBias::Format::NCHW44);
        megdnn_assert(param.preprocessed_filter &&
                      param.preprocessed_filter->tensors.size() > 0);
        size_t OC = param.filter_meta.ocpg;
        size_t GROUP = param.filter_meta.group;
        const TensorND& preprocessed_dst =
                param.preprocessed_filter->tensors[0];
        WorkspaceBundle bundle = get_preprocess_wbundle(param);

        Strategy strategy = m_strategy;
        SmallVector<NCBKern> kerns;
        auto filter_process_kern =
                [strategy, bundle, &preprocessed_dst](
                        const NCBKernParam& ncb_param,
                        const NCBKernIndex& ncb_index) mutable {
                    MIDOUT_BEGIN(megdnn_fallback_conv_bias_winograd_common,
                                 midout_iv("filter_preprocess"_hash)) {
                        bundle.set(ncb_param.workspace_ptr);
                        filter_preprocess(strategy, bundle, preprocessed_dst,
                                          ncb_param, ncb_index);
                    }
                    MIDOUT_END();
                };
        size_t oc_parallelism = OC;
        if (param.filter_meta.format == param::ConvBias::Format::NCHW88) {
            megdnn_assert(OC % 8 == 0);
            oc_parallelism = OC / 8;
        } else if (param.filter_meta.format ==
                   param::ConvBias::Format::NCHW44) {
            megdnn_assert(OC % 4 == 0);
            oc_parallelism = OC / 4;
        }
        kerns.push_back({filter_process_kern, {GROUP, oc_parallelism}});
        return kerns;
    }

528 529 530 531 532 533 534 535 536 537 538 539 540
    SmallVector<NCBKern> get_kerns(
            const NCBKernSizeParam& param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo) {
        size_t N = param.n;
        size_t OC = param.filter_meta.ocpg;
        size_t OH = param.osz[0];
        size_t OW = param.osz[1];
        size_t GROUP = param.filter_meta.group;
        WorkspaceBundle bundle_top = get_wbundle(param, matmul_algo);
        WorkspaceBundle bundle_compute =
                get_wbundle_compute(param, matmul_algo);
        fallback::MatrixMulImpl::KernParam matmul_param;
        static_cast<fallback::MatrixMulImpl::KernSizeParam&>(matmul_param) =
541
                get_matmul_kern_param(param, m_unit_oc_size);
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

        size_t unit_tile_size = m_unit_tile_size;
        size_t unit_oc_size = m_unit_oc_size;
        size_t units_h = div_ceil<size_t>(OH, Strategy::OUTPUT_BLOCK_SIZE);
        size_t units_w = div_ceil<size_t>(OW, Strategy::OUTPUT_BLOCK_SIZE);

        size_t nr_units = units_h * units_w;
        size_t nr_hw_tiles = div_ceil<size_t>(nr_units, m_unit_tile_size);
        size_t nr_oc_tiles = div_ceil<size_t>(OC, m_unit_oc_size);

        //! The filter should process ahead
        megdnn_assert(
                param.filter_meta.stride[0] == 1 &&
                param.filter_meta.stride[1] == 1 &&
                (param.filter_meta.format == param::ConvBias::Format::NCHW ||
                 param.filter_meta.format == param::ConvBias::Format::NCHW88 ||
558
                 param.filter_meta.format == param::ConvBias::Format::NCHW44 ||
559 560 561
                 param.filter_meta.format ==
                         param::ConvBias::Format::NCHW_WINOGRAD ||
                 param.filter_meta.format ==
562 563 564
                         param::ConvBias::Format::NCHW88_WINOGRAD ||
                 param.filter_meta.format ==
                         param::ConvBias::Format::NCHW44_WINOGRAD));
565 566

        SmallVector<NCBKern> kerns;
567 568 569 570
        if (param.preprocessed_filter == nullptr &&
            (param.filter_meta.format == param::ConvBias::Format::NCHW ||
             param.filter_meta.format == param::ConvBias::Format::NCHW88 ||
             param.filter_meta.format == param::ConvBias::Format::NCHW44)) {
571
            auto filter_process_kern =
572
                    [strategy = m_strategy, bundle_top, bundle_compute](
573 574
                            const NCBKernParam& ncb_param,
                            const NCBKernIndex& ncb_index) mutable {
575 576 577 578 579 580 581 582
                        MIDOUT_BEGIN(megdnn_fallback_conv_bias_winograd_common,
                                     midout_iv("filter_process"_hash)) {
                            bundle_top.set(ncb_param.workspace_ptr);
                            bundle_compute.set(bundle_top.get(0));
                            filter_process(strategy, bundle_top, bundle_compute,
                                           ncb_param, std::move(ncb_index));
                        }
                        MIDOUT_END();
583
                    };
584 585 586 587
            size_t oc_parallelism = OC;
            if (param.filter_meta.format == param::ConvBias::Format::NCHW88) {
                megdnn_assert(OC % 8 == 0);
                oc_parallelism = OC / 8;
588 589 590 591
            } else if (param.filter_meta.format ==
                       param::ConvBias::Format::NCHW44) {
                megdnn_assert(OC % 4 == 0);
                oc_parallelism = OC / 4;
592 593 594
            }
            kerns.push_back({filter_process_kern, {GROUP, 1, oc_parallelism}});
        }
595
        auto winograd_compute_kern =
596
                [strategy = m_strategy, bundle_top, bundle_compute, matmul_algo,
597 598 599
                 matmul_param, unit_tile_size,
                 unit_oc_size](const NCBKernParam& ncb_param,
                               const NCBKernIndex& ncb_index) mutable {
600 601
                    MIDOUT_BEGIN(megdnn_fallback_conv_bias_winograd_common,
                                 midout_iv("winograd_compute"_hash)) {
602 603 604 605 606 607 608 609 610
                        bundle_top.set(ncb_param.workspace_ptr);
                        bundle_compute.set(bundle_top.get(0));
                        winograd_compute(strategy, bundle_top, bundle_compute,
                                         matmul_algo, matmul_param,
                                         unit_tile_size, unit_oc_size,
                                         ncb_param, std::move(ncb_index));
                    }
                    MIDOUT_END();
                };
611 612 613 614 615 616
        kerns.push_back(
                {winograd_compute_kern, {GROUP, N, nr_hw_tiles, nr_oc_tiles}});
        return kerns;
    }

    fallback::MatrixMulImpl::KernSizeParam get_matmul_kern_param(
617
            const NCBKernSizeParam& param, size_t nr_oc_in_unit = 0) const {
618 619 620 621
        size_t M = 0;
        size_t N = 0;
        size_t K = 0;
        size_t LDA = 0, LDB = 0, LDC = 0;
622 623 624
        if (nr_oc_in_unit == 0) {
            nr_oc_in_unit = param.filter_meta.ocpg;
        }
625 626 627

        if (format == param::MatrixMul::Format::DEFAULT) {
            M = m_unit_tile_size;
628
            N = nr_oc_in_unit;
629 630 631 632 633
            K = param.filter_meta.icpg;
            LDA = K;
            LDB = N;
            LDC = N;
        } else {
634
            M = nr_oc_in_unit;
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
            N = m_unit_tile_size;
            K = param.filter_meta.icpg;
            megdnn_assert(K % Strategy::IC_BLOCK_SIZE == 0, "invalid K: %zu",
                          K);
            LDA = K / Strategy::IC_BLOCK_SIZE * Strategy::OC_BLOCK_SIZE *
                  Strategy::IC_BLOCK_SIZE;
            LDB = N * Strategy::IC_BLOCK_SIZE;
            LDC = N * Strategy::IC_BLOCK_SIZE;
        }

        return {DType::from_enum(DTypeTrait<input_filter_compute_type>::enumv),
                DType::from_enum(DTypeTrait<input_filter_compute_type>::enumv),
                DType::from_enum(DTypeTrait<output_compute_type>::enumv),
                M,
                N,
                K,
                LDA,
                LDB,
                LDC,
                false,
                false,
                param::MatrixMul::ComputeMode::DEFAULT,
                format};
    }
};

}  // namespace winograd
}  // namespace megdnn

#define MEGDNN_REG_WINOGRAD_STRATEGY(                                          \
        _stype, _dtype, _input_filter_ctype, _ctype, _output_block_size,       \
        _kernel_size, _ic_block_size, _oc_block_size, _strategy_cls_name)      \
    class _strategy_cls_name {                                                 \
    public:                                                                    \
        using stype = _stype;                                                  \
        using dst_type = _dtype;                                               \
        using output_compute_type = _ctype;                                    \
        using input_filter_compute_type = _input_filter_ctype;                 \
        /**                                                                    \
         * kernel size of convolution, same as \c r                            \
         * output block size, same as \c m                                     \
         */                                                                    \
        constexpr static size_t KERNEL_SIZE = _kernel_size;                    \
        constexpr static size_t OUTPUT_BLOCK_SIZE = _output_block_size;        \
        constexpr static size_t IC_BLOCK_SIZE = _ic_block_size;                \
        constexpr static size_t OC_BLOCK_SIZE = _oc_block_size;                \
        constexpr static size_t ALPHA = KERNEL_SIZE + OUTPUT_BLOCK_SIZE - 1;   \
        /**                                                                    \
         * process \c UNIT_TILE_SIZE small matrix mul once, total tiles is     \
         * N * DIV_UP(OH, OUTPUT_BLOCK_SIZE) * DIV_UP(OW, OUTPUT_BLOCK_SIZE)   \
         */                                                                    \
        const DType src_dtype;                                                 \
        const DType filter_dtype;                                              \
        const DType dst_dtype;                                                 \
        _strategy_cls_name(DType src_dtype, DType filter_dtype,                \
                           DType dst_dtype);                                   \
        void filter(const stype* filter,                                       \
                    input_filter_compute_type* filter_transform_buf,           \
                    input_filter_compute_type* transform_mid_buf, size_t OC,   \
                    size_t IC, size_t oc_start, size_t oc_end);                \
        void input(const stype* input,                                         \
                   input_filter_compute_type* input_transform_buf,             \
697 698 699
                   input_filter_compute_type* transform_mid_buf,               \
                   size_t IH, size_t IW, size_t IC, size_t PH, size_t PW,      \
                   size_t unit_start_idx, size_t nr_tiles_in_unit);            \
700 701 702
        void output(const output_compute_type* output_transform_buf,           \
                    const output_compute_type* bias, dst_type* output,         \
                    output_compute_type* transform_mid_buf, BiasMode bmode,    \
703 704 705
                    NonlineMode nonline_mode, size_t OH, size_t OW,            \
                    size_t oc_start, size_t oc_end, size_t unit_start_idx,     \
                    size_t nr_tiles_in_unit);                                  \
706 707 708 709 710 711 712 713 714 715 716 717 718 719
    };

#define MEGDNN_REG_WINOGRAD_STRATEGY_IMPL(_strategy_cls_name)     \
    constexpr size_t _strategy_cls_name::KERNEL_SIZE;             \
    constexpr size_t _strategy_cls_name::OUTPUT_BLOCK_SIZE;       \
    constexpr size_t _strategy_cls_name::ALPHA;                   \
    constexpr size_t _strategy_cls_name::IC_BLOCK_SIZE;           \
    constexpr size_t _strategy_cls_name::OC_BLOCK_SIZE;           \
    _strategy_cls_name::_strategy_cls_name(                       \
            DType src_dtype, DType filter_dtype, DType dst_dtype) \
            : src_dtype(src_dtype),                               \
              filter_dtype(filter_dtype),                         \
              dst_dtype(dst_dtype) {}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
#define MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, _fun, _strategy,              \
                                         _midout_flag, _matmul_format)         \
    MEGDNN_MARK_USED_VAR(param);                                               \
    MIDOUT_BEGIN(_midout_flag, midout_iv(#_class #_fun##_hash)) {              \
        _strategy strategy(param.src_type, param.filter_type, param.dst_type); \
        return megdnn::winograd::ConvBias<_strategy, _matmul_format>(          \
                       strategy, m_tile_size, param)                           \
                ._fun(param, m_matmul_algo);                                   \
    }                                                                          \
    MIDOUT_END();

#define MEGDNN_WINOGRAD_ALGO_FUN_DEFINE_ALL(_class, _strategy, _midout_flag, \
                                            _matmul_format)                  \
    size_t ConvBiasImpl::_class::get_workspace(                              \
            fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {  \
        MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, get_workspace_size,         \
                                         _strategy, _midout_flag,            \
                                         _matmul_format);                    \
        return 0;                                                            \
    }                                                                        \
    size_t ConvBiasImpl::_class::get_preprocess_workspace(                   \
            fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {  \
        MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(                                    \
                _class, get_preprocess_workspace_size, _strategy,            \
                _midout_flag, _matmul_format);                               \
        return 0;                                                            \
    }                                                                        \
    SmallVector<TensorLayout>                                                \
    ConvBiasImpl::_class::deduce_preprocessed_filter_layout(                 \
            fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {  \
        MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(                                    \
                _class, deduce_preprocessed_filter_layout, _strategy,        \
                _midout_flag, _matmul_format);                               \
        return {};                                                           \
    }                                                                        \
    SmallVector<ConvBiasImpl::NCBKern>                                       \
    ConvBiasImpl::_class::dispatch_preprocess_kerns(                         \
            fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {  \
        MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, get_preprocess_kerns,       \
                                         _strategy, _midout_flag,            \
                                         _matmul_format);                    \
        return {};                                                           \
    }                                                                        \
    SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::_class::dispatch_kerns( \
            fallback::ConvBiasImpl*, const NCBKernSizeParam& param) const {  \
        MEGDNN_WINOGRADS_ALGO_FUN_DEFINE(_class, get_kerns, _strategy,       \
                                         _midout_flag, _matmul_format);      \
        return {};                                                           \
    }

770
// vim: syntax=cpp.doxygen