winograd.h 27.0 KB
Newer Older
1 2 3 4 5 6 7 8
/**
 * \file dnn/src/fallback/conv_bias/winograd/winograd.h
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21
 */

#pragma once

#include <cstddef>
#include "include/megdnn/basic_types.h"
#include "include/megdnn/dtype.h"
#include "include/megdnn/thin/small_vector.h"
#include "src/fallback/conv_bias/opr_impl.h"
#include "src/fallback/matrix_mul/opr_impl.h"

22 23 24
#include "midout.h"
MIDOUT_DECL(megdnn_fallback_conv_bias_winograd_common)

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
namespace megdnn {
namespace winograd {

/**
 * \brief Winograd convolution
 *
 * The algo is refer to https://arxiv.org/abs/1509.09308.
 *
 * Format: DEFAULT
 * filter: (OC, IC, FH, FW) -> (alpha, alpha, IC, OC)
 * src: (N, C, H, W) -> (N, NR_TILES, alpha, alpha, TILE_SIZE, IC)
 *
 * We will perform gemm on:
 * (TILE_SIZE, IC) x (IC, OC) -> (TILE_SIZE, OC)
 *
 * Format: MK4
 * filter: (OC, IC, FH, FW) -> (alpha, alpha, OCB, ICB, IC_BLOCK_SIZE,
 * OC_BLOCK_SIZE)
 * src: (N, C, H, W) -> (N, NR_TILES, alpha, alpha, ICB, TILE_SIZE,
 * IC_BLOCK_SIZE)
 *
 * We will perform gemm on:
 * (OCB, ICB, IC_BLOCK_SIZE, OC_BLOCK_SIZE) x (ICB, TILE_SIZE, IC_BLOCK_SIZE)
 * = (OCB, TILE_SIZE, OC_BLOCK_SIZE)
 */
//! The default oc size of one thread in multi-threads mode
constexpr static size_t UNIT_OC_SIZE_DEFAULT = 1024;
template <typename Strategy,
          param::MatrixMul::Format format = param::MatrixMul::Format::DEFAULT>
class ConvBias {
    using output_compute_type = typename Strategy::output_compute_type;
    using input_filter_compute_type =
            typename Strategy::input_filter_compute_type;
    using stype = typename Strategy::stype;
    using dst_type = typename Strategy::dst_type;
    using NCBKernSizeParam = fallback::ConvBiasImpl::NCBKernSizeParam;
    using NCBKernParam = fallback::ConvBiasImpl::NCBKernParam;
    using NCBKernIndex = fallback::ConvBiasImpl::NCBKernIndex;
    using NCBKern = fallback::ConvBiasImpl::NCBKern;
    static_assert(
            format == param::MatrixMul::Format::DEFAULT ||
                    (format == param::MatrixMul::Format::MK4 &&
                     Strategy::IC_BLOCK_SIZE == 4 &&
                     Strategy::OC_BLOCK_SIZE == 4) ||
                    (format == param::MatrixMul::Format::MK8 &&
                     Strategy::IC_BLOCK_SIZE == 8 &&
                     Strategy::OC_BLOCK_SIZE == 8),
            "format should be default, mk4 and mk8, if mk4 IC_BLOCK_SIZE and "
            "OC_BLOCK_SIZE should be 4, if mk8 IC_BLOCK_SIZE and "
            "OC_BLOCK_SIZE should be 8");

    Strategy m_strategy;
    size_t m_unit_tile_size;
    //! m_unit_oc_size is must be times of Strategy::OC_BLOCK_SIZE
    size_t m_unit_oc_size;

    WorkspaceBundle get_wbundle(
            const NCBKernSizeParam& param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo) const {
        size_t OC = param.filter_meta.ocpg;
        size_t IC = param.filter_meta.icpg;
        size_t GROUP = param.filter_meta.group;
        size_t nr_threads = param.nr_threads;
        size_t filter_transform_buf_size = 0;
        //! filter : (alpha, alpha, IC, OC) or (OCB, ICB, IC_BLOCK_SIZE,
        //! OC_BLOCK_SIZE)
        if (param.filter_meta.format !=
                    param::ConvBias::Format::NCHW_WINOGRAD &&
            param.filter_meta.format !=
94 95 96
                    param::ConvBias::Format::NCHW88_WINOGRAD &&
            param.filter_meta.format !=
                    param::ConvBias::Format::NCHW44_WINOGRAD) {
97 98 99 100 101 102 103
            filter_transform_buf_size = Strategy::ALPHA * Strategy::ALPHA * OC *
                                        IC * sizeof(input_filter_compute_type);
        }
        size_t winograd_comput_size =
                get_wbundle_compute(param, matmul_algo).total_size_in_bytes() *
                nr_threads;
        if (param.filter_meta.format == param::ConvBias::Format::NCHW ||
104 105
            param.filter_meta.format == param::ConvBias::Format::NCHW88 ||
            param.filter_meta.format == param::ConvBias::Format::NCHW44) {
106 107 108 109 110 111 112
            return WorkspaceBundle(
                    nullptr,
                    {winograd_comput_size, filter_transform_buf_size * GROUP});
        } else {
            megdnn_assert(param.filter_meta.format ==
                                  param::ConvBias::Format::NCHW_WINOGRAD ||
                          param.filter_meta.format ==
113 114 115
                                  param::ConvBias::Format::NCHW88_WINOGRAD ||
                          param.filter_meta.format ==
                                  param::ConvBias::Format::NCHW44_WINOGRAD);
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
            return WorkspaceBundle(nullptr, {winograd_comput_size});
        }
    }

    WorkspaceBundle get_wbundle_compute(
            const NCBKernSizeParam& param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo) const {
        size_t OC = param.filter_meta.ocpg;
        size_t IC = param.filter_meta.icpg;
        size_t oc_size = std::min(OC, m_unit_oc_size);
        //! input : (alpha, alpha, unit_tile_size, IC) or (alpha, alpha,
        //! ICB, unit_tile_size, IC_BLOCK_SIZE)
        size_t input_transform_buf_size = Strategy::ALPHA * Strategy::ALPHA *
                                          IC * m_unit_tile_size *
                                          sizeof(input_filter_compute_type);
        //! output : (alpha, alpha, unit_tile_size, OC) or
        //! (alpha, alpha, OCB, unit_tile_size, OC_BLOCK_SIZE)
        size_t output_transform_buf_size = Strategy::ALPHA * Strategy::ALPHA *
                                           oc_size * m_unit_tile_size *
                                           sizeof(output_compute_type);

        //! use for inner temporary usage
        size_t transform_mid_buf_size =
                2 * Strategy::ALPHA * Strategy::ALPHA *
                sizeof(output_compute_type) *
                std::max(Strategy::IC_BLOCK_SIZE, Strategy::OC_BLOCK_SIZE);

143 144
        size_t matmul_workspace_size = matmul_algo->get_workspace(
                get_matmul_kern_param(param, m_unit_oc_size));
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

        //! compute workspace is independent and separated as far as possible
        //! in case of false cache line sharing
        return WorkspaceBundle(
                nullptr, {input_transform_buf_size, output_transform_buf_size,
                          transform_mid_buf_size, matmul_workspace_size});
    }

public:
    //! Get the m_unit_oc_size, according to the nr_threads and
    //! output_featuremap_size. When single thread the m_unit_oc_size is set
    //! 2048 heuristicly, When multi-threads, the m_unit_oc_size is set
    //! according to  nr_threads and out_featuremap_size
    ConvBias(const Strategy& strategy, size_t unit_tile_size, size_t nr_threads,
             size_t OH, size_t OW, size_t OC)
            : m_strategy{strategy}, m_unit_tile_size{unit_tile_size} {
        if (nr_threads > 1) {
            size_t units_h = div_ceil<size_t>(OH, Strategy::OUTPUT_BLOCK_SIZE);
            size_t units_w = div_ceil<size_t>(OW, Strategy::OUTPUT_BLOCK_SIZE);
            size_t nr_units = units_h * units_w;
            size_t nr_parallism_unit =
                    div_ceil<size_t>(nr_units, unit_tile_size);
            if (nr_parallism_unit < nr_threads) {
                m_unit_oc_size = div_ceil<size_t>(OC, nr_threads);
                if (format == param::MatrixMul::Format::MK8) {
                    m_unit_oc_size = round_up<size_t>(m_unit_oc_size, 8);
                } else {
                    m_unit_oc_size = round_up<size_t>(m_unit_oc_size, 4);
                }
            } else {
                m_unit_oc_size = UNIT_OC_SIZE_DEFAULT;
            }
        } else {
            m_unit_oc_size = UNIT_OC_SIZE_DEFAULT;
        }
    }

    size_t get_workspace_size(
            const NCBKernSizeParam& param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo) const {
        return get_wbundle(param, matmul_algo).total_size_in_bytes();
    }
    //! Used by winograd_filter_preprocess opr
    void filter_process(const stype* filter_ptr,
                        input_filter_compute_type* filter_transform_buf,
                        void* transform_mid_buf, size_t OC, size_t IC) {
        m_strategy.filter(
                filter_ptr, filter_transform_buf,
                static_cast<input_filter_compute_type*>(transform_mid_buf), OC,
                IC, 0, OC);
    }

197 198 199
    static void filter_process(Strategy strategy,
                               const WorkspaceBundle& bundle_top,
                               const WorkspaceBundle& bundle_compute,
200 201
                               const NCBKernParam& kern_param,
                               const NCBKernIndex& ncb_index) {
202
        
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        size_t compute_workspace_size_per_thread =
                bundle_compute.total_size_in_bytes();
        size_t thread_id = ncb_index.thread_id;
        size_t oc_id = ncb_index.ndrange_id[2];
        size_t group_id = ncb_index.ndrange_id[0];
        size_t OC = kern_param.filter_meta.ocpg;
        size_t IC = kern_param.filter_meta.icpg;
        size_t filter_group_size = Strategy::ALPHA * Strategy::ALPHA * OC * IC *
                                   sizeof(input_filter_compute_type);
        //! Filter trans dst ptr
        input_filter_compute_type* filter_transform_buf =
                reinterpret_cast<input_filter_compute_type*>(
                        reinterpret_cast<uintptr_t>(bundle_top.get(1)) +
                        group_id * filter_group_size);
        //! Filter trans src ptr
        input_filter_compute_type* transform_mid_buf =
                reinterpret_cast<input_filter_compute_type*>(
                        reinterpret_cast<uintptr_t>(bundle_compute.get(2)) +
                        compute_workspace_size_per_thread * thread_id);
222

223
        const stype* filter_ptr = kern_param.filter<stype>(group_id);
224 225
        size_t oc_start = oc_id, oc_end = oc_id + 1;

226 227 228
        if (kern_param.filter_meta.format == param::ConvBias::Format::NCHW88) {
            oc_start = 8 * oc_id;
            oc_end = oc_start + 8;
229 230 231 232
        } else if (kern_param.filter_meta.format ==
                   param::ConvBias::Format::NCHW44) {
            oc_start = 4 * oc_id;
            oc_end = oc_start + 4;
233 234 235 236 237 238
        }
        strategy.filter(filter_ptr, filter_transform_buf, transform_mid_buf, OC,
                        IC, oc_start, oc_end);
    }

    static void winograd_compute(
239 240
            Strategy strategy, const WorkspaceBundle& bundle_top,
            const WorkspaceBundle& bundle_compute,
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
            fallback::MatrixMulImpl::AlgoBase* matmul_algo,
            fallback::MatrixMulImpl::KernParam matmul_param,
            size_t unit_tile_size, size_t unit_oc_size,
            const NCBKernParam& ncb_param, const NCBKernIndex& ncb_index) {
        size_t OC = ncb_param.filter_meta.ocpg;
        size_t IC = ncb_param.filter_meta.icpg;
        size_t IH = ncb_param.isz[0];
        size_t IW = ncb_param.isz[1];
        size_t OH = ncb_param.osz[0];
        size_t OW = ncb_param.osz[1];
        size_t PH = ncb_param.filter_meta.padding[0];
        size_t PW = ncb_param.filter_meta.padding[1];
        size_t filter_group_size = Strategy::ALPHA * Strategy::ALPHA * OC * IC *
                                   sizeof(input_filter_compute_type);
        size_t compute_workspace_size_per_thread =
                bundle_compute.total_size_in_bytes();

        size_t units_h = div_ceil<size_t>(OH, Strategy::OUTPUT_BLOCK_SIZE);
        size_t units_w = div_ceil<size_t>(OW, Strategy::OUTPUT_BLOCK_SIZE);
        size_t nr_units = units_h * units_w;

        size_t oc_block_id = ncb_index.ndrange_id[3];
        size_t tile_id = ncb_index.ndrange_id[2];
264
        size_t batch_id = ncb_index.ndrange_id[1];
265 266 267
        size_t group_id = ncb_index.ndrange_id[0];
        size_t thread_id = ncb_index.thread_id;

268 269
        const stype* src_ptr = ncb_param.src<stype>(batch_id, group_id);
        dst_type* dst_ptr = ncb_param.dst<dst_type>(batch_id, group_id);
270
        const output_compute_type* bias_ptr =
271 272 273
                static_cast<const output_compute_type*>(
                        ncb_param.bias<output_compute_type>(batch_id,
                                                            group_id));
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

        input_filter_compute_type* input_transform_buf =
                reinterpret_cast<input_filter_compute_type*>(
                        reinterpret_cast<uintptr_t>(bundle_compute.get(0)) +
                        compute_workspace_size_per_thread * thread_id);

        output_compute_type* output_transform_buf =
                reinterpret_cast<output_compute_type*>(
                        reinterpret_cast<uintptr_t>(bundle_compute.get(1)) +
                        compute_workspace_size_per_thread * thread_id);
        input_filter_compute_type* transform_mid_buf =
                reinterpret_cast<input_filter_compute_type*>(
                        reinterpret_cast<uintptr_t>(bundle_compute.get(2)) +
                        compute_workspace_size_per_thread * thread_id);

289
        //! NCHW88_WINOGRAD and NCHW_WINOGRAD is the same offset
290 291
        const input_filter_compute_type* filter_transform_buf =
                static_cast<const input_filter_compute_type*>(
292
                        ncb_param.filter<input_filter_compute_type>(group_id));
293
        if (ncb_param.filter_meta.format == param::ConvBias::Format::NCHW ||
294 295
            ncb_param.filter_meta.format == param::ConvBias::Format::NCHW88 ||
            ncb_param.filter_meta.format == param::ConvBias::Format::NCHW44) {
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
            filter_transform_buf = reinterpret_cast<input_filter_compute_type*>(
                    reinterpret_cast<uintptr_t>(bundle_top.get(1)) +
                    group_id * filter_group_size);
        }
        //! prepare matmul param
        matmul_param.workspace_ptr = reinterpret_cast<void*>(
                reinterpret_cast<uintptr_t>(bundle_compute.get(3)) +
                compute_workspace_size_per_thread * thread_id);
        matmul_param.workspace_size = bundle_compute.get_size(3);
        fallback::MatrixMulImpl::kern_t matmul_kern =
                matmul_algo->get_kern(matmul_param);

        size_t unit_start_idx = tile_id * unit_tile_size;
        size_t nr_tiles_in_unit =
                std::min(nr_units - unit_start_idx, unit_tile_size);
        size_t oc_start_idx = oc_block_id * unit_oc_size;
        size_t nr_oc_in_unit = std::min(OC - oc_start_idx, unit_oc_size);
        megdnn_assert(nr_oc_in_unit % Strategy::OC_BLOCK_SIZE == 0,
                      "The winograd remain oc is not times of OC_BLOCK_SIZE");
        if (format == param::MatrixMul::Format::MK4 ||
            format == param::MatrixMul::Format::MK8) {
#if !MEGDNN_X86
            nr_tiles_in_unit = round_up<size_t>(nr_tiles_in_unit, 4);
#endif
            megdnn_assert(nr_tiles_in_unit <= unit_tile_size,
                          "nr_tiles_in_unit: %zu TILE_SIZE:%zu",
                          nr_tiles_in_unit, unit_tile_size);
        }
324 325 326 327
        //! BTdB
        strategy.input(src_ptr, input_transform_buf, transform_mid_buf,
                       IH, IW, IC, PH, PW, unit_start_idx, nr_tiles_in_unit);

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        rep(i, Strategy::ALPHA) rep(j, Strategy::ALPHA) {
            if (format == param::MatrixMul::Format::DEFAULT) {
                matmul_param.A_ptr =
                        input_transform_buf +
                        (i * Strategy::ALPHA + j) * nr_tiles_in_unit * IC;
                matmul_param.B_ptr = filter_transform_buf +
                                     (i * Strategy::ALPHA + j) * OC * IC +
                                     oc_start_idx;

                matmul_param.C_ptr = output_transform_buf +
                                     (i * Strategy::ALPHA + j) *
                                             nr_tiles_in_unit * nr_oc_in_unit;

                matmul_param.M = nr_tiles_in_unit;
                matmul_param.N = nr_oc_in_unit;
                matmul_param.LDB = OC;
                matmul_param.LDC = nr_oc_in_unit;
            } else {
                matmul_param.A_ptr = filter_transform_buf +
                                     (i * Strategy::ALPHA + j) * OC * IC +
                                     oc_start_idx * IC;

                matmul_param.B_ptr =
                        input_transform_buf +
                        (i * Strategy::ALPHA + j) * nr_tiles_in_unit * IC;

                matmul_param.C_ptr = output_transform_buf +
                                     (i * Strategy::ALPHA + j) *
                                             nr_tiles_in_unit * nr_oc_in_unit;
                matmul_param.N = nr_tiles_in_unit;
                matmul_param.M = nr_oc_in_unit;
                matmul_param.LDB = matmul_param.N * Strategy::IC_BLOCK_SIZE;
                matmul_param.LDC = matmul_param.N * Strategy::IC_BLOCK_SIZE;
            }
            matmul_kern(matmul_param);
        }
364 365 366 367 368 369 370 371

        //! Y = ATmA
        size_t oc_end_idx = oc_start_idx + nr_oc_in_unit;
        strategy.output(
                output_transform_buf, bias_ptr, dst_ptr,
                reinterpret_cast<output_compute_type*>(transform_mid_buf),
                ncb_param.bias_mode, ncb_param.nonlineMode, OH, OW,
                oc_start_idx, oc_end_idx, unit_start_idx, nr_tiles_in_unit);
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    };

    SmallVector<NCBKern> get_kerns(
            const NCBKernSizeParam& param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo) {
        size_t N = param.n;
        size_t OC = param.filter_meta.ocpg;
        size_t OH = param.osz[0];
        size_t OW = param.osz[1];
        size_t GROUP = param.filter_meta.group;
        WorkspaceBundle bundle_top = get_wbundle(param, matmul_algo);
        WorkspaceBundle bundle_compute =
                get_wbundle_compute(param, matmul_algo);
        fallback::MatrixMulImpl::KernParam matmul_param;
        static_cast<fallback::MatrixMulImpl::KernSizeParam&>(matmul_param) =
387
                get_matmul_kern_param(param, m_unit_oc_size);
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

        Strategy strategy = m_strategy;
        size_t unit_tile_size = m_unit_tile_size;
        size_t unit_oc_size = m_unit_oc_size;
        size_t units_h = div_ceil<size_t>(OH, Strategy::OUTPUT_BLOCK_SIZE);
        size_t units_w = div_ceil<size_t>(OW, Strategy::OUTPUT_BLOCK_SIZE);

        size_t nr_units = units_h * units_w;
        size_t nr_hw_tiles = div_ceil<size_t>(nr_units, m_unit_tile_size);
        size_t nr_oc_tiles = div_ceil<size_t>(OC, m_unit_oc_size);

        //! The filter should process ahead
        megdnn_assert(
                param.filter_meta.stride[0] == 1 &&
                param.filter_meta.stride[1] == 1 &&
                (param.filter_meta.format == param::ConvBias::Format::NCHW ||
                 param.filter_meta.format == param::ConvBias::Format::NCHW88 ||
405
                 param.filter_meta.format == param::ConvBias::Format::NCHW44 ||
406 407 408
                 param.filter_meta.format ==
                         param::ConvBias::Format::NCHW_WINOGRAD ||
                 param.filter_meta.format ==
409 410 411
                         param::ConvBias::Format::NCHW88_WINOGRAD ||
                 param.filter_meta.format ==
                         param::ConvBias::Format::NCHW44_WINOGRAD));
412 413 414

        SmallVector<NCBKern> kerns;
        if (param.filter_meta.format == param::ConvBias::Format::NCHW ||
415 416
            param.filter_meta.format == param::ConvBias::Format::NCHW88 ||
            param.filter_meta.format == param::ConvBias::Format::NCHW44) {
417 418
            //! probably a gcc bug, labmda require capturing 'this' to call
            //! static member function
419 420 421 422 423 424 425 426 427 428
            auto filter_process_kern =
                    [this, strategy, bundle_top, bundle_compute](
                            const NCBKernParam& ncb_param,
                            const NCBKernIndex& ncb_index) mutable {
                        MEGDNN_MARK_USED_VAR(this);
                        bundle_top.set(ncb_param.workspace_ptr);
                        bundle_compute.set(bundle_top.get(0));
                        filter_process(strategy, bundle_top, bundle_compute,
                                       ncb_param, std::move(ncb_index));
                    };
429 430 431 432
            size_t oc_parallelism = OC;
            if (param.filter_meta.format == param::ConvBias::Format::NCHW88) {
                megdnn_assert(OC % 8 == 0);
                oc_parallelism = OC / 8;
433 434 435 436
            } else if (param.filter_meta.format ==
                       param::ConvBias::Format::NCHW44) {
                megdnn_assert(OC % 4 == 0);
                oc_parallelism = OC / 4;
437 438 439
            }
            kerns.push_back({filter_process_kern, {GROUP, 1, oc_parallelism}});
        }
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        auto winograd_compute_kern =
                [strategy, bundle_top, bundle_compute, matmul_algo,
                 matmul_param, unit_tile_size,
                 unit_oc_size](const NCBKernParam& ncb_param,
                               const NCBKernIndex& ncb_index) mutable {
                    MIDOUT_BEGIN(megdnn_fallback_conv_bias_winograd_common, 0,
                                 0) {
                        bundle_top.set(ncb_param.workspace_ptr);
                        bundle_compute.set(bundle_top.get(0));
                        winograd_compute(strategy, bundle_top, bundle_compute,
                                         matmul_algo, matmul_param,
                                         unit_tile_size, unit_oc_size,
                                         ncb_param, std::move(ncb_index));
                    }
                    MIDOUT_END();
                };
456 457 458 459 460 461
        kerns.push_back(
                {winograd_compute_kern, {GROUP, N, nr_hw_tiles, nr_oc_tiles}});
        return kerns;
    }

    fallback::MatrixMulImpl::KernSizeParam get_matmul_kern_param(
462
            const NCBKernSizeParam& param, size_t nr_oc_in_unit = 0) const {
463 464 465 466
        size_t M = 0;
        size_t N = 0;
        size_t K = 0;
        size_t LDA = 0, LDB = 0, LDC = 0;
467 468 469
        if (nr_oc_in_unit == 0) {
            nr_oc_in_unit = param.filter_meta.ocpg;
        }
470 471 472

        if (format == param::MatrixMul::Format::DEFAULT) {
            M = m_unit_tile_size;
473
            N = nr_oc_in_unit;
474 475 476 477 478
            K = param.filter_meta.icpg;
            LDA = K;
            LDB = N;
            LDC = N;
        } else {
479
            M = nr_oc_in_unit;
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
            N = m_unit_tile_size;
            K = param.filter_meta.icpg;
            megdnn_assert(K % Strategy::IC_BLOCK_SIZE == 0, "invalid K: %zu",
                          K);
            LDA = K / Strategy::IC_BLOCK_SIZE * Strategy::OC_BLOCK_SIZE *
                  Strategy::IC_BLOCK_SIZE;
            LDB = N * Strategy::IC_BLOCK_SIZE;
            LDC = N * Strategy::IC_BLOCK_SIZE;
        }

        return {DType::from_enum(DTypeTrait<input_filter_compute_type>::enumv),
                DType::from_enum(DTypeTrait<input_filter_compute_type>::enumv),
                DType::from_enum(DTypeTrait<output_compute_type>::enumv),
                M,
                N,
                K,
                LDA,
                LDB,
                LDC,
                false,
                false,
                param::MatrixMul::ComputeMode::DEFAULT,
                format};
    }
};

}  // namespace winograd
}  // namespace megdnn

#define MEGDNN_REG_WINOGRAD_STRATEGY(                                          \
        _stype, _dtype, _input_filter_ctype, _ctype, _output_block_size,       \
        _kernel_size, _ic_block_size, _oc_block_size, _strategy_cls_name)      \
    class _strategy_cls_name {                                                 \
    public:                                                                    \
        using stype = _stype;                                                  \
        using dst_type = _dtype;                                               \
        using output_compute_type = _ctype;                                    \
        using input_filter_compute_type = _input_filter_ctype;                 \
        /**                                                                    \
         * kernel size of convolution, same as \c r                            \
         * output block size, same as \c m                                     \
         */                                                                    \
        constexpr static size_t KERNEL_SIZE = _kernel_size;                    \
        constexpr static size_t OUTPUT_BLOCK_SIZE = _output_block_size;        \
        constexpr static size_t IC_BLOCK_SIZE = _ic_block_size;                \
        constexpr static size_t OC_BLOCK_SIZE = _oc_block_size;                \
        constexpr static size_t ALPHA = KERNEL_SIZE + OUTPUT_BLOCK_SIZE - 1;   \
        /**                                                                    \
         * process \c UNIT_TILE_SIZE small matrix mul once, total tiles is     \
         * N * DIV_UP(OH, OUTPUT_BLOCK_SIZE) * DIV_UP(OW, OUTPUT_BLOCK_SIZE)   \
         */                                                                    \
        const DType src_dtype;                                                 \
        const DType filter_dtype;                                              \
        const DType dst_dtype;                                                 \
        _strategy_cls_name(DType src_dtype, DType filter_dtype,                \
                           DType dst_dtype);                                   \
        void filter(const stype* filter,                                       \
                    input_filter_compute_type* filter_transform_buf,           \
                    input_filter_compute_type* transform_mid_buf, size_t OC,   \
                    size_t IC, size_t oc_start, size_t oc_end);                \
        void input(const stype* input,                                         \
                   input_filter_compute_type* input_transform_buf,             \
542 543 544
                   input_filter_compute_type* transform_mid_buf,               \
                   size_t IH, size_t IW, size_t IC, size_t PH, size_t PW,      \
                   size_t unit_start_idx, size_t nr_tiles_in_unit);            \
545 546 547
        void output(const output_compute_type* output_transform_buf,           \
                    const output_compute_type* bias, dst_type* output,         \
                    output_compute_type* transform_mid_buf, BiasMode bmode,    \
548 549 550
                    NonlineMode nonline_mode, size_t OH, size_t OW,            \
                    size_t oc_start, size_t oc_end, size_t unit_start_idx,     \
                    size_t nr_tiles_in_unit);                                  \
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    };

#define MEGDNN_REG_WINOGRAD_STRATEGY_IMPL(_strategy_cls_name)     \
    constexpr size_t _strategy_cls_name::KERNEL_SIZE;             \
    constexpr size_t _strategy_cls_name::OUTPUT_BLOCK_SIZE;       \
    constexpr size_t _strategy_cls_name::ALPHA;                   \
    constexpr size_t _strategy_cls_name::IC_BLOCK_SIZE;           \
    constexpr size_t _strategy_cls_name::OC_BLOCK_SIZE;           \
    _strategy_cls_name::_strategy_cls_name(                       \
            DType src_dtype, DType filter_dtype, DType dst_dtype) \
            : src_dtype(src_dtype),                               \
              filter_dtype(filter_dtype),                         \
              dst_dtype(dst_dtype) {}

// vim: syntax=cpp.doxygen