winograd.h 26.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
/**
 * \file dnn/src/fallback/conv_bias/winograd/winograd.h
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#pragma once

#include <cstddef>
#include "include/megdnn/basic_types.h"
#include "include/megdnn/dtype.h"
#include "include/megdnn/thin/small_vector.h"
#include "src/fallback/conv_bias/opr_impl.h"
#include "src/fallback/matrix_mul/opr_impl.h"

namespace megdnn {
namespace winograd {

/**
 * \brief Winograd convolution
 *
 * The algo is refer to https://arxiv.org/abs/1509.09308.
 *
 * Format: DEFAULT
 * filter: (OC, IC, FH, FW) -> (alpha, alpha, IC, OC)
 * src: (N, C, H, W) -> (N, NR_TILES, alpha, alpha, TILE_SIZE, IC)
 *
 * We will perform gemm on:
 * (TILE_SIZE, IC) x (IC, OC) -> (TILE_SIZE, OC)
 *
 * Format: MK4
 * filter: (OC, IC, FH, FW) -> (alpha, alpha, OCB, ICB, IC_BLOCK_SIZE,
 * OC_BLOCK_SIZE)
 * src: (N, C, H, W) -> (N, NR_TILES, alpha, alpha, ICB, TILE_SIZE,
 * IC_BLOCK_SIZE)
 *
 * We will perform gemm on:
 * (OCB, ICB, IC_BLOCK_SIZE, OC_BLOCK_SIZE) x (ICB, TILE_SIZE, IC_BLOCK_SIZE)
 * = (OCB, TILE_SIZE, OC_BLOCK_SIZE)
 */
//! The default oc size of one thread in multi-threads mode
constexpr static size_t UNIT_OC_SIZE_DEFAULT = 1024;
template <typename Strategy,
          param::MatrixMul::Format format = param::MatrixMul::Format::DEFAULT>
class ConvBias {
    using output_compute_type = typename Strategy::output_compute_type;
    using input_filter_compute_type =
            typename Strategy::input_filter_compute_type;
    using stype = typename Strategy::stype;
    using dst_type = typename Strategy::dst_type;
    using NCBKernSizeParam = fallback::ConvBiasImpl::NCBKernSizeParam;
    using NCBKernParam = fallback::ConvBiasImpl::NCBKernParam;
    using NCBKernIndex = fallback::ConvBiasImpl::NCBKernIndex;
    using NCBKern = fallback::ConvBiasImpl::NCBKern;
    static_assert(
            format == param::MatrixMul::Format::DEFAULT ||
                    (format == param::MatrixMul::Format::MK4 &&
                     Strategy::IC_BLOCK_SIZE == 4 &&
                     Strategy::OC_BLOCK_SIZE == 4) ||
                    (format == param::MatrixMul::Format::MK8 &&
                     Strategy::IC_BLOCK_SIZE == 8 &&
                     Strategy::OC_BLOCK_SIZE == 8),
            "format should be default, mk4 and mk8, if mk4 IC_BLOCK_SIZE and "
            "OC_BLOCK_SIZE should be 4, if mk8 IC_BLOCK_SIZE and "
            "OC_BLOCK_SIZE should be 8");

    Strategy m_strategy;
    size_t m_unit_tile_size;
    //! m_unit_oc_size is must be times of Strategy::OC_BLOCK_SIZE
    size_t m_unit_oc_size;

    WorkspaceBundle get_wbundle(
            const NCBKernSizeParam& param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo) const {
        size_t OC = param.filter_meta.ocpg;
        size_t IC = param.filter_meta.icpg;
        size_t GROUP = param.filter_meta.group;
        size_t nr_threads = param.nr_threads;
        size_t filter_transform_buf_size = 0;
        //! filter : (alpha, alpha, IC, OC) or (OCB, ICB, IC_BLOCK_SIZE,
        //! OC_BLOCK_SIZE)
        if (param.filter_meta.format !=
                    param::ConvBias::Format::NCHW_WINOGRAD &&
            param.filter_meta.format !=
                    param::ConvBias::Format::NCHW88_WINOGRAD) {
            filter_transform_buf_size = Strategy::ALPHA * Strategy::ALPHA * OC *
                                        IC * sizeof(input_filter_compute_type);
        }
        size_t winograd_comput_size =
                get_wbundle_compute(param, matmul_algo).total_size_in_bytes() *
                nr_threads;
        if (param.filter_meta.format == param::ConvBias::Format::NCHW ||
            param.filter_meta.format == param::ConvBias::Format::NCHW88) {
            return WorkspaceBundle(
                    nullptr,
                    {winograd_comput_size, filter_transform_buf_size * GROUP});
        } else {
            megdnn_assert(param.filter_meta.format ==
                                  param::ConvBias::Format::NCHW_WINOGRAD ||
                          param.filter_meta.format ==
                                  param::ConvBias::Format::NCHW88_WINOGRAD);
            return WorkspaceBundle(nullptr, {winograd_comput_size});
        }
    }

    WorkspaceBundle get_wbundle_compute(
            const NCBKernSizeParam& param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo) const {
        size_t OC = param.filter_meta.ocpg;
        size_t IC = param.filter_meta.icpg;
        size_t oc_size = std::min(OC, m_unit_oc_size);
        //! input : (alpha, alpha, unit_tile_size, IC) or (alpha, alpha,
        //! ICB, unit_tile_size, IC_BLOCK_SIZE)
        size_t input_transform_buf_size = Strategy::ALPHA * Strategy::ALPHA *
                                          IC * m_unit_tile_size *
                                          sizeof(input_filter_compute_type);
        //! output : (alpha, alpha, unit_tile_size, OC) or
        //! (alpha, alpha, OCB, unit_tile_size, OC_BLOCK_SIZE)
        size_t output_transform_buf_size = Strategy::ALPHA * Strategy::ALPHA *
                                           oc_size * m_unit_tile_size *
                                           sizeof(output_compute_type);

        //! use for inner temporary usage
        size_t transform_mid_buf_size =
                2 * Strategy::ALPHA * Strategy::ALPHA *
                sizeof(output_compute_type) *
                std::max(Strategy::IC_BLOCK_SIZE, Strategy::OC_BLOCK_SIZE);

        size_t matmul_workspace_size =
                matmul_algo->get_workspace(get_matmul_kern_param(param));

        //! compute workspace is independent and separated as far as possible
        //! in case of false cache line sharing
        return WorkspaceBundle(
                nullptr, {input_transform_buf_size, output_transform_buf_size,
                          transform_mid_buf_size, matmul_workspace_size});
    }

public:
    //! Get the m_unit_oc_size, according to the nr_threads and
    //! output_featuremap_size. When single thread the m_unit_oc_size is set
    //! 2048 heuristicly, When multi-threads, the m_unit_oc_size is set
    //! according to  nr_threads and out_featuremap_size
    ConvBias(const Strategy& strategy, size_t unit_tile_size, size_t nr_threads,
             size_t OH, size_t OW, size_t OC)
            : m_strategy{strategy}, m_unit_tile_size{unit_tile_size} {
        if (nr_threads > 1) {
            size_t units_h = div_ceil<size_t>(OH, Strategy::OUTPUT_BLOCK_SIZE);
            size_t units_w = div_ceil<size_t>(OW, Strategy::OUTPUT_BLOCK_SIZE);
            size_t nr_units = units_h * units_w;
            size_t nr_parallism_unit =
                    div_ceil<size_t>(nr_units, unit_tile_size);
            if (nr_parallism_unit < nr_threads) {
                m_unit_oc_size = div_ceil<size_t>(OC, nr_threads);
                if (format == param::MatrixMul::Format::MK8) {
                    m_unit_oc_size = round_up<size_t>(m_unit_oc_size, 8);
                } else {
                    m_unit_oc_size = round_up<size_t>(m_unit_oc_size, 4);
                }
            } else {
                m_unit_oc_size = UNIT_OC_SIZE_DEFAULT;
            }
        } else {
            m_unit_oc_size = UNIT_OC_SIZE_DEFAULT;
        }
    }

    size_t get_workspace_size(
            const NCBKernSizeParam& param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo) const {
        return get_wbundle(param, matmul_algo).total_size_in_bytes();
    }
    //! Used by winograd_filter_preprocess opr
    void filter_process(const stype* filter_ptr,
                        input_filter_compute_type* filter_transform_buf,
                        void* transform_mid_buf, size_t OC, size_t IC) {
        m_strategy.filter(
                filter_ptr, filter_transform_buf,
                static_cast<input_filter_compute_type*>(transform_mid_buf), OC,
                IC, 0, OC);
    }

    static void filter_process(Strategy strategy, WorkspaceBundle bundle_top,
                               WorkspaceBundle bundle_compute,
                               const NCBKernParam& kern_param,
                               const NCBKernIndex& ncb_index) {
        bundle_top.set(kern_param.workspace_ptr);
        bundle_compute.set(bundle_top.get(0));
        size_t compute_workspace_size_per_thread =
                bundle_compute.total_size_in_bytes();
        size_t thread_id = ncb_index.thread_id;
        size_t oc_id = ncb_index.ndrange_id[2];
        size_t group_id = ncb_index.ndrange_id[0];
        size_t OC = kern_param.filter_meta.ocpg;
        size_t IC = kern_param.filter_meta.icpg;
        size_t filter_group_size = Strategy::ALPHA * Strategy::ALPHA * OC * IC *
                                   sizeof(input_filter_compute_type);
        //! Filter trans dst ptr
        input_filter_compute_type* filter_transform_buf =
                reinterpret_cast<input_filter_compute_type*>(
                        reinterpret_cast<uintptr_t>(bundle_top.get(1)) +
                        group_id * filter_group_size);
        //! Filter trans src ptr
        input_filter_compute_type* transform_mid_buf =
                reinterpret_cast<input_filter_compute_type*>(
                        reinterpret_cast<uintptr_t>(bundle_compute.get(2)) +
                        compute_workspace_size_per_thread * thread_id);
213
        const stype* filter_ptr = kern_param.filter<stype>(group_id);
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
        size_t oc_start = oc_id, oc_end = oc_id+1;
        if (kern_param.filter_meta.format == param::ConvBias::Format::NCHW88) {
            oc_start = 8 * oc_id;
            oc_end = oc_start + 8;
        }
        strategy.filter(filter_ptr, filter_transform_buf, transform_mid_buf, OC,
                        IC, oc_start, oc_end);
    }

    static void winograd_compute(
            Strategy strategy, WorkspaceBundle bundle_top,
            WorkspaceBundle bundle_compute,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo,
            fallback::MatrixMulImpl::KernParam matmul_param,
            size_t unit_tile_size, size_t unit_oc_size,
            const NCBKernParam& ncb_param, const NCBKernIndex& ncb_index) {
        size_t OC = ncb_param.filter_meta.ocpg;
        size_t IC = ncb_param.filter_meta.icpg;
        size_t IH = ncb_param.isz[0];
        size_t IW = ncb_param.isz[1];
        size_t OH = ncb_param.osz[0];
        size_t OW = ncb_param.osz[1];
        size_t PH = ncb_param.filter_meta.padding[0];
        size_t PW = ncb_param.filter_meta.padding[1];
        size_t filter_group_size = Strategy::ALPHA * Strategy::ALPHA * OC * IC *
                                   sizeof(input_filter_compute_type);
        size_t compute_workspace_size_per_thread =
                bundle_compute.total_size_in_bytes();

        size_t units_h = div_ceil<size_t>(OH, Strategy::OUTPUT_BLOCK_SIZE);
        size_t units_w = div_ceil<size_t>(OW, Strategy::OUTPUT_BLOCK_SIZE);
        size_t nr_units = units_h * units_w;

        size_t oc_block_id = ncb_index.ndrange_id[3];
        size_t tile_id = ncb_index.ndrange_id[2];
249
        size_t batch_id = ncb_index.ndrange_id[1];
250 251 252 253 254 255
        size_t group_id = ncb_index.ndrange_id[0];
        size_t thread_id = ncb_index.thread_id;

        bundle_top.set(ncb_param.workspace_ptr);
        bundle_compute.set(bundle_top.get(0));

256 257
        const stype* src_ptr = ncb_param.src<stype>(batch_id, group_id);
        dst_type* dst_ptr = ncb_param.dst<dst_type>(batch_id, group_id);
258
        const output_compute_type* bias_ptr =
259 260 261
                static_cast<const output_compute_type*>(
                        ncb_param.bias<output_compute_type>(batch_id,
                                                            group_id));
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

        input_filter_compute_type* input_transform_buf =
                reinterpret_cast<input_filter_compute_type*>(
                        reinterpret_cast<uintptr_t>(bundle_compute.get(0)) +
                        compute_workspace_size_per_thread * thread_id);

        output_compute_type* output_transform_buf =
                reinterpret_cast<output_compute_type*>(
                        reinterpret_cast<uintptr_t>(bundle_compute.get(1)) +
                        compute_workspace_size_per_thread * thread_id);
        input_filter_compute_type* transform_mid_buf =
                reinterpret_cast<input_filter_compute_type*>(
                        reinterpret_cast<uintptr_t>(bundle_compute.get(2)) +
                        compute_workspace_size_per_thread * thread_id);

277
        //! NCHW88_WINOGRAD and NCHW_WINOGRAD is the same offset
278 279
        const input_filter_compute_type* filter_transform_buf =
                static_cast<const input_filter_compute_type*>(
280
                        ncb_param.filter<input_filter_compute_type>(group_id));
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
        if (ncb_param.filter_meta.format == param::ConvBias::Format::NCHW ||
            ncb_param.filter_meta.format == param::ConvBias::Format::NCHW88) {
            filter_transform_buf = reinterpret_cast<input_filter_compute_type*>(
                    reinterpret_cast<uintptr_t>(bundle_top.get(1)) +
                    group_id * filter_group_size);
        }
        //! prepare matmul param
        matmul_param.workspace_ptr = reinterpret_cast<void*>(
                reinterpret_cast<uintptr_t>(bundle_compute.get(3)) +
                compute_workspace_size_per_thread * thread_id);
        matmul_param.workspace_size = bundle_compute.get_size(3);
        fallback::MatrixMulImpl::kern_t matmul_kern =
                matmul_algo->get_kern(matmul_param);

        size_t unit_start_idx = tile_id * unit_tile_size;
        size_t nr_tiles_in_unit =
                std::min(nr_units - unit_start_idx, unit_tile_size);
        size_t oc_start_idx = oc_block_id * unit_oc_size;
        size_t nr_oc_in_unit = std::min(OC - oc_start_idx, unit_oc_size);
        megdnn_assert(nr_oc_in_unit % Strategy::OC_BLOCK_SIZE == 0,
                      "The winograd remain oc is not times of OC_BLOCK_SIZE");
        if (format == param::MatrixMul::Format::MK4 ||
            format == param::MatrixMul::Format::MK8) {
#if !MEGDNN_X86
            nr_tiles_in_unit = round_up<size_t>(nr_tiles_in_unit, 4);
#endif
            megdnn_assert(nr_tiles_in_unit <= unit_tile_size,
                          "nr_tiles_in_unit: %zu TILE_SIZE:%zu",
                          nr_tiles_in_unit, unit_tile_size);
        }
        rep(unit_idx, nr_tiles_in_unit) {
            size_t index = unit_start_idx + unit_idx;
            size_t nh = index / units_w;
            size_t nw = index % units_w;
            int ih_start = nh * Strategy::OUTPUT_BLOCK_SIZE - PH;
            int iw_start = nw * Strategy::OUTPUT_BLOCK_SIZE - PW;

            strategy.input(src_ptr, input_transform_buf, transform_mid_buf,
                           ih_start, iw_start, IH, IW, IC, unit_idx,
                           nr_tiles_in_unit);
        }
        rep(i, Strategy::ALPHA) rep(j, Strategy::ALPHA) {
            if (format == param::MatrixMul::Format::DEFAULT) {
                matmul_param.A_ptr =
                        input_transform_buf +
                        (i * Strategy::ALPHA + j) * nr_tiles_in_unit * IC;
                matmul_param.B_ptr = filter_transform_buf +
                                     (i * Strategy::ALPHA + j) * OC * IC +
                                     oc_start_idx;

                matmul_param.C_ptr = output_transform_buf +
                                     (i * Strategy::ALPHA + j) *
                                             nr_tiles_in_unit * nr_oc_in_unit;

                matmul_param.M = nr_tiles_in_unit;
                matmul_param.N = nr_oc_in_unit;
                matmul_param.LDB = OC;
                matmul_param.LDC = nr_oc_in_unit;
            } else {
                matmul_param.A_ptr = filter_transform_buf +
                                     (i * Strategy::ALPHA + j) * OC * IC +
                                     oc_start_idx * IC;

                matmul_param.B_ptr =
                        input_transform_buf +
                        (i * Strategy::ALPHA + j) * nr_tiles_in_unit * IC;

                matmul_param.C_ptr = output_transform_buf +
                                     (i * Strategy::ALPHA + j) *
                                             nr_tiles_in_unit * nr_oc_in_unit;
                matmul_param.N = nr_tiles_in_unit;
                matmul_param.M = nr_oc_in_unit;
                matmul_param.LDB = matmul_param.N * Strategy::IC_BLOCK_SIZE;
                matmul_param.LDC = matmul_param.N * Strategy::IC_BLOCK_SIZE;
            }
            matmul_kern(matmul_param);
        }
        /* Y = ATmA */
        rep(unit_idx, nr_tiles_in_unit) {
            size_t index = unit_start_idx + unit_idx;
            auto nh = index / units_w;
            auto nw = index % units_w;
            size_t oh_start = nh * Strategy::OUTPUT_BLOCK_SIZE;
            size_t ow_start = nw * Strategy::OUTPUT_BLOCK_SIZE;
            size_t oc_end_idx = oc_start_idx + nr_oc_in_unit;

            strategy.output(
                    output_transform_buf, bias_ptr, dst_ptr,
                    reinterpret_cast<output_compute_type*>(transform_mid_buf),
                    ncb_param.bias_mode, ncb_param.nonlineMode, oh_start,
                    ow_start, OH, OW, oc_start_idx, oc_end_idx, unit_idx,
                    nr_tiles_in_unit);
        }
    };

    SmallVector<NCBKern> get_kerns(
            const NCBKernSizeParam& param,
            fallback::MatrixMulImpl::AlgoBase* matmul_algo) {
        size_t N = param.n;
        size_t OC = param.filter_meta.ocpg;
        size_t OH = param.osz[0];
        size_t OW = param.osz[1];
        size_t GROUP = param.filter_meta.group;
        WorkspaceBundle bundle_top = get_wbundle(param, matmul_algo);
        WorkspaceBundle bundle_compute =
                get_wbundle_compute(param, matmul_algo);
        fallback::MatrixMulImpl::KernParam matmul_param;
        static_cast<fallback::MatrixMulImpl::KernSizeParam&>(matmul_param) =
                get_matmul_kern_param(param);

        Strategy strategy = m_strategy;
        size_t unit_tile_size = m_unit_tile_size;
        size_t unit_oc_size = m_unit_oc_size;
        size_t units_h = div_ceil<size_t>(OH, Strategy::OUTPUT_BLOCK_SIZE);
        size_t units_w = div_ceil<size_t>(OW, Strategy::OUTPUT_BLOCK_SIZE);

        size_t nr_units = units_h * units_w;
        size_t nr_hw_tiles = div_ceil<size_t>(nr_units, m_unit_tile_size);
        size_t nr_oc_tiles = div_ceil<size_t>(OC, m_unit_oc_size);

        //! The filter should process ahead
        megdnn_assert(
                param.filter_meta.stride[0] == 1 &&
                param.filter_meta.stride[1] == 1 &&
                (param.filter_meta.format == param::ConvBias::Format::NCHW ||
                 param.filter_meta.format == param::ConvBias::Format::NCHW88 ||
                 param.filter_meta.format ==
                         param::ConvBias::Format::NCHW_WINOGRAD ||
                 param.filter_meta.format ==
                         param::ConvBias::Format::NCHW88_WINOGRAD));

        SmallVector<NCBKern> kerns;
        if (param.filter_meta.format == param::ConvBias::Format::NCHW ||
            param.filter_meta.format == param::ConvBias::Format::NCHW88) {
            //! probably a gcc bug, labmda require capturing 'this' to call
            //! static member function
            auto filter_process_kern = [this, strategy, bundle_top,
                                        bundle_compute](
                                               const NCBKernParam& ncb_param,
                                               const NCBKernIndex& ncb_index) {
                MEGDNN_MARK_USED_VAR(this);
                filter_process(strategy, bundle_top, bundle_compute, ncb_param,
                               std::move(ncb_index));
            };
            size_t oc_parallelism = OC;
            if (param.filter_meta.format == param::ConvBias::Format::NCHW88) {
                megdnn_assert(OC % 8 == 0);
                oc_parallelism = OC / 8;
            }
            kerns.push_back({filter_process_kern, {GROUP, 1, oc_parallelism}});
        }
        auto winograd_compute_kern = [strategy, bundle_top, bundle_compute,
                                      matmul_algo, matmul_param, unit_tile_size,
                                      unit_oc_size](
                                             const NCBKernParam& ncb_param,
                                             const NCBKernIndex& ncb_index) {
            winograd_compute(strategy, bundle_top, bundle_compute, matmul_algo,
                             matmul_param, unit_tile_size, unit_oc_size,
                             ncb_param, std::move(ncb_index));
        };
        kerns.push_back(
                {winograd_compute_kern, {GROUP, N, nr_hw_tiles, nr_oc_tiles}});
        return kerns;
    }

    fallback::MatrixMulImpl::KernSizeParam get_matmul_kern_param(
            const NCBKernSizeParam& param) const {
        size_t M = 0;
        size_t N = 0;
        size_t K = 0;
        size_t LDA = 0, LDB = 0, LDC = 0;

        if (format == param::MatrixMul::Format::DEFAULT) {
            M = m_unit_tile_size;
            N = param.filter_meta.ocpg;
            K = param.filter_meta.icpg;
            LDA = K;
            LDB = N;
            LDC = N;
        } else {
            M = param.filter_meta.ocpg;
            N = m_unit_tile_size;
            K = param.filter_meta.icpg;
            megdnn_assert(K % Strategy::IC_BLOCK_SIZE == 0, "invalid K: %zu",
                          K);
            LDA = K / Strategy::IC_BLOCK_SIZE * Strategy::OC_BLOCK_SIZE *
                  Strategy::IC_BLOCK_SIZE;
            LDB = N * Strategy::IC_BLOCK_SIZE;
            LDC = N * Strategy::IC_BLOCK_SIZE;
        }

        return {DType::from_enum(DTypeTrait<input_filter_compute_type>::enumv),
                DType::from_enum(DTypeTrait<input_filter_compute_type>::enumv),
                DType::from_enum(DTypeTrait<output_compute_type>::enumv),
                M,
                N,
                K,
                LDA,
                LDB,
                LDC,
                false,
                false,
                param::MatrixMul::ComputeMode::DEFAULT,
                format};
    }
};

}  // namespace winograd
}  // namespace megdnn

#define MEGDNN_REG_WINOGRAD_STRATEGY(                                          \
        _stype, _dtype, _input_filter_ctype, _ctype, _output_block_size,       \
        _kernel_size, _ic_block_size, _oc_block_size, _strategy_cls_name)      \
    class _strategy_cls_name {                                                 \
    public:                                                                    \
        using stype = _stype;                                                  \
        using dst_type = _dtype;                                               \
        using output_compute_type = _ctype;                                    \
        using input_filter_compute_type = _input_filter_ctype;                 \
        /**                                                                    \
         * kernel size of convolution, same as \c r                            \
         * output block size, same as \c m                                     \
         */                                                                    \
        constexpr static size_t KERNEL_SIZE = _kernel_size;                    \
        constexpr static size_t OUTPUT_BLOCK_SIZE = _output_block_size;        \
        constexpr static size_t IC_BLOCK_SIZE = _ic_block_size;                \
        constexpr static size_t OC_BLOCK_SIZE = _oc_block_size;                \
        constexpr static size_t ALPHA = KERNEL_SIZE + OUTPUT_BLOCK_SIZE - 1;   \
        /**                                                                    \
         * process \c UNIT_TILE_SIZE small matrix mul once, total tiles is     \
         * N * DIV_UP(OH, OUTPUT_BLOCK_SIZE) * DIV_UP(OW, OUTPUT_BLOCK_SIZE)   \
         */                                                                    \
        const DType src_dtype;                                                 \
        const DType filter_dtype;                                              \
        const DType dst_dtype;                                                 \
        _strategy_cls_name(DType src_dtype, DType filter_dtype,                \
                           DType dst_dtype);                                   \
        void filter(const stype* filter,                                       \
                    input_filter_compute_type* filter_transform_buf,           \
                    input_filter_compute_type* transform_mid_buf, size_t OC,   \
                    size_t IC, size_t oc_start, size_t oc_end);                \
        void input(const stype* input,                                         \
                   input_filter_compute_type* input_transform_buf,             \
                   input_filter_compute_type* transform_mid_buf, int ih_start, \
                   int iw_start, size_t IH, size_t IW, size_t IC,              \
                   size_t unit_idx, size_t nr_tiles_in_unit);                  \
        void output(const output_compute_type* output_transform_buf,           \
                    const output_compute_type* bias, dst_type* output,         \
                    output_compute_type* transform_mid_buf, BiasMode bmode,    \
                    NonlineMode nonline_mode, size_t oh_start,                 \
                    size_t ow_start, size_t OH, size_t OW, size_t oc_start,    \
                    size_t oc_end, size_t unit_idx, size_t nr_tiles_in_unit);  \
    };

#define MEGDNN_REG_WINOGRAD_STRATEGY_IMPL(_strategy_cls_name)     \
    constexpr size_t _strategy_cls_name::KERNEL_SIZE;             \
    constexpr size_t _strategy_cls_name::OUTPUT_BLOCK_SIZE;       \
    constexpr size_t _strategy_cls_name::ALPHA;                   \
    constexpr size_t _strategy_cls_name::IC_BLOCK_SIZE;           \
    constexpr size_t _strategy_cls_name::OC_BLOCK_SIZE;           \
    _strategy_cls_name::_strategy_cls_name(                       \
            DType src_dtype, DType filter_dtype, DType dst_dtype) \
            : src_dtype(src_dtype),                               \
              filter_dtype(filter_dtype),                         \
              dst_dtype(dst_dtype) {}

// vim: syntax=cpp.doxygen