test_pre_dataloader.py 7.7 KB
Newer Older
1
# -*- coding: utf-8 -*-
2 3 4 5 6 7 8
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9
import gc
10
import math
11
import multiprocessing
12 13 14 15 16 17 18 19
import os
import platform
import time

import numpy as np
import pytest

from megengine.data.collator import Collator
20
from megengine.data.dataloader import DataLoader, get_worker_info
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
from megengine.data.dataset import ArrayDataset, StreamDataset
from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler
from megengine.data.transform import (
    Compose,
    Normalize,
    PseudoTransform,
    ToMode,
    Transform,
)


def init_dataset():
    sample_num = 100
    rand_data = np.random.randint(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8)
    label = np.random.randint(0, 10, size=(sample_num,), dtype=int)
    dataset = ArrayDataset(rand_data, label)
    return dataset


def test_dataloader_init():
    dataset = init_dataset()
    with pytest.raises(ValueError):
        dataloader = DataLoader(dataset, num_workers=-1)
    with pytest.raises(ValueError):
        dataloader = DataLoader(dataset, timeout=-1)

    dataloader = DataLoader(dataset, preload=True)
    assert isinstance(dataloader.sampler, SequentialSampler)
    assert isinstance(dataloader.transform, PseudoTransform)
    assert isinstance(dataloader.collator, Collator)

    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=6, drop_last=False),
        preload=True,
    )
    assert len(dataloader) == 17
    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=6, drop_last=True),
        preload=True,
    )
    assert len(dataloader) == 16


class MyStream(StreamDataset):
67
    def __init__(self, number, block=False):
68 69 70 71 72 73 74 75
        self.number = number
        self.block = block

    def __iter__(self):
        for cnt in range(self.number):
            if self.block:
                for _ in range(10):
                    time.sleep(1)
76 77
            data = np.random.randint(0, 256, (2, 2, 3), dtype="uint8")
            yield (data, cnt)
78 79 80
        raise StopIteration


81 82 83 84
@pytest.mark.skipif(
    np.__version__ >= "1.20.0",
    reason="pyarrow is incompatible with numpy vserion 1.20.0",
)
85
@pytest.mark.parametrize("num_workers", [0, 2])
86 87
def test_stream_dataloader(num_workers):
    dataset = MyStream(100)
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    sampler = StreamSampler(batch_size=4)
    dataloader = DataLoader(
        dataset,
        sampler,
        Compose([Normalize(mean=(103, 116, 123), std=(57, 57, 58)), ToMode("CHW")]),
        num_workers=num_workers,
        preload=True,
    )

    check_set = set()

    for step, data in enumerate(dataloader):
        if step == 10:
            break
        assert data[0]._tuple_shape == (4, 3, 2, 2)
        assert data[1]._tuple_shape == (4,)
        for i in data[1]:
            assert i not in check_set
            check_set.add(i)


@pytest.mark.parametrize("num_workers", [0, 2])
def test_stream_dataloader_timeout(num_workers):
111
    dataset = MyStream(100, block=True)
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    sampler = StreamSampler(batch_size=4)

    dataloader = DataLoader(
        dataset, sampler, num_workers=num_workers, timeout=2, preload=True
    )
    with pytest.raises(RuntimeError, match=r".*timeout.*"):
        data_iter = iter(dataloader)
        next(data_iter)


def test_dataloader_serial():
    dataset = init_dataset()
    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        preload=True,
    )
    for (data, label) in dataloader:
        assert data._tuple_shape == (4, 1, 32, 32)
        assert label._tuple_shape == (4,)


134 135 136 137
@pytest.mark.skipif(
    np.__version__ >= "1.20.0",
    reason="pyarrow is incompatible with numpy vserion 1.20.0",
)
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
def test_dataloader_parallel():
    # set max shared memory to 100M
    os.environ["MGE_PLASMA_MEMORY"] = "100000000"

    dataset = init_dataset()
    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        num_workers=2,
        preload=True,
    )
    for (data, label) in dataloader:
        assert data._tuple_shape == (4, 1, 32, 32)
        assert label._tuple_shape == (4,)


@pytest.mark.skipif(
    platform.system() == "Windows",
    reason="dataloader do not support parallel on windows",
)
158 159 160 161
@pytest.mark.skipif(
    multiprocessing.get_start_method() != "fork",
    reason="the runtime error is only raised when fork",
)
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
def test_dataloader_parallel_timeout():
    dataset = init_dataset()

    class TimeoutTransform(Transform):
        def __init__(self):
            pass

        def apply(self, input):
            time.sleep(10)
            return input

    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        transform=TimeoutTransform(),
        num_workers=2,
        timeout=2,
        preload=True,
    )
    with pytest.raises(RuntimeError, match=r".*timeout.*"):
        data_iter = iter(dataloader)
        batch_data = next(data_iter)


@pytest.mark.skipif(
    platform.system() == "Windows",
    reason="dataloader do not support parallel on windows",
)
190 191 192 193
@pytest.mark.skipif(
    multiprocessing.get_start_method() != "fork",
    reason="the runtime error is only raised when fork",
)
194 195 196 197 198 199 200 201
def test_dataloader_parallel_worker_exception():
    dataset = init_dataset()

    class FakeErrorTransform(Transform):
        def __init__(self):
            pass

        def apply(self, input):
202
            raise RuntimeError("test raise error")
203 204 205 206 207 208 209 210 211
            return input

    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        transform=FakeErrorTransform(),
        num_workers=2,
        preload=True,
    )
212 213 214
    with pytest.raises(
        RuntimeError, match=r"Caught RuntimeError in DataLoader worker process"
    ):
215 216 217 218 219 220 221
        data_iter = iter(dataloader)
        batch_data = next(data_iter)


def _multi_instances_parallel_dataloader_worker():
    dataset = init_dataset()

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    train_dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        num_workers=2,
        preload=True,
    )
    val_dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=10, drop_last=False),
        num_workers=2,
        preload=True,
    )
    for idx, (data, label) in enumerate(train_dataloader):
        assert data._tuple_shape == (4, 1, 32, 32)
        assert label._tuple_shape == (4,)
        if idx % 5 == 0:
            for val_data, val_label in val_dataloader:
                assert val_data._tuple_shape == (10, 1, 32, 32)
                assert val_label._tuple_shape == (10,)
241 242


243 244 245 246
@pytest.mark.skipif(
    np.__version__ >= "1.20.0",
    reason="pyarrow is incompatible with numpy vserion 1.20.0",
)
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
def test_dataloader_parallel_multi_instances():
    # set max shared memory to 100M
    os.environ["MGE_PLASMA_MEMORY"] = "100000000"

    _multi_instances_parallel_dataloader_worker()


@pytest.mark.isolated_distributed
def test_dataloader_parallel_multi_instances_multiprocessing():
    gc.collect()
    # set max shared memory to 100M
    os.environ["MGE_PLASMA_MEMORY"] = "100000000"

    import multiprocessing as mp

    # mp.set_start_method("spawn")
    processes = []
    for i in range(4):
        p = mp.Process(target=_multi_instances_parallel_dataloader_worker)
        p.start()
        processes.append(p)

    for p in processes:
        p.join()
        assert p.exitcode == 0