test_pre_dataloader.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
# -*- coding: utf-8 -*-
import gc
import os
import platform
import time

import numpy as np
import pytest

from megengine.data.collator import Collator
from megengine.data.dataloader import DataLoader
from megengine.data.dataset import ArrayDataset, StreamDataset
from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler
from megengine.data.transform import (
    Compose,
    Normalize,
    PseudoTransform,
    ToMode,
    Transform,
)


def init_dataset():
    sample_num = 100
    rand_data = np.random.randint(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8)
    label = np.random.randint(0, 10, size=(sample_num,), dtype=int)
    dataset = ArrayDataset(rand_data, label)
    return dataset


def test_dataloader_init():
    dataset = init_dataset()
    with pytest.raises(ValueError):
        dataloader = DataLoader(dataset, num_workers=2, divide=True)
    with pytest.raises(ValueError):
        dataloader = DataLoader(dataset, num_workers=-1)
    with pytest.raises(ValueError):
        dataloader = DataLoader(dataset, timeout=-1)
    with pytest.raises(ValueError):
        dataloader = DataLoader(dataset, num_workers=0, divide=True)

    dataloader = DataLoader(dataset, preload=True)
    assert isinstance(dataloader.sampler, SequentialSampler)
    assert isinstance(dataloader.transform, PseudoTransform)
    assert isinstance(dataloader.collator, Collator)

    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=6, drop_last=False),
        preload=True,
    )
    assert len(dataloader) == 17
    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=6, drop_last=True),
        preload=True,
    )
    assert len(dataloader) == 16


class MyStream(StreamDataset):
    def __init__(self, number, batch=False, error_foramt=False, block=False):
        self.number = number
        self.batch = batch
        self.error_format = error_foramt
        self.block = block

    def __iter__(self):
        for cnt in range(self.number):
            if self.block:
                for _ in range(10):
                    time.sleep(1)
            if self.batch:
                data = np.random.randint(0, 256, (2, 2, 2, 3), dtype="uint8")
                yield (True, (data, [cnt, cnt - self.number]))
            else:
                data = np.random.randint(0, 256, (2, 2, 3), dtype="uint8")
                if self.error_format:
                    yield (data, cnt)
                else:
                    yield (False, (data, cnt))
        raise StopIteration


@pytest.mark.parametrize("batch", [True, False])
@pytest.mark.parametrize("num_workers", [0, 2])
def test_stream_dataloader(batch, num_workers):
    dataset = MyStream(100, batch=batch)
    sampler = StreamSampler(batch_size=4)
    dataloader = DataLoader(
        dataset,
        sampler,
        Compose([Normalize(mean=(103, 116, 123), std=(57, 57, 58)), ToMode("CHW")]),
        num_workers=num_workers,
        preload=True,
    )

    check_set = set()

    for step, data in enumerate(dataloader):
        if step == 10:
            break
        assert data[0]._tuple_shape == (4, 3, 2, 2)
        assert data[1]._tuple_shape == (4,)
        for i in data[1]:
            assert i not in check_set
            check_set.add(i)


def test_stream_dataloader_error():
    dataset = MyStream(100, error_foramt=True)
    sampler = StreamSampler(batch_size=4)
    dataloader = DataLoader(dataset, sampler, preload=True)
    with pytest.raises(AssertionError, match=r".*tuple.*"):
        data_iter = iter(dataloader)
        next(data_iter)


@pytest.mark.parametrize("num_workers", [0, 2])
def test_stream_dataloader_timeout(num_workers):
    dataset = MyStream(100, False, block=True)
    sampler = StreamSampler(batch_size=4)

    dataloader = DataLoader(
        dataset, sampler, num_workers=num_workers, timeout=2, preload=True
    )
    with pytest.raises(RuntimeError, match=r".*timeout.*"):
        data_iter = iter(dataloader)
        next(data_iter)


def test_dataloader_serial():
    dataset = init_dataset()
    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        preload=True,
    )
    for (data, label) in dataloader:
        assert data._tuple_shape == (4, 1, 32, 32)
        assert label._tuple_shape == (4,)


def test_dataloader_parallel():
    # set max shared memory to 100M
    os.environ["MGE_PLASMA_MEMORY"] = "100000000"

    dataset = init_dataset()
    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        num_workers=2,
        divide=False,
        preload=True,
    )
    for (data, label) in dataloader:
        assert data._tuple_shape == (4, 1, 32, 32)
        assert label._tuple_shape == (4,)

    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        num_workers=2,
        divide=True,
        preload=True,
    )
    for (data, label) in dataloader:
        assert data._tuple_shape == (4, 1, 32, 32)
        assert label._tuple_shape == (4,)


@pytest.mark.skipif(
    platform.system() == "Windows",
    reason="dataloader do not support parallel on windows",
)
def test_dataloader_parallel_timeout():
    dataset = init_dataset()

    class TimeoutTransform(Transform):
        def __init__(self):
            pass

        def apply(self, input):
            time.sleep(10)
            return input

    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        transform=TimeoutTransform(),
        num_workers=2,
        timeout=2,
        preload=True,
    )
    with pytest.raises(RuntimeError, match=r".*timeout.*"):
        data_iter = iter(dataloader)
        batch_data = next(data_iter)


@pytest.mark.skipif(
    platform.system() == "Windows",
    reason="dataloader do not support parallel on windows",
)
def test_dataloader_parallel_worker_exception():
    dataset = init_dataset()

    class FakeErrorTransform(Transform):
        def __init__(self):
            pass

        def apply(self, input):
212
            raise RuntimeError("test raise error")
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
            return input

    dataloader = DataLoader(
        dataset,
        sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
        transform=FakeErrorTransform(),
        num_workers=2,
        preload=True,
    )
    with pytest.raises(RuntimeError, match=r"worker.*died"):
        data_iter = iter(dataloader)
        batch_data = next(data_iter)


def _multi_instances_parallel_dataloader_worker():
    dataset = init_dataset()

    for divide_flag in [True, False]:
        train_dataloader = DataLoader(
            dataset,
            sampler=RandomSampler(dataset, batch_size=4, drop_last=False),
            num_workers=2,
            divide=divide_flag,
            preload=True,
        )
        val_dataloader = DataLoader(
            dataset,
            sampler=RandomSampler(dataset, batch_size=10, drop_last=False),
            num_workers=2,
            divide=divide_flag,
            preload=True,
        )
        for idx, (data, label) in enumerate(train_dataloader):
            assert data._tuple_shape == (4, 1, 32, 32)
            assert label._tuple_shape == (4,)
            if idx % 5 == 0:
                for val_data, val_label in val_dataloader:
                    assert val_data._tuple_shape == (10, 1, 32, 32)
                    assert val_label._tuple_shape == (10,)


def test_dataloader_parallel_multi_instances():
    # set max shared memory to 100M
    os.environ["MGE_PLASMA_MEMORY"] = "100000000"

    _multi_instances_parallel_dataloader_worker()


@pytest.mark.isolated_distributed
def test_dataloader_parallel_multi_instances_multiprocessing():
    gc.collect()
    # set max shared memory to 100M
    os.environ["MGE_PLASMA_MEMORY"] = "100000000"

    import multiprocessing as mp

    # mp.set_start_method("spawn")
    processes = []
    for i in range(4):
        p = mp.Process(target=_multi_instances_parallel_dataloader_worker)
        p.start()
        processes.append(p)

    for p in processes:
        p.join()
        assert p.exitcode == 0


@pytest.mark.parametrize("num_workers", [0, 2])
def test_timeout_event(num_workers):
    def cb():
        return (True, (np.zeros(shape=(2, 2, 2, 3)), np.ones(shape=(2,))))

    dataset = MyStream(100, block=True)
    sampler = StreamSampler(batch_size=4)

    dataloader = DataLoader(
        dataset,
        sampler,
        num_workers=num_workers,
        timeout=2,
        timeout_event=cb,
        preload=True,
    )
    for _, data in enumerate(dataloader):
        np.testing.assert_equal(data[0], np.zeros(shape=(4, 2, 2, 3)))
        np.testing.assert_equal(data[1], np.ones(shape=(4,)))
        break