# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import math import multiprocessing import os import platform import time import numpy as np import pytest from megengine.data.collator import Collator from megengine.data.dataloader import DataLoader, get_worker_info from megengine.data.dataset import ArrayDataset, StreamDataset from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler from megengine.data.transform import ( Compose, Normalize, PseudoTransform, ToMode, Transform, ) def init_dataset(): sample_num = 100 rand_data = np.random.randint(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8) label = np.random.randint(0, 10, size=(sample_num,), dtype=int) dataset = ArrayDataset(rand_data, label) return dataset def test_dataloader_init(): dataset = init_dataset() with pytest.raises(ValueError): dataloader = DataLoader(dataset, num_workers=-1) with pytest.raises(ValueError): dataloader = DataLoader(dataset, timeout=-1) dataloader = DataLoader(dataset, preload=True) assert isinstance(dataloader.sampler, SequentialSampler) assert isinstance(dataloader.transform, PseudoTransform) assert isinstance(dataloader.collator, Collator) dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=False), preload=True, ) assert len(dataloader) == 17 dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=True), preload=True, ) assert len(dataloader) == 16 class MyStream(StreamDataset): def __init__(self, number, block=False): self.number = number self.block = block def __iter__(self): for cnt in range(self.number): if self.block: for _ in range(10): time.sleep(1) data = np.random.randint(0, 256, (2, 2, 3), dtype="uint8") yield (data, cnt) raise StopIteration @pytest.mark.skipif( np.__version__ >= "1.20.0", reason="pyarrow is incompatible with numpy vserion 1.20.0", ) @pytest.mark.parametrize("num_workers", [0, 2]) def test_stream_dataloader(num_workers): dataset = MyStream(100) sampler = StreamSampler(batch_size=4) dataloader = DataLoader( dataset, sampler, Compose([Normalize(mean=(103, 116, 123), std=(57, 57, 58)), ToMode("CHW")]), num_workers=num_workers, preload=True, ) check_set = set() for step, data in enumerate(dataloader): if step == 10: break assert data[0]._tuple_shape == (4, 3, 2, 2) assert data[1]._tuple_shape == (4,) for i in data[1]: assert i not in check_set check_set.add(i) @pytest.mark.parametrize("num_workers", [0, 2]) def test_stream_dataloader_timeout(num_workers): dataset = MyStream(100, block=True) sampler = StreamSampler(batch_size=4) dataloader = DataLoader( dataset, sampler, num_workers=num_workers, timeout=2, preload=True ) with pytest.raises(RuntimeError, match=r".*timeout.*"): data_iter = iter(dataloader) next(data_iter) def test_dataloader_serial(): dataset = init_dataset() dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False), preload=True, ) for (data, label) in dataloader: assert data._tuple_shape == (4, 1, 32, 32) assert label._tuple_shape == (4,) @pytest.mark.skipif( np.__version__ >= "1.20.0", reason="pyarrow is incompatible with numpy vserion 1.20.0", ) def test_dataloader_parallel(): # set max shared memory to 100M os.environ["MGE_PLASMA_MEMORY"] = "100000000" dataset = init_dataset() dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False), num_workers=2, preload=True, ) for (data, label) in dataloader: assert data._tuple_shape == (4, 1, 32, 32) assert label._tuple_shape == (4,) @pytest.mark.skipif( platform.system() == "Windows", reason="dataloader do not support parallel on windows", ) @pytest.mark.skipif( multiprocessing.get_start_method() != "fork", reason="the runtime error is only raised when fork", ) def test_dataloader_parallel_timeout(): dataset = init_dataset() class TimeoutTransform(Transform): def __init__(self): pass def apply(self, input): time.sleep(10) return input dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False), transform=TimeoutTransform(), num_workers=2, timeout=2, preload=True, ) with pytest.raises(RuntimeError, match=r".*timeout.*"): data_iter = iter(dataloader) batch_data = next(data_iter) @pytest.mark.skipif( platform.system() == "Windows", reason="dataloader do not support parallel on windows", ) @pytest.mark.skipif( multiprocessing.get_start_method() != "fork", reason="the runtime error is only raised when fork", ) def test_dataloader_parallel_worker_exception(): dataset = init_dataset() class FakeErrorTransform(Transform): def __init__(self): pass def apply(self, input): raise RuntimeError("test raise error") return input dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False), transform=FakeErrorTransform(), num_workers=2, preload=True, ) with pytest.raises( RuntimeError, match=r"Caught RuntimeError in DataLoader worker process" ): data_iter = iter(dataloader) batch_data = next(data_iter) def _multi_instances_parallel_dataloader_worker(): dataset = init_dataset() train_dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False), num_workers=2, preload=True, ) val_dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=10, drop_last=False), num_workers=2, preload=True, ) for idx, (data, label) in enumerate(train_dataloader): assert data._tuple_shape == (4, 1, 32, 32) assert label._tuple_shape == (4,) if idx % 5 == 0: for val_data, val_label in val_dataloader: assert val_data._tuple_shape == (10, 1, 32, 32) assert val_label._tuple_shape == (10,) @pytest.mark.skipif( np.__version__ >= "1.20.0", reason="pyarrow is incompatible with numpy vserion 1.20.0", ) def test_dataloader_parallel_multi_instances(): # set max shared memory to 100M os.environ["MGE_PLASMA_MEMORY"] = "100000000" _multi_instances_parallel_dataloader_worker() @pytest.mark.isolated_distributed def test_dataloader_parallel_multi_instances_multiprocessing(): gc.collect() # set max shared memory to 100M os.environ["MGE_PLASMA_MEMORY"] = "100000000" import multiprocessing as mp # mp.set_start_method("spawn") processes = [] for i in range(4): p = mp.Process(target=_multi_instances_parallel_dataloader_worker) p.start() processes.append(p) for p in processes: p.join() assert p.exitcode == 0