grad.cpp 21.7 KB
Newer Older
1 2 3 4
/**
 * \file imperative/python/src/grad.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12 13
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"

14 15
#include "./grad.h"
#include "megbrain/imperative/proxy_graph_detail.h"
16
#include "megbrain/imperative/backward_graph_opt.h"
17 18 19
#include "megbrain/imperative/ops/autogen.h"
#include "megbrain/utils/mempool.h"

20 21
#include "range/v3/all.hpp"

22
namespace py = pybind11;
23
namespace views = ranges::views;
24 25 26

namespace mgb::imperative::python {

27 28 29
using scoped_disable = ApplyContext::scoped_disable;
using Flags = Tensor::Flags;

30 31 32 33 34 35 36
namespace {

struct GradSlotWeakPtr {
    std::weak_ptr<GradFn> grad_fn;
    size_t idx;
};

37
struct BackwardGraphCache : std::unordered_map<uint64_t, std::shared_ptr<OptimizedBackwardGraphResult>>, CompNodeDepedentObject {
38 39 40 41 42 43
    std::shared_ptr<void> on_comp_node_finalize() override {
        clear();
        return {};
    }
} backward_graph_cache;

44
std::shared_ptr<OptimizedBackwardGraphResult> make_backward_graph(
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
        ApplyContext& ctx, const apply_result_t& outputs) {
    // hash
    static_assert(alignof(size_t) % alignof(bool) == 0);
    size_t buf_size = (1 + ctx.nargs * 2) * sizeof(size_t) + ctx.nargs * sizeof(bool);
    alignas(alignof(size_t)) std::byte buf[buf_size];
    size_t* size_t_ptr = reinterpret_cast<size_t*>(buf);
    bool* bool_ptr = reinterpret_cast<bool*>(size_t_ptr + (1 + ctx.nargs * 2));
    bool* bool_ptr0 = bool_ptr;
    *(size_t_ptr++) = ctx.op->hash();
    for (size_t i = 0; i < ctx.nargs; ++i) {
        *(size_t_ptr++) = mgb::hash(ctx.args[i]->dtype().handle());
        *(size_t_ptr++) = mgb::hash(ctx.args[i]->comp_node());
        *(bool_ptr++) = bool(ctx.args[i]->m_grad_info.grad_fn);
    }
    mgb_assert(bool_ptr0 == reinterpret_cast<bool*>(size_t_ptr) &&
               bool_ptr == reinterpret_cast<bool*>(buf + buf_size));
61
    uint64_t key = XXHash{}.update(buf, buf_size).digest();
62 63 64 65 66 67 68 69 70 71 72 73 74

    auto&& iter = backward_graph_cache.find(key);
    if (iter != backward_graph_cache.end()) {
        return iter->second;
    }

    // slow path
    SmallVector<LogicalTensorDesc> inputs(ctx.nargs);
    SmallVector<bool> input_requires_grad(ctx.nargs, false);
    SmallVector<bool> output_has_grad(outputs.size(), true);
    for (size_t i = 0; i < ctx.nargs; ++i) {
        inputs[i].comp_node = ctx.args[i]->comp_node();
        inputs[i].layout.dtype = ctx.args[i]->dtype();
75
        input_requires_grad[i] = python::input_requires_grad(ctx, i);
76
    }
77
    std::shared_ptr<OptimizedBackwardGraphResult> ret;
78
    auto bg = OpDef::make_backward_graph(
79
            *ctx.op, inputs, input_requires_grad, output_has_grad);
80
    if (!bg.backward.empty()) {
81
        ret = std::make_shared<OptimizedBackwardGraphResult>(bg);
82
    }
83 84
    backward_graph_cache.emplace(key, ret);
    return ret;
85 86 87
}

struct BackwardGraphWithClosure {
88
    std::shared_ptr<OptimizedBackwardGraphResult> backward_graph;
89 90 91 92
    SmallVector<std::shared_ptr<Tensor>> closure;
    size_t output_mask_offset;
    size_t grad_mask_offset;

93
    BackwardGraphWithClosure(std::shared_ptr<OptimizedBackwardGraphResult> backward_graph_,
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
                             ApplyContext& ctx, const apply_result_t& outputs)
            : backward_graph(backward_graph_),
              output_mask_offset(ctx.nargs),
              grad_mask_offset(ctx.nargs + outputs.size()) {
        // save_for_backward[0:nargs]:
        //     whether input is kept for backward
        //
        // save_for_backward[nargs:nargs+outputs.size()]:
        //     whether output is kept for backward
        //
        // save_for_backward[-outputs.size():]:
        //     whether gradient of output can propagate to any input
        //
        // Example:
        //     perform c = a * b, with a.requires_grad == True and
        //     b.requires_grad == False, save_for_backward = [0, 1, 0, 1]
        auto& save_for_backward = backward_graph->save_for_backward;
        mgb_assert(save_for_backward.size() == ctx.nargs + 2 * outputs.size());
112 113 114
        size_t count = std::count_if(save_for_backward.begin(),
                                     save_for_backward.end(),
                                     ranges::identity{});
115
        if (!backward_graph->precomp.empty()) {
116 117 118 119 120 121 122 123
            auto&& irng = ranges::span(ctx.args, ctx.nargs);
            auto&& orng = views::transform(outputs, [](auto&& i){return i.get();});
            auto precomp = apply(backward_graph->precomp, views::concat(irng, orng));
            closure.reserve(precomp.size() + count);
            std::copy(precomp.begin(), precomp.end(), std::back_inserter(closure));
        } else {
            closure.reserve(count);
        }
124 125 126 127 128 129 130 131 132 133 134 135 136
        for (size_t i = 0; i < ctx.nargs; ++i) {
            if (save_for_backward[i]) {
                closure.push_back(ctx.args[i]->shared_from_this());
            }
        }
        for (size_t i = 0; i < outputs.size(); ++i) {
            if (save_for_backward[ctx.nargs + i]) {
                closure.push_back(outputs[i]);
            }
        }
    }

    template <typename T, typename R>
137
    void operator()(BackwardContext&, T&& grads, R&& receiver) {
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
        Tensor* args[closure.size() + grads.size()];
        size_t nargs = 0;
        for (auto&& t : closure) {
            args[nargs++] = t.get();
        }
        bool null_grad = false;
        for (size_t i = 0; i < grads.size(); ++i) {
            if (backward_graph->save_for_backward[grad_mask_offset + i]) {
                if (grads[i]) {
                    if (null_grad) {
                        PyErr_SetString(PyExc_NotImplementedError, "report to devs");
                        throw py::error_already_set();
                    }
                    args[nargs++] = grads[i];
                } else {
                    null_grad = true;
                }
            }
        }
        if (null_grad) return;

159
        auto igrads = apply(backward_graph->backward, args, nargs);
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        auto&& it = igrads.begin();
        for (auto [i, p] : views::enumerate(backward_graph->input_has_grad)) {
            if (p) {
                receiver(i, std::move(*it));
                ++it;
            }
        }
    }

    bool input_has_grad(size_t i) {
        return backward_graph->input_has_grad[i];
    }

    bool output_requires_grad(size_t i) {
        return backward_graph->save_for_backward[grad_mask_offset + i];
    }

    bool output_captured(size_t i) {
        return backward_graph->save_for_backward[output_mask_offset + i];
    }
};

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
struct PythonBackward {
    py::object pyfunc;
    size_t input_size;

    PythonBackward(py::object f, size_t nin)
            : pyfunc(f), input_size(nin) {}

    template <typename T, typename R>
    void operator()(BackwardContext& ctx, T&& grads, R&& receiver) {
        auto args = py::tuple(grads.size());
        for (size_t i = 0; i < grads.size(); ++i) {
            auto&& g = grads[i];
            args[i] = g ? ctx.wrap_tensor(g) : py::none();
        }
        auto input_grads = py::reinterpret_steal<py::object>(PyObject_Call(pyfunc.ptr(), args.ptr(), nullptr));
197
        if (!input_grads) throw py::error_already_set();
198 199 200 201 202
        if (input_grads.is_none()) return;
        if (auto* tw = TensorWrapper::try_cast(input_grads.ptr())) {
            if (input_size != 1) {
                throw py::value_error("custom grad rule returned wrong number of grads");
            }
203 204 205
            if (!ctx.pytype) {
                ctx.pytype = Py_TYPE(input_grads.ptr());
            }
206 207 208 209 210 211 212 213 214 215 216 217
            receiver(0, tw->m_tensor);
            return;
        }
        if (py::len(input_grads) != input_size) {
            throw py::value_error("custom grad rule returned wrong number of grads");
        }
        for (auto [i, g] : views::enumerate(input_grads)) {
            if (g.is_none()) continue;
            auto* tw = TensorWrapper::try_cast(g.ptr());
            if (!tw) {
                throw py::type_error("custom grad rule returned non-tensor");
            }
218 219 220
            if (!ctx.pytype) {
                ctx.pytype = Py_TYPE(g.ptr());
            }
221 222 223 224 225 226 227 228 229
            receiver(i, tw->m_tensor);
        }
    }

    static constexpr bool input_has_grad(size_t) {return true;}
    static constexpr bool output_requires_grad(size_t) {return true;}
    static constexpr bool output_captured(size_t) {return true;}
};

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
} // namespace

struct GradProducerRecord : intrusive_list::Node<GradProducerRecord> {
    using Base = intrusive_list::Node<GradProducerRecord>;

    GradProducerRecord() = default;
    GradProducerRecord(GradProducerRecord::head_t& head) : Base(intrusive_list::after_t{}, head) {}
    // GradProducerRecord(GradProducerRecord&&) = default;
    // GradProducerRecord& operator=(GradProducerRecord&) = default;
    // GradProducerRecord& operator=(GradProducerRecord&&) = default;
};

struct GradSlot {
    std::shared_ptr<Tensor> grad;
    py::object callback;
    GradProducerRecord::head_t producer_head;
};

struct GradSlotProducerPtr : GradSlotPtr {
    GradProducerRecord producer_record;

    GradSlotProducerPtr() = default;
    GradSlotProducerPtr(GradInfo& info) : GradSlotPtr(info), producer_record(info->producer_head) {}
};

struct GradFn : std::enable_shared_from_this<GradFn> {
    static MemPool<GradFn> pool;

    std::weak_ptr<GradKey> key;
259 260
    // slots for receiving and accumulating grads
    // same length as outputs (of forward op)
261
    SmallVector<GradSlot> slots;
262 263
    // where to send and accumulate grads
    // same length as inputs (of forward op)
264
    SmallVector<GradSlotProducerPtr> dsts;
265
    // encapsules actual function to compute gradient
266
    std::variant<std::monostate, BackwardGraphWithClosure, PythonBackward, CustomBackward> backward;
267
    // a flag used during backward
268 269 270 271 272 273 274 275 276 277 278 279 280 281
    bool in_ref_keeper = false;

    static void deleter(GradFn* ptr) {
        pool.free(ptr);
    }

    std::shared_ptr<GradFn> make() {
        return std::shared_ptr<GradFn>(pool.alloc(), &deleter);
    }

    void clear() {
        key.reset();
        slots.clear();
        dsts.clear();
282
        backward.emplace<std::monostate>();
283 284 285
    }
};

286 287 288 289
GradSlotPtr::operator bool() const {
    return bool(grad_fn);
}

290 291 292 293 294 295
GradSlot* GradSlotPtr::operator->() {
    return &grad_fn->slots[idx];
}

namespace {

296 297
class GradFnHelper {
    std::shared_ptr<GradFn> grad_fn;
298

299 300 301 302 303
    GradFn* get() {
        if (!grad_fn) {
            grad_fn = std::make_shared<GradFn>();
        }
        return grad_fn.get();
304 305
    }

306
    friend apply_result_t imperative::python::apply_grad(ApplyContext&);
307

308 309 310 311
public:
    template<typename T, typename... Args>
    auto& emplace(Args&&... args) {
        return get()->backward.emplace<T>(std::forward<Args>(args)...);
312
    }
313 314

    void reset() { grad_fn = nullptr; }
315 316 317
};

apply_result_t backward_graph_grad_rule(ApplyContext& ctx, GradFnHelper& ret_grad_fn) {
318 319 320 321 322 323 324 325 326 327 328 329
    // copy inputs first, or trace will make InputNodes for each usage
    SmallVector<std::shared_ptr<Tensor>> inputs_copy;
    SmallVector<Tensor*> inputs_copy_weak;
    for (size_t i = 0; i < ctx.nargs; ++i) {
        inputs_copy.push_back(python::apply(FastpathCopy::make(), ctx.args[i]->shared_from_this())[0]);
        inputs_copy_weak.push_back(inputs_copy.back().get());
        inputs_copy.back()->m_grad_info = ctx.args[i]->m_grad_info;
    }
    ApplyContext ctx_dup = ctx;
    ctx_dup.args = inputs_copy_weak.data();

    auto outputs = apply(ctx_dup);
330

331
    auto backward_graph = make_backward_graph(ctx_dup, outputs);
332 333
    if (!backward_graph) {
        return outputs;
334
    }
335

336
    ret_grad_fn.emplace<BackwardGraphWithClosure>(std::move(backward_graph), ctx_dup, outputs);
337 338

    return outputs;
339 340
}

341 342 343 344 345 346 347
apply_result_t python_grad_rule(ApplyContext& ctx, GradFnHelper& ret_grad_fn) {
    auto* op = ctx.op->try_cast_final<GenericPyOp>();
    py::tuple pyin(ctx.nargs);
    for (size_t i = 0; i < ctx.nargs; ++i) {
        pyin[i] = TensorWrapper::make(ctx.pytype, ctx.args[i]->shared_from_this());
    }
    auto grad_rule = py::getattr(op->obj, "_grad_rule");
348
    auto pyret = py::reinterpret_steal<py::object>(PyObject_Call(grad_rule.ptr(), pyin.ptr(), nullptr));
349
    if (!pyret) throw py::error_already_set();
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    auto [outputs, backward] = py::cast<std::tuple<py::object, py::function>>(pyret);
    ret_grad_fn.emplace<PythonBackward>(std::move(backward), ctx.nargs);
    if (auto* tw = TensorWrapper::try_cast(outputs.ptr())) {
        return {tw->m_tensor};
    }
    apply_result_t ret;
    ret.reserve(py::len(outputs));
    for (auto&& i : outputs) {
        auto* tw = TensorWrapper::try_cast(i.ptr());
        mgb_assert(tw);
        ret.push_back(tw->m_tensor);
    }
    return ret;
}

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
} // namespace

apply_result_t apply_grad(ApplyContext& ctx) {
    std::shared_ptr<GradKey> grad_key;
    for (size_t i = 0; i < ctx.nargs; ++i) {
        auto* tensor = ctx.args[i];
        if (tensor->m_grad_info.grad_fn) {
            auto&& input_grad_key = tensor->m_grad_info.grad_fn->key.lock();
            // tensor is attached to a live GradKey
            if (input_grad_key && input_grad_key->active) {
                if (grad_key) {
                    if (grad_key != input_grad_key) {
                        PyErr_SetString(PyExc_NotImplementedError, "second order grad");
                        throw pyext17::py_err_set();
                    }
                } else {
                    grad_key = std::move(input_grad_key);
                }
            } else {
                // cleanup stale grad info
                // under what condition?
                tensor->m_grad_info = {};
387
                tensor->m_flags &= ~Flags::GRAD;
388 389
            }
        } else {
390
            tensor->m_flags &= ~Flags::GRAD;
391 392 393
        }
    }

394
    ctx.flags &= ~Flags::GRAD;
395 396

    if (!grad_key) {
397
        return apply(ctx);
398 399
    }

400
    GradFnHelper grad_fn_holder;
401 402 403 404 405 406 407 408 409 410 411 412 413 414
    auto outputs = [&]() {
        auto _ = scoped_disable(Flags::GRAD);
        if (ctx.op->same_type<GenericPyOp>()) {
            return python_grad_rule(ctx, grad_fn_holder);
        }
        auto&& registry = grad_rule_registry();
        auto&& it = registry.find(ctx.op->dyn_typeinfo());
        if (it != registry.end()) {
            auto&& maker = grad_fn_holder.emplace<CustomBackward>().maker(ctx);
            try {
                auto ret = it->second(ctx, maker);
                maker.finalize();
                return ret;
            } catch (GradRuleFallback&) {
415
                grad_fn_holder.reset();
416 417 418 419
            }
        }
        return backward_graph_grad_rule(ctx, grad_fn_holder);
    }();
420 421 422

    auto& grad_fn = grad_fn_holder.grad_fn;
    if (!grad_fn) {
423 424 425 426 427 428 429
        return outputs;
    }

    grad_fn->key = grad_key;
    grad_fn->slots.resize(outputs.size());
    grad_fn->dsts.reserve(ctx.nargs);

430 431 432 433 434 435
    std::visit([&](auto& backward) {
        using T = std::decay_t<decltype(backward)>;
        if constexpr (std::is_same_v<T, std::monostate>) {
            mgb_assert(0);
        } else {
            for (size_t i = 0; i < ctx.nargs; ++i) {
436
                if (backward.input_has_grad(i) && input_requires_grad(ctx, i)) {
437 438 439 440 441 442 443 444 445 446 447 448
                    auto& input_grad_info = ctx.args[i]->m_grad_info;
                    grad_fn->dsts.emplace_back(input_grad_info);
                    // register as grad producer
                    grad_fn->dsts.back().producer_record.insert_after(input_grad_info->producer_head);
                } else {
                    grad_fn->dsts.emplace_back();
                }
            }
            for (size_t i = 0; i < outputs.size(); ++i) {
                if (backward.output_requires_grad(i)) {
                    if (backward.output_captured(i)) {
                        // avoid reference cycle [Tensor <-> GradFn]
449 450
                        static std::shared_ptr<OpDef> op = std::shared_ptr<OpDef>(new FastpathCopy());
                        outputs[i] = python::apply(op, outputs[i])[0];
451 452 453 454 455 456
                    }
                    // populate grad info of output tensor
                    auto& grad_info = outputs[i]->m_grad_info;
                    grad_info.grad_fn = grad_fn;
                    grad_info.idx = i;
                    grad_info.insert_after(grad_key->free_vars_head);
457
                    outputs[i]->m_flags |= Flags::GRAD;
458
                }
459 460
            }
        }
461
    }, grad_fn->backward);
462 463 464 465 466 467 468 469 470 471 472

    // record forward history
    grad_key->tape.emplace_back(grad_fn);

    return outputs;
}

void GradKeyWrapper::attach(PyObject*const* args, size_t nargs) {
    if (nargs != 2) {
        throw py::type_error("expect 2 arguments");
    }
473
    auto* tw = TensorWrapper::try_cast(args[0]);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
    if (!tw) {
        throw py::type_error("argument 1 must be Tensor");
    }
    auto* tensor = tw->m_tensor.get();
    py::object callback;
    if (args[1] != Py_None) {
        callback = py::reinterpret_borrow<py::object>(args[1]);
    }
    m_key->attach(tensor, std::move(callback));
}

//!  GradKey is weakly refered by tensor->m_grad_info.grad_fn->key after attach
void GradKey::attach(Tensor* tensor, pybind11::object callback) {
    if (!active) {
        throw py::value_error("grad key finalized");
    }

    if (tensor->m_grad_info.grad_fn) {
        if (tensor->m_grad_info.grad_fn->key.lock().get() != this) {
            PyErr_SetString(PyExc_NotImplementedError, "second order grad");
            throw pyext17::py_err_set();
        }
        if (tensor->m_grad_info->callback) {
            throw py::value_error("callback already set on this tensor");
        }
    } else {
        tensor->m_grad_info.idx = 0;
        auto& grad_fn = tensor->m_grad_info.grad_fn;
        grad_fn = std::make_shared<GradFn>();
        grad_fn->key = shared_from_this();
        grad_fn->slots.resize(1);
        tensor->m_grad_info.insert_after(free_vars_head);
506
        tensor->m_flags |= Flags::GRAD;
507 508 509 510
    }
    tensor->m_grad_info.grad_fn->slots[0].callback = std::move(callback);
}

511 512
template<typename T>
void accum_grad(std::shared_ptr<Tensor>& grad, T&& delta) {
513
    if (!grad) {
514
        grad = std::forward<T>(delta);
515 516
        return;
    }
517 518
    static std::shared_ptr<OpDef> op = std::shared_ptr<OpDef>(new Elemwise(Elemwise::Mode::ADD));
    grad = apply(op, grad, std::forward<T>(delta))[0];
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
}

void GradKey::backward(std::vector<TensorWrapper*> tensors, std::vector<TensorWrapper*> grads) {
    if (!active) {
        throw py::value_error("finalized");
    }
    if (tensors.size() != grads.size()) {
        throw py::value_error("tensor and grad size mismatch");
    }

    // this GradKey is marked inactive here
    active = false;
    struct CleanupGuard {
        GradKey* owner;
        CleanupGuard(GradKey* this_) : owner(this_) {}
        ~CleanupGuard() {owner->cleanup();}
    } _cleanup_guard(this);

537 538 539 540 541 542
    if (tape.empty()) return;

    BackwardContext bctx;
    if (!grads.empty()) {
        bctx.pytype = Py_TYPE(grads[0]->self().ptr());
    }
543 544 545 546 547 548 549 550 551 552 553 554 555 556

    for (size_t i = 0; i < tensors.size(); ++i) {
        auto& grad_info = tensors[i]->m_tensor->m_grad_info;
        if (grad_info.grad_fn && grad_info.grad_fn->key.lock().get() == this) {
            grad_info->grad = grads[i]->m_tensor;
        }
    }

    std::vector<std::shared_ptr<GradFn>> ref_keeper;
    ref_keeper.reserve(tape.size());
    // back-propagation in reverse order
    for (std::ptrdiff_t k = tape.size() - 1; k >= 0; --k) {
        auto&& grad_fn = tape[k].lock();
        if (!grad_fn) continue;
557

558
        auto grad_receiver = [&](size_t i, auto&& g) {
559 560 561 562
            auto& dst = grad_fn->dsts[i];
            if (dst) {
                accum_grad(dst->grad, std::forward<decltype(g)>(g));
            }
563 564 565 566 567 568 569
        };
        std::visit([&](auto&& backward) {
            using T = std::decay_t<decltype(backward)>;
            if constexpr (std::is_same_v<T, std::monostate>) {
                mgb_assert(0);
            } else {
                auto&& grads = views::transform(grad_fn->slots, [](auto&& slot) {return slot.grad.get();});
570
                backward(bctx, std::forward<decltype(grads)>(grads), grad_receiver);
571
            }
572 573
        }, grad_fn->backward);

574 575 576
        for (auto&& dst : grad_fn->dsts) {
            if (!dst.grad_fn) continue;
            if (!dst.grad_fn->in_ref_keeper) {
577 578
                // after grad_fn is cleared, refcnt of subsequent grad_fn
                // could drop to 0
579 580 581 582
                dst.grad_fn->in_ref_keeper = true;
                ref_keeper.push_back(dst.grad_fn);
            }
            if (!dst.producer_record.next && dst->callback && dst->grad) {
583
                // I'm the last grad producer, invoke callback
584
                dst->callback(bctx.wrap_tensor(dst->grad));
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
            }
        }
        grad_fn->clear();
    } // finish tape loop
}

void GradKey::cleanup() {
    active = false;
    tape.clear();
    for (intrusive_list::Iterator it(free_vars_head); it;) {
        it->grad_fn.reset();
        (it++)->unlink();
    }
}

void GradKeyWrapper::backward(std::vector<TensorWrapper*> tensors, std::vector<TensorWrapper*> grads) {
    m_key->backward(std::move(tensors), std::move(grads));
}

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
PyObject* GradKeyWrapper::get_name() {
    return py::cast(m_key->name).release().ptr();
}

void GradKeyWrapper::set_name(py::handle name) {
    m_key->name = py::cast<std::string>(name);
}

PyObject* GradKeyWrapper::is_attached_to(PyObject*const* args, size_t nargs) {
    if (nargs != 1) {
        PyErr_SetString(PyExc_TypeError, "expect 1 argument");
        return nullptr;
    }
    auto* tw = TensorWrapper::try_cast(args[0]);
    if (!tw) {
        PyErr_SetString(PyExc_TypeError, "expect Tensor");
        return nullptr;
    }
    auto&& grad_fn = tw->m_tensor->m_grad_info.grad_fn;
    if (grad_fn && grad_fn->key.lock() == m_key) {
        Py_RETURN_TRUE;
    }
    Py_RETURN_FALSE;
}

629 630 631 632
GradKey::~GradKey() {
    cleanup();
}

633 634 635 636 637
std::unordered_map<Typeinfo*, GradRuleFn>& grad_rule_registry() {
    static std::unordered_map<Typeinfo*, GradRuleFn> registry;
    return registry;
}

638
} // namespace mgb::imperative::python