grad.cpp 21.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/**
 * \file imperative/python/src/grad.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "./grad.h"
#include "megbrain/imperative/proxy_graph_detail.h"
14
#include "megbrain/imperative/backward_graph_opt.h"
15
#include "megbrain/imperative/ops/autogen.h"
16
#include "megbrain/imperative/ops/utility.h"
17 18
#include "megbrain/utils/mempool.h"

19 20
#include "range/v3/all.hpp"

21
namespace py = pybind11;
22
namespace views = ranges::views;
23 24 25

namespace mgb::imperative::python {

26 27 28
using scoped_disable = ApplyContext::scoped_disable;
using Flags = Tensor::Flags;

29 30 31 32 33 34 35
namespace {

struct GradSlotWeakPtr {
    std::weak_ptr<GradFn> grad_fn;
    size_t idx;
};

36
struct BackwardGraphCache : std::unordered_map<uint64_t, std::shared_ptr<OptimizedBackwardGraphResult>>, CompNodeDepedentObject {
37 38 39 40 41 42
    std::shared_ptr<void> on_comp_node_finalize() override {
        clear();
        return {};
    }
} backward_graph_cache;

43
std::shared_ptr<OptimizedBackwardGraphResult> make_backward_graph(
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
        ApplyContext& ctx, const apply_result_t& outputs) {
    // hash
    static_assert(alignof(size_t) % alignof(bool) == 0);
    size_t buf_size = (1 + ctx.nargs * 2) * sizeof(size_t) + ctx.nargs * sizeof(bool);
    alignas(alignof(size_t)) std::byte buf[buf_size];
    size_t* size_t_ptr = reinterpret_cast<size_t*>(buf);
    bool* bool_ptr = reinterpret_cast<bool*>(size_t_ptr + (1 + ctx.nargs * 2));
    bool* bool_ptr0 = bool_ptr;
    *(size_t_ptr++) = ctx.op->hash();
    for (size_t i = 0; i < ctx.nargs; ++i) {
        *(size_t_ptr++) = mgb::hash(ctx.args[i]->dtype().handle());
        *(size_t_ptr++) = mgb::hash(ctx.args[i]->comp_node());
        *(bool_ptr++) = bool(ctx.args[i]->m_grad_info.grad_fn);
    }
    mgb_assert(bool_ptr0 == reinterpret_cast<bool*>(size_t_ptr) &&
               bool_ptr == reinterpret_cast<bool*>(buf + buf_size));
60
    uint64_t key = XXHash{}.update(buf, buf_size).digest();
61 62 63 64 65 66 67 68 69 70 71 72 73

    auto&& iter = backward_graph_cache.find(key);
    if (iter != backward_graph_cache.end()) {
        return iter->second;
    }

    // slow path
    SmallVector<LogicalTensorDesc> inputs(ctx.nargs);
    SmallVector<bool> input_requires_grad(ctx.nargs, false);
    SmallVector<bool> output_has_grad(outputs.size(), true);
    for (size_t i = 0; i < ctx.nargs; ++i) {
        inputs[i].comp_node = ctx.args[i]->comp_node();
        inputs[i].layout.dtype = ctx.args[i]->dtype();
74
        input_requires_grad[i] = python::input_requires_grad(ctx, i);
75
    }
76 77 78 79 80
    std::shared_ptr<OptimizedBackwardGraphResult> ret;
    auto bg = proxy_graph_detail::make_backward_graph(
            *ctx.op, inputs, input_requires_grad, output_has_grad);
    if (bg.backward) {
        ret = std::make_shared<OptimizedBackwardGraphResult>(bg);
81
    }
82 83
    backward_graph_cache.emplace(key, ret);
    return ret;
84 85 86
}

struct BackwardGraphWithClosure {
87
    std::shared_ptr<OptimizedBackwardGraphResult> backward_graph;
88 89 90 91
    SmallVector<std::shared_ptr<Tensor>> closure;
    size_t output_mask_offset;
    size_t grad_mask_offset;

92
    BackwardGraphWithClosure(std::shared_ptr<OptimizedBackwardGraphResult> backward_graph_,
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
                             ApplyContext& ctx, const apply_result_t& outputs)
            : backward_graph(backward_graph_),
              output_mask_offset(ctx.nargs),
              grad_mask_offset(ctx.nargs + outputs.size()) {
        // save_for_backward[0:nargs]:
        //     whether input is kept for backward
        //
        // save_for_backward[nargs:nargs+outputs.size()]:
        //     whether output is kept for backward
        //
        // save_for_backward[-outputs.size():]:
        //     whether gradient of output can propagate to any input
        //
        // Example:
        //     perform c = a * b, with a.requires_grad == True and
        //     b.requires_grad == False, save_for_backward = [0, 1, 0, 1]
        auto& save_for_backward = backward_graph->save_for_backward;
        mgb_assert(save_for_backward.size() == ctx.nargs + 2 * outputs.size());
111 112 113 114 115 116 117 118 119 120 121 122
        size_t count = std::count_if(save_for_backward.begin(),
                                     save_for_backward.end(),
                                     ranges::identity{});
        if (backward_graph->precomp) {
            auto&& irng = ranges::span(ctx.args, ctx.nargs);
            auto&& orng = views::transform(outputs, [](auto&& i){return i.get();});
            auto precomp = apply(backward_graph->precomp, views::concat(irng, orng));
            closure.reserve(precomp.size() + count);
            std::copy(precomp.begin(), precomp.end(), std::back_inserter(closure));
        } else {
            closure.reserve(count);
        }
123 124 125 126 127 128 129 130 131 132 133 134 135
        for (size_t i = 0; i < ctx.nargs; ++i) {
            if (save_for_backward[i]) {
                closure.push_back(ctx.args[i]->shared_from_this());
            }
        }
        for (size_t i = 0; i < outputs.size(); ++i) {
            if (save_for_backward[ctx.nargs + i]) {
                closure.push_back(outputs[i]);
            }
        }
    }

    template <typename T, typename R>
136
    void operator()(BackwardContext&, T&& grads, R&& receiver) {
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        Tensor* args[closure.size() + grads.size()];
        size_t nargs = 0;
        for (auto&& t : closure) {
            args[nargs++] = t.get();
        }
        bool null_grad = false;
        for (size_t i = 0; i < grads.size(); ++i) {
            if (backward_graph->save_for_backward[grad_mask_offset + i]) {
                if (grads[i]) {
                    if (null_grad) {
                        PyErr_SetString(PyExc_NotImplementedError, "report to devs");
                        throw py::error_already_set();
                    }
                    args[nargs++] = grads[i];
                } else {
                    null_grad = true;
                }
            }
        }
        if (null_grad) return;

158
        auto igrads = apply(backward_graph->backward, args, nargs);
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        auto&& it = igrads.begin();
        for (auto [i, p] : views::enumerate(backward_graph->input_has_grad)) {
            if (p) {
                receiver(i, std::move(*it));
                ++it;
            }
        }
    }

    bool input_has_grad(size_t i) {
        return backward_graph->input_has_grad[i];
    }

    bool output_requires_grad(size_t i) {
        return backward_graph->save_for_backward[grad_mask_offset + i];
    }

    bool output_captured(size_t i) {
        return backward_graph->save_for_backward[output_mask_offset + i];
    }
};

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
struct PythonBackward {
    py::object pyfunc;
    size_t input_size;

    PythonBackward(py::object f, size_t nin)
            : pyfunc(f), input_size(nin) {}

    template <typename T, typename R>
    void operator()(BackwardContext& ctx, T&& grads, R&& receiver) {
        auto args = py::tuple(grads.size());
        for (size_t i = 0; i < grads.size(); ++i) {
            auto&& g = grads[i];
            args[i] = g ? ctx.wrap_tensor(g) : py::none();
        }
        auto input_grads = py::reinterpret_steal<py::object>(PyObject_Call(pyfunc.ptr(), args.ptr(), nullptr));
196
        if (!input_grads) throw py::error_already_set();
197 198 199 200 201
        if (input_grads.is_none()) return;
        if (auto* tw = TensorWrapper::try_cast(input_grads.ptr())) {
            if (input_size != 1) {
                throw py::value_error("custom grad rule returned wrong number of grads");
            }
202 203 204
            if (!ctx.pytype) {
                ctx.pytype = Py_TYPE(input_grads.ptr());
            }
205 206 207 208 209 210 211 212 213 214 215 216
            receiver(0, tw->m_tensor);
            return;
        }
        if (py::len(input_grads) != input_size) {
            throw py::value_error("custom grad rule returned wrong number of grads");
        }
        for (auto [i, g] : views::enumerate(input_grads)) {
            if (g.is_none()) continue;
            auto* tw = TensorWrapper::try_cast(g.ptr());
            if (!tw) {
                throw py::type_error("custom grad rule returned non-tensor");
            }
217 218 219
            if (!ctx.pytype) {
                ctx.pytype = Py_TYPE(g.ptr());
            }
220 221 222 223 224 225 226 227 228
            receiver(i, tw->m_tensor);
        }
    }

    static constexpr bool input_has_grad(size_t) {return true;}
    static constexpr bool output_requires_grad(size_t) {return true;}
    static constexpr bool output_captured(size_t) {return true;}
};

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
} // namespace

struct GradProducerRecord : intrusive_list::Node<GradProducerRecord> {
    using Base = intrusive_list::Node<GradProducerRecord>;

    GradProducerRecord() = default;
    GradProducerRecord(GradProducerRecord::head_t& head) : Base(intrusive_list::after_t{}, head) {}
    // GradProducerRecord(GradProducerRecord&&) = default;
    // GradProducerRecord& operator=(GradProducerRecord&) = default;
    // GradProducerRecord& operator=(GradProducerRecord&&) = default;
};

struct GradSlot {
    std::shared_ptr<Tensor> grad;
    py::object callback;
    GradProducerRecord::head_t producer_head;
};

struct GradSlotProducerPtr : GradSlotPtr {
    GradProducerRecord producer_record;

    GradSlotProducerPtr() = default;
    GradSlotProducerPtr(GradInfo& info) : GradSlotPtr(info), producer_record(info->producer_head) {}
};

struct GradFn : std::enable_shared_from_this<GradFn> {
    static MemPool<GradFn> pool;

    std::weak_ptr<GradKey> key;
258 259
    // slots for receiving and accumulating grads
    // same length as outputs (of forward op)
260
    SmallVector<GradSlot> slots;
261 262
    // where to send and accumulate grads
    // same length as inputs (of forward op)
263
    SmallVector<GradSlotProducerPtr> dsts;
264
    // encapsules actual function to compute gradient
265
    std::variant<std::monostate, BackwardGraphWithClosure, PythonBackward, CustomBackward> backward;
266
    // a flag used during backward
267 268 269 270 271 272 273 274 275 276 277 278 279 280
    bool in_ref_keeper = false;

    static void deleter(GradFn* ptr) {
        pool.free(ptr);
    }

    std::shared_ptr<GradFn> make() {
        return std::shared_ptr<GradFn>(pool.alloc(), &deleter);
    }

    void clear() {
        key.reset();
        slots.clear();
        dsts.clear();
281
        backward.emplace<std::monostate>();
282 283 284
    }
};

285 286 287 288
GradSlotPtr::operator bool() const {
    return bool(grad_fn);
}

289 290 291 292 293 294
GradSlot* GradSlotPtr::operator->() {
    return &grad_fn->slots[idx];
}

namespace {

295 296
class GradFnHelper {
    std::shared_ptr<GradFn> grad_fn;
297

298 299 300 301 302
    GradFn* get() {
        if (!grad_fn) {
            grad_fn = std::make_shared<GradFn>();
        }
        return grad_fn.get();
303 304
    }

305
    friend apply_result_t imperative::python::apply_grad(ApplyContext&);
306

307 308 309 310
public:
    template<typename T, typename... Args>
    auto& emplace(Args&&... args) {
        return get()->backward.emplace<T>(std::forward<Args>(args)...);
311
    }
312 313

    void reset() { grad_fn = nullptr; }
314 315 316 317 318 319 320 321
};

apply_result_t backward_graph_grad_rule(ApplyContext& ctx, GradFnHelper& ret_grad_fn) {
    auto outputs = apply(ctx);

    auto backward_graph = make_backward_graph(ctx, outputs);
    if (!backward_graph) {
        return outputs;
322
    }
323 324 325 326

    ret_grad_fn.emplace<BackwardGraphWithClosure>(std::move(backward_graph), ctx, outputs);

    return outputs;
327 328
}

329 330 331 332 333 334 335
apply_result_t python_grad_rule(ApplyContext& ctx, GradFnHelper& ret_grad_fn) {
    auto* op = ctx.op->try_cast_final<GenericPyOp>();
    py::tuple pyin(ctx.nargs);
    for (size_t i = 0; i < ctx.nargs; ++i) {
        pyin[i] = TensorWrapper::make(ctx.pytype, ctx.args[i]->shared_from_this());
    }
    auto grad_rule = py::getattr(op->obj, "_grad_rule");
336
    auto pyret = py::reinterpret_steal<py::object>(PyObject_Call(grad_rule.ptr(), pyin.ptr(), nullptr));
337
    if (!pyret) throw py::error_already_set();
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    auto [outputs, backward] = py::cast<std::tuple<py::object, py::function>>(pyret);
    ret_grad_fn.emplace<PythonBackward>(std::move(backward), ctx.nargs);
    if (auto* tw = TensorWrapper::try_cast(outputs.ptr())) {
        return {tw->m_tensor};
    }
    apply_result_t ret;
    ret.reserve(py::len(outputs));
    for (auto&& i : outputs) {
        auto* tw = TensorWrapper::try_cast(i.ptr());
        mgb_assert(tw);
        ret.push_back(tw->m_tensor);
    }
    return ret;
}

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
} // namespace

apply_result_t apply_grad(ApplyContext& ctx) {
    std::shared_ptr<GradKey> grad_key;
    for (size_t i = 0; i < ctx.nargs; ++i) {
        auto* tensor = ctx.args[i];
        if (tensor->m_grad_info.grad_fn) {
            auto&& input_grad_key = tensor->m_grad_info.grad_fn->key.lock();
            // tensor is attached to a live GradKey
            if (input_grad_key && input_grad_key->active) {
                if (grad_key) {
                    if (grad_key != input_grad_key) {
                        PyErr_SetString(PyExc_NotImplementedError, "second order grad");
                        throw pyext17::py_err_set();
                    }
                } else {
                    grad_key = std::move(input_grad_key);
                }
            } else {
                // cleanup stale grad info
                // under what condition?
                tensor->m_grad_info = {};
375
                tensor->m_flags &= ~Flags::GRAD;
376 377
            }
        } else {
378
            tensor->m_flags &= ~Flags::GRAD;
379 380 381
        }
    }

382
    ctx.flags &= ~Flags::GRAD;
383 384

    if (!grad_key) {
385
        return apply(ctx);
386 387
    }

388
    GradFnHelper grad_fn_holder;
389 390 391 392 393 394 395 396 397 398 399 400 401 402
    auto outputs = [&]() {
        auto _ = scoped_disable(Flags::GRAD);
        if (ctx.op->same_type<GenericPyOp>()) {
            return python_grad_rule(ctx, grad_fn_holder);
        }
        auto&& registry = grad_rule_registry();
        auto&& it = registry.find(ctx.op->dyn_typeinfo());
        if (it != registry.end()) {
            auto&& maker = grad_fn_holder.emplace<CustomBackward>().maker(ctx);
            try {
                auto ret = it->second(ctx, maker);
                maker.finalize();
                return ret;
            } catch (GradRuleFallback&) {
403
                grad_fn_holder.reset();
404 405 406 407
            }
        }
        return backward_graph_grad_rule(ctx, grad_fn_holder);
    }();
408 409 410

    auto& grad_fn = grad_fn_holder.grad_fn;
    if (!grad_fn) {
411 412 413 414 415 416 417
        return outputs;
    }

    grad_fn->key = grad_key;
    grad_fn->slots.resize(outputs.size());
    grad_fn->dsts.reserve(ctx.nargs);

418 419 420 421 422 423
    std::visit([&](auto& backward) {
        using T = std::decay_t<decltype(backward)>;
        if constexpr (std::is_same_v<T, std::monostate>) {
            mgb_assert(0);
        } else {
            for (size_t i = 0; i < ctx.nargs; ++i) {
424
                if (backward.input_has_grad(i) && input_requires_grad(ctx, i)) {
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
                    auto& input_grad_info = ctx.args[i]->m_grad_info;
                    grad_fn->dsts.emplace_back(input_grad_info);
                    // register as grad producer
                    grad_fn->dsts.back().producer_record.insert_after(input_grad_info->producer_head);
                } else {
                    grad_fn->dsts.emplace_back();
                }
            }
            for (size_t i = 0; i < outputs.size(); ++i) {
                if (backward.output_requires_grad(i)) {
                    if (backward.output_captured(i)) {
                        // avoid reference cycle [Tensor <-> GradFn]
                        outputs[i] = outputs[i]->copy();
                    }
                    // populate grad info of output tensor
                    auto& grad_info = outputs[i]->m_grad_info;
                    grad_info.grad_fn = grad_fn;
                    grad_info.idx = i;
                    grad_info.insert_after(grad_key->free_vars_head);
444
                    outputs[i]->m_flags |= Flags::GRAD;
445
                }
446 447
            }
        }
448
    }, grad_fn->backward);
449 450 451 452 453 454 455 456 457 458 459

    // record forward history
    grad_key->tape.emplace_back(grad_fn);

    return outputs;
}

void GradKeyWrapper::attach(PyObject*const* args, size_t nargs) {
    if (nargs != 2) {
        throw py::type_error("expect 2 arguments");
    }
460
    auto* tw = TensorWrapper::try_cast(args[0]);
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
    if (!tw) {
        throw py::type_error("argument 1 must be Tensor");
    }
    auto* tensor = tw->m_tensor.get();
    py::object callback;
    if (args[1] != Py_None) {
        callback = py::reinterpret_borrow<py::object>(args[1]);
    }
    m_key->attach(tensor, std::move(callback));
}

//!  GradKey is weakly refered by tensor->m_grad_info.grad_fn->key after attach
void GradKey::attach(Tensor* tensor, pybind11::object callback) {
    if (!active) {
        throw py::value_error("grad key finalized");
    }

    if (tensor->m_grad_info.grad_fn) {
        if (tensor->m_grad_info.grad_fn->key.lock().get() != this) {
            PyErr_SetString(PyExc_NotImplementedError, "second order grad");
            throw pyext17::py_err_set();
        }
        if (tensor->m_grad_info->callback) {
            throw py::value_error("callback already set on this tensor");
        }
    } else {
        tensor->m_grad_info.idx = 0;
        auto& grad_fn = tensor->m_grad_info.grad_fn;
        grad_fn = std::make_shared<GradFn>();
        grad_fn->key = shared_from_this();
        grad_fn->slots.resize(1);
        tensor->m_grad_info.insert_after(free_vars_head);
493
        tensor->m_flags |= Flags::GRAD;
494 495 496 497
    }
    tensor->m_grad_info.grad_fn->slots[0].callback = std::move(callback);
}

498 499
template<typename T>
void accum_grad(std::shared_ptr<Tensor>& grad, T&& delta) {
500
    if (!grad) {
501
        grad = std::forward<T>(delta);
502 503
        return;
    }
504 505
    static std::shared_ptr<OpDef> op = std::shared_ptr<OpDef>(new Elemwise(Elemwise::Mode::ADD));
    grad = apply(op, grad, std::forward<T>(delta))[0];
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
}

void GradKey::backward(std::vector<TensorWrapper*> tensors, std::vector<TensorWrapper*> grads) {
    if (!active) {
        throw py::value_error("finalized");
    }
    if (tensors.size() != grads.size()) {
        throw py::value_error("tensor and grad size mismatch");
    }

    // this GradKey is marked inactive here
    active = false;
    struct CleanupGuard {
        GradKey* owner;
        CleanupGuard(GradKey* this_) : owner(this_) {}
        ~CleanupGuard() {owner->cleanup();}
    } _cleanup_guard(this);

524 525 526 527 528 529
    if (tape.empty()) return;

    BackwardContext bctx;
    if (!grads.empty()) {
        bctx.pytype = Py_TYPE(grads[0]->self().ptr());
    }
530 531 532 533 534 535 536 537 538 539 540 541 542 543

    for (size_t i = 0; i < tensors.size(); ++i) {
        auto& grad_info = tensors[i]->m_tensor->m_grad_info;
        if (grad_info.grad_fn && grad_info.grad_fn->key.lock().get() == this) {
            grad_info->grad = grads[i]->m_tensor;
        }
    }

    std::vector<std::shared_ptr<GradFn>> ref_keeper;
    ref_keeper.reserve(tape.size());
    // back-propagation in reverse order
    for (std::ptrdiff_t k = tape.size() - 1; k >= 0; --k) {
        auto&& grad_fn = tape[k].lock();
        if (!grad_fn) continue;
544

545
        auto grad_receiver = [&](size_t i, auto&& g) {
546 547 548 549
            auto& dst = grad_fn->dsts[i];
            if (dst) {
                accum_grad(dst->grad, std::forward<decltype(g)>(g));
            }
550 551 552 553 554 555 556
        };
        std::visit([&](auto&& backward) {
            using T = std::decay_t<decltype(backward)>;
            if constexpr (std::is_same_v<T, std::monostate>) {
                mgb_assert(0);
            } else {
                auto&& grads = views::transform(grad_fn->slots, [](auto&& slot) {return slot.grad.get();});
557
                backward(bctx, std::forward<decltype(grads)>(grads), grad_receiver);
558
            }
559 560
        }, grad_fn->backward);

561 562 563
        for (auto&& dst : grad_fn->dsts) {
            if (!dst.grad_fn) continue;
            if (!dst.grad_fn->in_ref_keeper) {
564 565
                // after grad_fn is cleared, refcnt of subsequent grad_fn
                // could drop to 0
566 567 568 569
                dst.grad_fn->in_ref_keeper = true;
                ref_keeper.push_back(dst.grad_fn);
            }
            if (!dst.producer_record.next && dst->callback && dst->grad) {
570
                // I'm the last grad producer, invoke callback
571
                dst->callback(bctx.wrap_tensor(dst->grad));
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
            }
        }
        grad_fn->clear();
    } // finish tape loop
}

void GradKey::cleanup() {
    active = false;
    tape.clear();
    for (intrusive_list::Iterator it(free_vars_head); it;) {
        it->grad_fn.reset();
        (it++)->unlink();
    }
}

void GradKeyWrapper::backward(std::vector<TensorWrapper*> tensors, std::vector<TensorWrapper*> grads) {
    m_key->backward(std::move(tensors), std::move(grads));
}

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
PyObject* GradKeyWrapper::get_name() {
    return py::cast(m_key->name).release().ptr();
}

void GradKeyWrapper::set_name(py::handle name) {
    m_key->name = py::cast<std::string>(name);
}

PyObject* GradKeyWrapper::is_attached_to(PyObject*const* args, size_t nargs) {
    if (nargs != 1) {
        PyErr_SetString(PyExc_TypeError, "expect 1 argument");
        return nullptr;
    }
    auto* tw = TensorWrapper::try_cast(args[0]);
    if (!tw) {
        PyErr_SetString(PyExc_TypeError, "expect Tensor");
        return nullptr;
    }
    auto&& grad_fn = tw->m_tensor->m_grad_info.grad_fn;
    if (grad_fn && grad_fn->key.lock() == m_key) {
        Py_RETURN_TRUE;
    }
    Py_RETURN_FALSE;
}

616 617 618 619
GradKey::~GradKey() {
    cleanup();
}

620 621 622 623 624
std::unordered_map<Typeinfo*, GradRuleFn>& grad_rule_registry() {
    static std::unordered_map<Typeinfo*, GradRuleFn> registry;
    return registry;
}

625
} // namespace mgb::imperative::python