grad.cpp 19.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/**
 * \file imperative/python/src/grad.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "./grad.h"
#include "megbrain/imperative/proxy_graph_detail.h"
#include "megbrain/imperative/ops/autogen.h"
15
#include "megbrain/imperative/ops/utility.h"
16 17
#include "megbrain/utils/mempool.h"

18 19
#include "range/v3/all.hpp"

20
namespace py = pybind11;
21
namespace views = ranges::views;
22 23 24

namespace mgb::imperative::python {

25 26 27
using scoped_disable = ApplyContext::scoped_disable;
using Flags = Tensor::Flags;

28 29 30 31 32 33 34
namespace {

struct GradSlotWeakPtr {
    std::weak_ptr<GradFn> grad_fn;
    size_t idx;
};

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
struct BackwardGraphCache : std::unordered_map<size_t, std::shared_ptr<BackwardGraphResult>>, CompNodeDepedentObject {
    std::shared_ptr<void> on_comp_node_finalize() override {
        clear();
        return {};
    }
} backward_graph_cache;

std::shared_ptr<BackwardGraphResult> make_backward_graph(
        ApplyContext& ctx, const apply_result_t& outputs) {
    // hash
    static_assert(alignof(size_t) % alignof(bool) == 0);
    size_t buf_size = (1 + ctx.nargs * 2) * sizeof(size_t) + ctx.nargs * sizeof(bool);
    alignas(alignof(size_t)) std::byte buf[buf_size];
    size_t* size_t_ptr = reinterpret_cast<size_t*>(buf);
    bool* bool_ptr = reinterpret_cast<bool*>(size_t_ptr + (1 + ctx.nargs * 2));
    bool* bool_ptr0 = bool_ptr;
    *(size_t_ptr++) = ctx.op->hash();
    for (size_t i = 0; i < ctx.nargs; ++i) {
        *(size_t_ptr++) = mgb::hash(ctx.args[i]->dtype().handle());
        *(size_t_ptr++) = mgb::hash(ctx.args[i]->comp_node());
        *(bool_ptr++) = bool(ctx.args[i]->m_grad_info.grad_fn);
    }
    mgb_assert(bool_ptr0 == reinterpret_cast<bool*>(size_t_ptr) &&
               bool_ptr == reinterpret_cast<bool*>(buf + buf_size));
    size_t key = XXHash{}.update(buf, buf_size).digest();

    auto&& iter = backward_graph_cache.find(key);
    if (iter != backward_graph_cache.end()) {
        return iter->second;
    }

    // slow path
    SmallVector<LogicalTensorDesc> inputs(ctx.nargs);
    SmallVector<bool> input_requires_grad(ctx.nargs, false);
    SmallVector<bool> output_has_grad(outputs.size(), true);
    for (size_t i = 0; i < ctx.nargs; ++i) {
        inputs[i].comp_node = ctx.args[i]->comp_node();
        inputs[i].layout.dtype = ctx.args[i]->dtype();
73
        input_requires_grad[i] = python::input_requires_grad(ctx, i);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    }
    auto result = std::make_shared<BackwardGraphResult>(
        proxy_graph_detail::make_backward_graph(
            *ctx.op, inputs, input_requires_grad, output_has_grad));
    if (!result->backward) {
        result.reset();
    }
    backward_graph_cache.emplace(key, result);
    return result;
}

struct BackwardGraphWithClosure {
    std::shared_ptr<BackwardGraphResult> backward_graph;
    SmallVector<std::shared_ptr<Tensor>> closure;
    size_t output_mask_offset;
    size_t grad_mask_offset;

    BackwardGraphWithClosure(std::shared_ptr<BackwardGraphResult> backward_graph_,
                             ApplyContext& ctx, const apply_result_t& outputs)
            : backward_graph(backward_graph_),
              output_mask_offset(ctx.nargs),
              grad_mask_offset(ctx.nargs + outputs.size()) {
        // save_for_backward[0:nargs]:
        //     whether input is kept for backward
        //
        // save_for_backward[nargs:nargs+outputs.size()]:
        //     whether output is kept for backward
        //
        // save_for_backward[-outputs.size():]:
        //     whether gradient of output can propagate to any input
        //
        // Example:
        //     perform c = a * b, with a.requires_grad == True and
        //     b.requires_grad == False, save_for_backward = [0, 1, 0, 1]
        auto& save_for_backward = backward_graph->save_for_backward;
        mgb_assert(save_for_backward.size() == ctx.nargs + 2 * outputs.size());
        closure.reserve(std::count_if(save_for_backward.begin(),
                                      save_for_backward.end(),
                                      ranges::identity{}));
        for (size_t i = 0; i < ctx.nargs; ++i) {
            if (save_for_backward[i]) {
                closure.push_back(ctx.args[i]->shared_from_this());
            }
        }
        for (size_t i = 0; i < outputs.size(); ++i) {
            if (save_for_backward[ctx.nargs + i]) {
                closure.push_back(outputs[i]);
            }
        }
    }

    template <typename T, typename R>
126
    void operator()(BackwardContext&, T&& grads, R&& receiver) {
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
        Tensor* args[closure.size() + grads.size()];
        size_t nargs = 0;
        for (auto&& t : closure) {
            args[nargs++] = t.get();
        }
        bool null_grad = false;
        for (size_t i = 0; i < grads.size(); ++i) {
            if (backward_graph->save_for_backward[grad_mask_offset + i]) {
                if (grads[i]) {
                    if (null_grad) {
                        PyErr_SetString(PyExc_NotImplementedError, "report to devs");
                        throw py::error_already_set();
                    }
                    args[nargs++] = grads[i];
                } else {
                    null_grad = true;
                }
            }
        }
        if (null_grad) return;

        ApplyContext ctx;
        ctx.op = backward_graph->backward;
150
        ctx.flags = is_tracing ? Flags::TRACE : 0;
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        ctx.nargs = nargs;
        ctx.args = args;
        for (size_t i = 0; i < nargs; ++i) {
            ctx.flags |= args[i]->m_flags;
            mgb_assert(args[i]);
        }

        auto igrads = apply(ctx);
        auto&& it = igrads.begin();
        for (auto [i, p] : views::enumerate(backward_graph->input_has_grad)) {
            if (p) {
                receiver(i, std::move(*it));
                ++it;
            }
        }
    }

    bool input_has_grad(size_t i) {
        return backward_graph->input_has_grad[i];
    }

    bool output_requires_grad(size_t i) {
        return backward_graph->save_for_backward[grad_mask_offset + i];
    }

    bool output_captured(size_t i) {
        return backward_graph->save_for_backward[output_mask_offset + i];
    }
};

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
struct PythonBackward {
    py::object pyfunc;
    size_t input_size;

    PythonBackward(py::object f, size_t nin)
            : pyfunc(f), input_size(nin) {}

    template <typename T, typename R>
    void operator()(BackwardContext& ctx, T&& grads, R&& receiver) {
        auto args = py::tuple(grads.size());
        for (size_t i = 0; i < grads.size(); ++i) {
            auto&& g = grads[i];
            args[i] = g ? ctx.wrap_tensor(g) : py::none();
        }
        auto input_grads = py::reinterpret_steal<py::object>(PyObject_Call(pyfunc.ptr(), args.ptr(), nullptr));
        if (input_grads.is_none()) return;
        if (auto* tw = TensorWrapper::try_cast(input_grads.ptr())) {
            if (input_size != 1) {
                throw py::value_error("custom grad rule returned wrong number of grads");
            }
            receiver(0, tw->m_tensor);
            return;
        }
        if (py::len(input_grads) != input_size) {
            throw py::value_error("custom grad rule returned wrong number of grads");
        }
        for (auto [i, g] : views::enumerate(input_grads)) {
            if (g.is_none()) continue;
            auto* tw = TensorWrapper::try_cast(g.ptr());
            if (!tw) {
                throw py::type_error("custom grad rule returned non-tensor");
            }
            receiver(i, tw->m_tensor);
        }
    }

    static constexpr bool input_has_grad(size_t) {return true;}
    static constexpr bool output_requires_grad(size_t) {return true;}
    static constexpr bool output_captured(size_t) {return true;}
};

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
} // namespace

struct GradProducerRecord : intrusive_list::Node<GradProducerRecord> {
    using Base = intrusive_list::Node<GradProducerRecord>;

    GradProducerRecord() = default;
    GradProducerRecord(GradProducerRecord::head_t& head) : Base(intrusive_list::after_t{}, head) {}
    // GradProducerRecord(GradProducerRecord&&) = default;
    // GradProducerRecord& operator=(GradProducerRecord&) = default;
    // GradProducerRecord& operator=(GradProducerRecord&&) = default;
};

struct GradSlot {
    std::shared_ptr<Tensor> grad;
    py::object callback;
    GradProducerRecord::head_t producer_head;
};

struct GradSlotProducerPtr : GradSlotPtr {
    GradProducerRecord producer_record;

    GradSlotProducerPtr() = default;
    GradSlotProducerPtr(GradInfo& info) : GradSlotPtr(info), producer_record(info->producer_head) {}
};

struct GradFn : std::enable_shared_from_this<GradFn> {
    static MemPool<GradFn> pool;

    std::weak_ptr<GradKey> key;
251 252
    // slots for receiving and accumulating grads
    // same length as outputs (of forward op)
253
    SmallVector<GradSlot> slots;
254 255
    // where to send and accumulate grads
    // same length as inputs (of forward op)
256
    SmallVector<GradSlotProducerPtr> dsts;
257
    // encapsules actual function to compute gradient
258
    std::variant<std::monostate, BackwardGraphWithClosure, PythonBackward, CustomBackward> backward;
259
    // a flag used during backward
260 261 262 263 264 265 266 267 268 269 270 271 272 273
    bool in_ref_keeper = false;

    static void deleter(GradFn* ptr) {
        pool.free(ptr);
    }

    std::shared_ptr<GradFn> make() {
        return std::shared_ptr<GradFn>(pool.alloc(), &deleter);
    }

    void clear() {
        key.reset();
        slots.clear();
        dsts.clear();
274
        backward.emplace<std::monostate>();
275 276 277 278 279 280 281 282 283
    }
};

GradSlot* GradSlotPtr::operator->() {
    return &grad_fn->slots[idx];
}

namespace {

284 285
class GradFnHelper {
    std::shared_ptr<GradFn> grad_fn;
286

287 288 289 290 291
    GradFn* get() {
        if (!grad_fn) {
            grad_fn = std::make_shared<GradFn>();
        }
        return grad_fn.get();
292 293
    }

294
    friend apply_result_t imperative::python::apply_grad(ApplyContext&);
295

296 297 298 299
public:
    template<typename T, typename... Args>
    auto& emplace(Args&&... args) {
        return get()->backward.emplace<T>(std::forward<Args>(args)...);
300
    }
301 302 303 304 305 306 307 308
};

apply_result_t backward_graph_grad_rule(ApplyContext& ctx, GradFnHelper& ret_grad_fn) {
    auto outputs = apply(ctx);

    auto backward_graph = make_backward_graph(ctx, outputs);
    if (!backward_graph) {
        return outputs;
309
    }
310 311 312 313

    ret_grad_fn.emplace<BackwardGraphWithClosure>(std::move(backward_graph), ctx, outputs);

    return outputs;
314 315
}

316 317 318 319 320 321 322
apply_result_t python_grad_rule(ApplyContext& ctx, GradFnHelper& ret_grad_fn) {
    auto* op = ctx.op->try_cast_final<GenericPyOp>();
    py::tuple pyin(ctx.nargs);
    for (size_t i = 0; i < ctx.nargs; ++i) {
        pyin[i] = TensorWrapper::make(ctx.pytype, ctx.args[i]->shared_from_this());
    }
    auto grad_rule = py::getattr(op->obj, "_grad_rule");
323
    auto pyret = py::reinterpret_steal<py::object>(PyObject_Call(grad_rule.ptr(), pyin.ptr(), nullptr));
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    auto [outputs, backward] = py::cast<std::tuple<py::object, py::function>>(pyret);
    ret_grad_fn.emplace<PythonBackward>(std::move(backward), ctx.nargs);
    if (auto* tw = TensorWrapper::try_cast(outputs.ptr())) {
        return {tw->m_tensor};
    }
    apply_result_t ret;
    ret.reserve(py::len(outputs));
    for (auto&& i : outputs) {
        auto* tw = TensorWrapper::try_cast(i.ptr());
        mgb_assert(tw);
        ret.push_back(tw->m_tensor);
    }
    return ret;
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
} // namespace

apply_result_t apply_grad(ApplyContext& ctx) {
    std::shared_ptr<GradKey> grad_key;
    for (size_t i = 0; i < ctx.nargs; ++i) {
        auto* tensor = ctx.args[i];
        if (tensor->m_grad_info.grad_fn) {
            auto&& input_grad_key = tensor->m_grad_info.grad_fn->key.lock();
            // tensor is attached to a live GradKey
            if (input_grad_key && input_grad_key->active) {
                if (grad_key) {
                    if (grad_key != input_grad_key) {
                        PyErr_SetString(PyExc_NotImplementedError, "second order grad");
                        throw pyext17::py_err_set();
                    }
                } else {
                    grad_key = std::move(input_grad_key);
                }
            } else {
                // cleanup stale grad info
                // under what condition?
                tensor->m_grad_info = {};
361
                tensor->m_flags &= ~Flags::GRAD;
362 363
            }
        } else {
364
            tensor->m_flags &= ~Flags::GRAD;
365 366 367
        }
    }

368
    ctx.flags &= ~Flags::GRAD;
369 370

    if (!grad_key) {
371
        return apply(ctx);
372 373
    }

374
    GradFnHelper grad_fn_holder;
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
    auto outputs = [&]() {
        auto _ = scoped_disable(Flags::GRAD);
        if (ctx.op->same_type<GenericPyOp>()) {
            return python_grad_rule(ctx, grad_fn_holder);
        }
        auto&& registry = grad_rule_registry();
        auto&& it = registry.find(ctx.op->dyn_typeinfo());
        if (it != registry.end()) {
            auto&& maker = grad_fn_holder.emplace<CustomBackward>().maker(ctx);
            try {
                auto ret = it->second(ctx, maker);
                maker.finalize();
                return ret;
            } catch (GradRuleFallback&) {
                grad_fn_holder.emplace<std::monostate>();
            }
        }
        return backward_graph_grad_rule(ctx, grad_fn_holder);
    }();
394 395 396

    auto& grad_fn = grad_fn_holder.grad_fn;
    if (!grad_fn) {
397 398 399 400 401 402 403
        return outputs;
    }

    grad_fn->key = grad_key;
    grad_fn->slots.resize(outputs.size());
    grad_fn->dsts.reserve(ctx.nargs);

404 405 406 407 408 409
    std::visit([&](auto& backward) {
        using T = std::decay_t<decltype(backward)>;
        if constexpr (std::is_same_v<T, std::monostate>) {
            mgb_assert(0);
        } else {
            for (size_t i = 0; i < ctx.nargs; ++i) {
410
                if (backward.input_has_grad(i) && input_requires_grad(ctx, i)) {
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
                    auto& input_grad_info = ctx.args[i]->m_grad_info;
                    grad_fn->dsts.emplace_back(input_grad_info);
                    // register as grad producer
                    grad_fn->dsts.back().producer_record.insert_after(input_grad_info->producer_head);
                } else {
                    grad_fn->dsts.emplace_back();
                }
            }
            for (size_t i = 0; i < outputs.size(); ++i) {
                if (backward.output_requires_grad(i)) {
                    if (backward.output_captured(i)) {
                        // avoid reference cycle [Tensor <-> GradFn]
                        outputs[i] = outputs[i]->copy();
                    }
                    // populate grad info of output tensor
                    auto& grad_info = outputs[i]->m_grad_info;
                    grad_info.grad_fn = grad_fn;
                    grad_info.idx = i;
                    grad_info.insert_after(grad_key->free_vars_head);
430
                    outputs[i]->m_flags |= Flags::GRAD;
431
                }
432 433
            }
        }
434
    }, grad_fn->backward);
435 436 437 438 439 440 441 442 443 444 445

    // record forward history
    grad_key->tape.emplace_back(grad_fn);

    return outputs;
}

void GradKeyWrapper::attach(PyObject*const* args, size_t nargs) {
    if (nargs != 2) {
        throw py::type_error("expect 2 arguments");
    }
446
    auto* tw = TensorWrapper::try_cast(args[0]);
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    if (!tw) {
        throw py::type_error("argument 1 must be Tensor");
    }
    auto* tensor = tw->m_tensor.get();
    py::object callback;
    if (args[1] != Py_None) {
        callback = py::reinterpret_borrow<py::object>(args[1]);
    }
    m_key->attach(tensor, std::move(callback));
}

//!  GradKey is weakly refered by tensor->m_grad_info.grad_fn->key after attach
void GradKey::attach(Tensor* tensor, pybind11::object callback) {
    if (!active) {
        throw py::value_error("grad key finalized");
    }

    if (tensor->m_grad_info.grad_fn) {
        if (tensor->m_grad_info.grad_fn->key.lock().get() != this) {
            PyErr_SetString(PyExc_NotImplementedError, "second order grad");
            throw pyext17::py_err_set();
        }
        if (tensor->m_grad_info->callback) {
            throw py::value_error("callback already set on this tensor");
        }
    } else {
        tensor->m_grad_info.idx = 0;
        auto& grad_fn = tensor->m_grad_info.grad_fn;
        grad_fn = std::make_shared<GradFn>();
        grad_fn->key = shared_from_this();
        grad_fn->slots.resize(1);
        tensor->m_grad_info.insert_after(free_vars_head);
479
        tensor->m_flags |= Flags::GRAD;
480 481 482 483
    }
    tensor->m_grad_info.grad_fn->slots[0].callback = std::move(callback);
}

484 485
template<typename T>
void accum_grad(std::shared_ptr<Tensor>& grad, T&& delta) {
486
    if (!grad) {
487
        grad = std::forward<T>(delta);
488 489
        return;
    }
490 491
    static std::shared_ptr<OpDef> op = std::shared_ptr<OpDef>(new Elemwise(Elemwise::Mode::ADD));
    grad = apply(op, grad, std::forward<T>(delta))[0];
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
}

void GradKey::backward(std::vector<TensorWrapper*> tensors, std::vector<TensorWrapper*> grads) {
    if (!active) {
        throw py::value_error("finalized");
    }
    if (tensors.size() != grads.size()) {
        throw py::value_error("tensor and grad size mismatch");
    }

    // this GradKey is marked inactive here
    active = false;
    struct CleanupGuard {
        GradKey* owner;
        CleanupGuard(GradKey* this_) : owner(this_) {}
        ~CleanupGuard() {owner->cleanup();}
    } _cleanup_guard(this);

    if (tape.empty() || grads.empty()) return;
    PyTypeObject* pytype = Py_TYPE(grads[0]->self().ptr());

    for (size_t i = 0; i < tensors.size(); ++i) {
        auto& grad_info = tensors[i]->m_tensor->m_grad_info;
        if (grad_info.grad_fn && grad_info.grad_fn->key.lock().get() == this) {
            grad_info->grad = grads[i]->m_tensor;
        }
    }

520
    BackwardContext bctx{pytype};
521 522 523 524 525 526
    std::vector<std::shared_ptr<GradFn>> ref_keeper;
    ref_keeper.reserve(tape.size());
    // back-propagation in reverse order
    for (std::ptrdiff_t k = tape.size() - 1; k >= 0; --k) {
        auto&& grad_fn = tape[k].lock();
        if (!grad_fn) continue;
527

528 529 530 531 532 533 534 535 536
        auto grad_receiver = [&](size_t i, auto&& g) {
            accum_grad(grad_fn->dsts[i]->grad, std::forward<decltype(g)>(g));
        };
        std::visit([&](auto&& backward) {
            using T = std::decay_t<decltype(backward)>;
            if constexpr (std::is_same_v<T, std::monostate>) {
                mgb_assert(0);
            } else {
                auto&& grads = views::transform(grad_fn->slots, [](auto&& slot) {return slot.grad.get();});
537
                backward(bctx, std::forward<decltype(grads)>(grads), grad_receiver);
538
            }
539 540
        }, grad_fn->backward);

541 542 543
        for (auto&& dst : grad_fn->dsts) {
            if (!dst.grad_fn) continue;
            if (!dst.grad_fn->in_ref_keeper) {
544 545
                // after grad_fn is cleared, refcnt of subsequent grad_fn
                // could drop to 0
546 547 548 549
                dst.grad_fn->in_ref_keeper = true;
                ref_keeper.push_back(dst.grad_fn);
            }
            if (!dst.producer_record.next && dst->callback && dst->grad) {
550
                // I'm the last grad producer, invoke callback
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
                dst->callback(TensorWrapper::make(pytype, dst->grad));
            }
        }
        grad_fn->clear();
    } // finish tape loop
}

void GradKey::cleanup() {
    active = false;
    tape.clear();
    for (intrusive_list::Iterator it(free_vars_head); it;) {
        it->grad_fn.reset();
        (it++)->unlink();
    }
}

void GradKeyWrapper::backward(std::vector<TensorWrapper*> tensors, std::vector<TensorWrapper*> grads) {
    m_key->backward(std::move(tensors), std::move(grads));
}

GradKey::~GradKey() {
    cleanup();
}

575 576 577 578 579
std::unordered_map<Typeinfo*, GradRuleFn>& grad_rule_registry() {
    static std::unordered_map<Typeinfo*, GradRuleFn> registry;
    return registry;
}

580
} // namespace mgb::imperative::python