algo.cpp 12.1 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/cuda/conv_bias/algo.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 */

#include "src/cuda/conv_bias/algo.h"
#include "src/cuda/utils.h"

using namespace megdnn;
using namespace cuda;

ConvBiasForwardImpl::AlgoPack::AlgoPack() {
    non_cudnn_algos.push_back(&chanwise);
    non_cudnn_algos.push_back(&chanwise_small);

    non_cudnn_algos.push_back(&inplace_matmul);
    non_cudnn_algos.push_back(&matmul);
    non_cudnn_algos.push_back(&matmul8x8x32);
    non_cudnn_algos.push_back(&batched_matmul);

    fill_cudnn_algos();
    for (auto&& algo : cudnn_conv_bias_activations) {
        all_algos.push_back(&algo);
    }

    //! add conv+nonlinear algos
    std::vector<AlgoBase*> conv_algos;
    conv_algos.push_back(&chanwise);
    conv_algos.push_back(&chanwise_small);
    conv_algos.push_back(&chanwise8x8x32);
    for (auto&& algo : cudnn_convs) {
        conv_algos.push_back(&algo);
    }
    conv_algos.push_back(&inplace_matmul);
    conv_algos.push_back(&matmul);
    conv_algos.push_back(&matmul8x8x32);
    conv_algos.push_back(&batched_matmul);
45
    conv_algos.push_back(&group);
46 47 48 49 50

    for (auto&& algo : conv_algos) {
        all_algos.push_back(algo);
    }

51 52
    all_algos.push_back(&bfloat16);
    bfloat16_algos.push_back(&bfloat16);
53

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    size_t all_algo_size = all_algos.size();
#if CUDA_VERSION >= 10000
    fill_imma_algos();
    all_algos.push_back(&wmma_quint4x4x32);
    for (auto&& algo : int8_nchw4_imma) {
        all_algos.push_back(&algo);
    }
    for (auto&& algo : int8_chwn4_imma) {
        all_algos.push_back(&algo);
    }
    for (auto&& algo : int8_chwn4_imma_reorder_filter) {
        all_algos.push_back(&algo);
    }
    for (auto&& algo : int8_chwn4_imma_unroll_width) {
        all_algos.push_back(&algo);
    }
70 71 72 73
#if CUDA_VERSION >= 10020
    for (auto&& algo : int8_nchw32_imma) {
        all_algos.push_back(&algo);
    }
74 75 76
    for (auto&& algo : int4_int4_nchw64_imma) {
        all_algos.push_back(&algo);
    }
77 78 79
    for (auto&& algo : uint4_int4_nchw64_imma) {
        all_algos.push_back(&algo);
    }
80 81 82 83 84 85
    for (auto&& algo : int4_int4_nhwc_imma) {
        all_algos.push_back(&algo);
    }
    for (auto&& algo : uint4_int4_nhwc_imma) {
        all_algos.push_back(&algo);
    }
86
#endif
87
#endif
88 89 90 91
    fill_dp4a_algos();
    for (auto&& algo : int8_nchw4_dotprod) {
        all_algos.push_back(&algo);
    }
92
    all_algos.push_back(&int8_chwn4_dotprod);
93
    all_algos.push_back(&fallback_nchw_qs8);
94 95 96
    for (size_t i = all_algo_size; i < all_algos.size(); ++i) {
        non_cudnn_algos.push_back(all_algos[i]);
    }
97 98 99 100

    for (auto&& algo : all_algos) {
        m_all_algos_map.emplace(algo->info().desc, algo);
    }
101 102 103 104
}

ConvBiasForwardImpl::AlgoPack ConvBiasForwardImpl::sm_algo_pack;

105 106
MEGDNN_DEF_GET_ALGO_FROM_DESC(ConvBiasForwardImpl)

M
Megvii Engine Team 已提交
107
ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs(
108
        const ConvBiasForwardImpl* o, const TensorLayout& src,
M
Megvii Engine Team 已提交
109 110 111
        const TensorLayout& filter, const TensorLayout& bias,
        const TensorLayout& z, const TensorLayout& dst,
        const PreprocessedFilter* preprocessed_filter)
112 113 114
        : SizeArgs(o, src, filter,
                   o->make_canonized_filter_meta(src.ndim, filter), bias, z,
                   dst, preprocessed_filter) {}
115 116

ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs(
117
        const ConvBiasForwardImpl* o, const TensorLayout& src,
118 119
        const TensorLayout& filter, const CanonizedFilterMeta& filter_meta,
        const TensorLayout& bias, const TensorLayout& z,
M
Megvii Engine Team 已提交
120
        const TensorLayout& dst, const PreprocessedFilter* preprocessed_filter)
121 122 123 124 125 126 127 128
        : BiasForwardSizeArgs{concrete_handle(o->handle()),
                              &src,
                              &filter,
                              &bias,
                              &z,
                              filter_meta,
                              &dst,
                              o->param().nonlineMode},
M
Megvii Engine Team 已提交
129 130
          opr{o},
          preprocessed_filter{preprocessed_filter} {}
131 132 133 134

ConvBiasForwardImpl::AlgoBase::ExecArgs::ExecArgs(
        ConvBiasForwardImpl* opr, _megdnn_tensor_in src,
        _megdnn_tensor_in filter, _megdnn_tensor_in bias, _megdnn_tensor_in z,
M
Megvii Engine Team 已提交
135 136
        _megdnn_tensor_out dst, _megdnn_workspace workspace,
        const PreprocessedFilter* preprocessed_filter)
137
        : SizeArgs(opr, src.layout, filter.layout, bias.layout, z.layout,
M
Megvii Engine Team 已提交
138
                   dst.layout, preprocessed_filter),
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
          src_tensor{&src},
          filter_tensor{&filter},
          bias_tensor{&bias},
          z_tensor{&z},
          dst_tensor{&dst},
          workspace{workspace} {}

std::string ConvBiasForwardImpl::AlgoBase::SizeArgs::to_string() const {
    auto&& fm = filter_meta;
    MEGDNN_MARK_USED_VAR(fm);
    std::string nonlinear_mode_str;
    switch (nonlinear_mode) {
        case param::ConvBias::NonlineMode::RELU:
            nonlinear_mode_str = "RELU";
            break;
        case param::ConvBias::NonlineMode::SIGMOID:
            nonlinear_mode_str = "SIGMOID";
            break;
        case param::ConvBias::NonlineMode::IDENTITY:
            nonlinear_mode_str = "IDENTITY";
            break;
160 161 162
        case param::ConvBias::NonlineMode::H_SWISH:
            nonlinear_mode_str = "H_SWISH";
            break;
163 164 165
        default:
            megdnn_throw("invalid conv bias nonlinear mode");
    }
M
Megvii Engine Team 已提交
166
    return ssprintf(
167
            "src=%s, filter=%s, bias=%s, z=%s, dst=%s, "
168 169
            "pad=%ux%u, stride=%ux%u, dilate=%ux%u, xcorr=%d, dtype=%s,%s, "
            "nonlinear_mode=%s",
170 171 172 173 174
            src_layout->to_string().c_str(), filter_layout->to_string().c_str(),
            bias_layout->to_string().c_str(), z_layout->to_string().c_str(),
            dst_layout->to_string().c_str(), fm.padding[0], fm.padding[1],
            fm.stride[0], fm.stride[1], fm.dilation[0], fm.dilation[1],
            !fm.should_flip, src_layout->dtype.name(), dst_layout->dtype.name(),
M
Megvii Engine Team 已提交
175
            nonlinear_mode_str.c_str());
176 177 178
}

void ConvBiasForwardImpl::AlgoPack::fill_cudnn_algos() {
179 180 181 182
    for (auto&& algo : CudnnAlgoPack::conv_fwd_algos()) {
        cudnn_conv_bias_activations.push_back(algo.first);
        cudnn_convs.push_back(algo.first);
    }
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
}

#if CUDA_VERSION >= 10000
void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() {
    int8_chwn4_imma.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemm::MMATileSize::IMMA16x16x16});
    int8_chwn4_imma.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemm::MMATileSize::IMMA32x8x16});
    int8_chwn4_imma.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemm::MMATileSize::IMMA8x32x16});
    int8_nchw4_imma.push_back(
            {AlgoInt8NCHW4IMMAImplicitGemm::MMATileSize::IMMA16x16x16});
    int8_nchw4_imma.push_back(
            {AlgoInt8NCHW4IMMAImplicitGemm::MMATileSize::IMMA32x8x16});
    int8_nchw4_imma.push_back(
            {AlgoInt8NCHW4IMMAImplicitGemm::MMATileSize::IMMA8x32x16});
    int8_chwn4_imma_reorder_filter.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemmReorderFilter::MMATileSize::
                     IMMA16x16x16});
    int8_chwn4_imma_reorder_filter.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemmReorderFilter::MMATileSize::
                     IMMA32x8x16});
    int8_chwn4_imma_reorder_filter.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemmReorderFilter::MMATileSize::
                     IMMA8x32x16});
    int8_chwn4_imma_unroll_width.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth::MMATileSize::
                     IMMA16x16x16});
    int8_chwn4_imma_unroll_width.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth::MMATileSize::
                     IMMA32x8x16});
    int8_chwn4_imma_unroll_width.push_back(
            {AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth::MMATileSize::
                     IMMA8x32x16});
217 218 219 220 221 222 223 224 225 226 227
#if CUDA_VERSION >= 10020
    {
        using AlgoParam = AlgoInt8NCHW32IMMAImplicitGemm::AlgoParam;
        int8_nchw32_imma.emplace_back(AlgoParam{128, 256, 64, 64, 64, 64});
        int8_nchw32_imma.emplace_back(AlgoParam{256, 128, 64, 64, 64, 64});
        int8_nchw32_imma.emplace_back(AlgoParam{128, 128, 64, 64, 64, 64});
        int8_nchw32_imma.emplace_back(AlgoParam{64, 128, 64, 32, 64, 64});
        int8_nchw32_imma.emplace_back(AlgoParam{128, 64, 64, 64, 32, 64});
        int8_nchw32_imma.emplace_back(AlgoParam{64, 64, 64, 32, 32, 64});
        int8_nchw32_imma.emplace_back(AlgoParam{32, 64, 64, 32, 16, 64});
    }
228 229 230

    {
        using AlgoParam = AlgoInt4Int4NCHW64IMMAImplicitGemm::AlgoParam;
231 232 233 234 235 236 237 238 239 240 241
        int4_int4_nchw64_imma.emplace_back(
                AlgoParam{128, 128, 128, 64, 64, 128});
        int4_int4_nchw64_imma.emplace_back(
                AlgoParam{256, 128, 128, 64, 64, 128});
    }
    {
        using AlgoParam = AlgoUInt4Int4NCHW64IMMAImplicitGemm::AlgoParam;
        uint4_int4_nchw64_imma.emplace_back(
                AlgoParam{128, 128, 128, 64, 64, 128});
        uint4_int4_nchw64_imma.emplace_back(
                AlgoParam{256, 128, 128, 64, 64, 128});
242
    }
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    {
        using AlgoParam = AlgoInt4Int4NHWCIMMAImplicitGemm::AlgoParam;
        int4_int4_nhwc_imma.emplace_back(
                AlgoParam{128, 32, 64, 64, 32, 64, 32});
        int4_int4_nhwc_imma.emplace_back(
                AlgoParam{128, 32, 64, 64, 32, 64, 16});
        int4_int4_nhwc_imma.emplace_back(AlgoParam{128, 32, 64, 64, 32, 64, 8});
        int4_int4_nhwc_imma.emplace_back(
                AlgoParam{128, 64, 64, 64, 64, 64, 32});
        int4_int4_nhwc_imma.emplace_back(
                AlgoParam{128, 64, 64, 64, 64, 64, 16});
        int4_int4_nhwc_imma.emplace_back(AlgoParam{128, 64, 64, 64, 64, 64, 8});
    }
    {
        using AlgoParam = AlgoUInt4Int4NHWCIMMAImplicitGemm::AlgoParam;
        uint4_int4_nhwc_imma.emplace_back(
                AlgoParam{128, 32, 64, 64, 32, 64, 32});
        uint4_int4_nhwc_imma.emplace_back(
                AlgoParam{128, 32, 64, 64, 32, 64, 16});
        uint4_int4_nhwc_imma.emplace_back(
                AlgoParam{128, 32, 64, 64, 32, 64, 8});
        uint4_int4_nhwc_imma.emplace_back(
                AlgoParam{128, 64, 64, 64, 64, 64, 32});
        uint4_int4_nhwc_imma.emplace_back(
                AlgoParam{128, 64, 64, 64, 64, 64, 16});
        uint4_int4_nhwc_imma.emplace_back(
                AlgoParam{128, 64, 64, 64, 64, 64, 8});
    }
271
#endif
272 273 274
}
#endif

275 276
void ConvBiasForwardImpl::AlgoPack::fill_dp4a_algos() {
    using AlgoParam = AlgoInt8NCHW4DotProdImplicitGemm::AlgoParam;
277 278 279 280 281 282 283 284 285 286 287
    int8_nchw4_dotprod.emplace_back(AlgoParam{128, 128, 32, 64, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{128, 64, 32, 64, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{64, 128, 32, 64, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{64, 64, 32, 64, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{32, 64, 32, 32, 64, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{64, 32, 32, 64, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{32, 32, 32, 32, 32, 32, 2});
    int8_nchw4_dotprod.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1});
    int8_nchw4_dotprod.emplace_back(AlgoParam{16, 64, 8, 16, 64, 8, 2});
288 289
}

290 291 292 293 294 295 296
ConvBiasForwardImpl::AlgoBase*
ConvBiasForwardImpl::AlgoPack::cudnn_conv_from_enum(
        cudnnConvolutionFwdAlgo_t algo) {
    for (auto&& i : cudnn_convs) {
        if (i.cudnn_enum() == algo)
            return &i;
    }
M
Megvii Engine Team 已提交
297 298
    megdnn_throw(ssprintf("can not find cudnn conv fwd algorithm %d",
                          static_cast<int>(algo)));
299 300 301 302 303 304 305 306 307
}

ConvBiasForwardImpl::AlgoBase*
ConvBiasForwardImpl::AlgoPack::cudnn_conv_bias_act_from_enum(
        cudnnConvolutionFwdAlgo_t algo) {
    for (auto&& i : cudnn_conv_bias_activations) {
        if (i.cudnn_enum() == algo)
            return &i;
    }
M
Megvii Engine Team 已提交
308 309
    megdnn_throw(ssprintf("can not find cudnn conv bias act algorithm %d",
                          static_cast<int>(algo)));
310 311 312
}

// vim: syntax=cpp.doxygen