collective_comm.cpp 65.6 KB
Newer Older
1 2 3 4
/**
 * \file src/opr-mm/test/collective_comm.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/opr/collective_comm.h"
13
#include "megbrain/graph.h"
14 15 16 17 18 19
#include "megbrain/opr/basic_arith.h"
#include "megbrain/opr/blas.h"
#include "megbrain/opr/io.h"
#include "megbrain/opr/tensor_manip.h"
#include "megbrain/opr/utility.h"
#include "megbrain/test/helper.h"
20
#include "mock_client.h"
21 22 23 24 25

using namespace mgb;

using Mode = opr::CollectiveComm::Param::Mode;

M
Megvii Engine Team 已提交
26
SymbolVar make_all_reduce_output(const Mode mode, const SymbolVarArray& inputs) {
27 28 29 30 31 32 33 34 35 36 37
    if (mode == Mode::ALL_REDUCE_MAX)
        return opr::Elemwise::make(inputs, opr::Elemwise::Mode::MAX);
    if (mode == Mode::ALL_REDUCE_MIN)
        return opr::Elemwise::make(inputs, opr::Elemwise::Mode::MIN);
    if (mode == Mode::ALL_REDUCE_SUM)
        return opr::Elemwise::make(inputs, opr::Elemwise::Mode::ADD);
    mgb_assert(false);
}

SymbolVarArray make_reduce_scatter_sum_output(const SymbolVarArray& inputs) {
    auto rdc = opr::Elemwise::make(inputs, opr::Elemwise::Mode::ADD);
M
Megvii Engine Team 已提交
38
    return opr::Split::make(rdc, opr::Split::Options::make_average(0, inputs.size()));
39 40 41 42
}

TEST(TestOprCollectiveComm, AllReduce) {
    REQUIRE_GPU(2);
43 44 45 46

    auto run_mode = [](const Mode mode) {
        auto cn0 = CompNode::load("gpu0");
        auto cn1 = CompNode::load("gpu1");
47

48 49 50 51
        HostTensorGenerator<> gen;
        auto host_x0 = gen({28, 28});
        auto host_x1 = gen({28, 28});
        HostTensorND host_y0, host_y1, host_y_expect;
52

53
        auto client = std::make_shared<test::MockGroupClient>();
54
        auto graph = ComputingGraph::make();
55

56 57 58
        auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
        auto x1c = opr::Copy::make(x1, cn1);
59

M
Megvii Engine Team 已提交
60 61 62 63 64 65
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph.get(), "all_reduce", 2, false, 0, false, client, {mode},
                dtype::Float32(), "nccl")[0];
        auto y1 = opr::CollectiveComm::make(
                {x1c}, graph.get(), "all_reduce", 2, false, 1, false, client, {mode},
                dtype::Float32(), "nccl")[0];
66
        auto y_expect = make_all_reduce_output(mode, {x0, x1});
67

M
Megvii Engine Team 已提交
68 69 70
        auto func = graph->compile(
                {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1),
                 make_callback_copy(y_expect, host_y_expect)});
71
        func->execute();
72

73 74 75 76 77 78 79 80 81 82 83
        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    };

    run_mode(Mode::ALL_REDUCE_MAX);
    run_mode(Mode::ALL_REDUCE_MIN);
    run_mode(Mode::ALL_REDUCE_SUM);
}

TEST(TestOprCollectiveComm, AllReduceMultiThread) {
    REQUIRE_GPU(2);
84 85 86 87 88 89 90 91 92
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    auto run_mode = [&](const Mode mode) {
        HostTensorGenerator<> gen;
        auto host_x0 = gen({28, 28});
        auto host_x1 = gen({28, 28});
        HostTensorND host_y0, host_y1, host_y_expect;

93
        auto client = std::make_shared<test::MockGroupClient>();
94 95 96 97

        auto run_0 = [&]() {
            auto graph0 = ComputingGraph::make();
            auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0);
98
            auto y0 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
99 100
                    {x0}, graph0.get(), "all_reduce", 2, false, 0, false, client,
                    {mode}, dtype::Float32(), "nccl")[0];
101 102 103 104 105 106 107
            auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
            func0->execute();
        };

        auto run_1 = [&]() {
            auto graph1 = ComputingGraph::make();
            auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
108
            auto y1 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
109 110
                    {x1}, graph1.get(), "all_reduce", 2, false, 1, false, client,
                    {mode}, dtype::Float32(), "nccl")[0];
111 112 113 114 115 116 117 118 119
            auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
            func1->execute();
        };

        auto run_2 = [&]() {
            auto graph2 = ComputingGraph::make();
            auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
            auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
            auto y_expect = make_all_reduce_output(mode, {x0, x1});
M
Megvii Engine Team 已提交
120
            auto func2 = graph2->compile({make_callback_copy(y_expect, host_y_expect)});
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
            func2->execute();
        };

        std::thread t0(run_0);
        std::thread t1(run_1);
        std::thread t2(run_2);

        t0.join();
        t1.join();
        t2.join();

        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    };

    run_mode(Mode::ALL_REDUCE_MAX);
    run_mode(Mode::ALL_REDUCE_MIN);
    run_mode(Mode::ALL_REDUCE_SUM);
}

TEST(TestOprCollectiveComm, AllReduceWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y1, host_y_expect;
    HostTensorND host_out_grad0, host_out_grad1, host_out_grad_expect;

156
    auto client = std::make_shared<test::MockGroupClient>();
157

158
    auto run_0 = [&]() {  // rank 0
159 160 161 162
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
163 164
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "all_reduce", 2, false, 0, false, client,
165 166 167 168 169 170 171
                {Mode::ALL_REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

M
Megvii Engine Team 已提交
172 173 174
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad0)});
175 176 177
        func0->execute();
    };

178
    auto run_1 = [&]() {  // rank 1
179 180 181 182
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
183 184
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "all_reduce", 2, false, 1, false, client,
185 186 187 188 189 190 191
                {Mode::ALL_REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

M
Megvii Engine Team 已提交
192 193 194
        auto func1 = graph1->compile(
                {make_callback_copy(y1, host_y1),
                 make_callback_copy(g, host_out_grad1)});
195 196 197
        func1->execute();
    };

198
    auto run_2 = [&]() {  // check
199 200 201 202 203 204 205 206
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_all_reduce_output(Mode::ALL_REDUCE_SUM, {x0, x1});

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
207 208
        auto out_grad_expect =
                make_all_reduce_output(Mode::ALL_REDUCE_SUM, {grad0, grad1});
209 210

        auto func2 = graph2->compile(
211 212
                {make_callback_copy(y_expect, host_y_expect),
                 make_callback_copy(out_grad_expect, host_out_grad_expect)});
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad1);
}

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
TEST(TestOprCollectiveComm, AllReduceWithGradThisNodeOnly) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y1, host_y_expect;
    HostTensorND host_out_grad0, host_out_grad1, host_out_grad_expect;

    auto client = std::make_shared<test::MockGroupClient>();

    auto run_0 = [&]() {  // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "all_reduce", 2, false, 0, true, client,
                {Mode::ALL_REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

M
Megvii Engine Team 已提交
261 262 263
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad0)});
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
        func0->execute();
    };

    auto run_1 = [&]() {  // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "all_reduce", 2, false, 1, true, client,
                {Mode::ALL_REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

M
Megvii Engine Team 已提交
281 282 283
        auto func1 = graph1->compile(
                {make_callback_copy(y1, host_y1),
                 make_callback_copy(g, host_out_grad1)});
284 285 286 287 288 289 290 291 292 293
        func1->execute();
    };

    auto run_2 = [&]() {  // check
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_all_reduce_output(Mode::ALL_REDUCE_SUM, {x0, x1});

M
Megvii Engine Team 已提交
294
        auto func2 = graph2->compile({make_callback_copy(y_expect, host_y_expect)});
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(*host_grad0, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(*host_grad1, host_out_grad1);
}

312 313 314 315 316 317 318 319 320 321
TEST(TestOprCollectiveComm, AllGather) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

322
    auto client = std::make_shared<test::MockGroupClient>();
323 324 325 326 327 328
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x1c = opr::Copy::make(x1, cn1);

329 330 331 332 333 334
    auto y0 = opr::CollectiveComm::make(
            {x0}, graph.get(), "all_gather", 2, false, 0, false, client,
            {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make(
            {x1c}, graph.get(), "all_gather", 2, false, 1, false, client,
            {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
335 336
    auto y_expect = opr::Concat::make({x0, x1}, 0);

M
Megvii Engine Team 已提交
337 338 339
    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1),
             make_callback_copy(y_expect, host_y_expect)});
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
}

TEST(TestOprCollectiveComm, AllGatherMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

356
    auto client = std::make_shared<test::MockGroupClient>();
357

358
    auto run_0 = [&]() {  // rank 0
359 360
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
361 362
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "all_gather", 2, false, 0, false, client,
363 364 365 366 367
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

368
    auto run_1 = [&]() {  // rank 1
369 370
        auto graph1 = ComputingGraph::make();
        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
371 372
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "all_gather", 2, false, 1, false, client,
373 374 375 376 377
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
        func1->execute();
    };

378
    auto run_2 = [&]() {  // check
379 380 381 382
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = opr::Concat::make({x0, x1}, 0);
M
Megvii Engine Team 已提交
383
        auto func2 = graph2->compile({make_callback_copy(y_expect, host_y_expect)});
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
}

TEST(TestOprCollectiveComm, AllGatherWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({10});
    auto host_x1 = gen({10});
    auto host_grad0 = gen({20});
    auto host_grad1 = gen({20});

    HostTensorND host_y0, host_y1, host_y_expect;
    HostTensorND host_out_grad0, host_out_grad1;
    HostTensorND host_out_grad0_expect, host_out_grad1_expect;

414
    auto client = std::make_shared<test::MockGroupClient>();
415

416
    auto run_0 = [&]() {  // rank 0
417 418 419 420
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
421 422
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "all_gather", 2, false, 0, false, client,
423 424 425 426 427 428 429
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

M
Megvii Engine Team 已提交
430 431 432
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad0)});
433 434 435
        func0->execute();
    };

436
    auto run_1 = [&]() {  // rank 1
437 438 439 440
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
441 442
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "all_gather", 2, false, 1, false, client,
443 444 445 446 447 448 449
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

M
Megvii Engine Team 已提交
450 451 452
        auto func1 = graph1->compile(
                {make_callback_copy(y1, host_y1),
                 make_callback_copy(g, host_out_grad1)});
453 454 455
        func1->execute();
    };

456
    auto run_2 = [&]() {  // check
457 458 459 460 461 462 463 464 465 466 467
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = opr::Concat::make({x0, x1}, 0);

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = make_reduce_scatter_sum_output({grad0, grad1});

        auto func2 = graph2->compile(
468 469
                {make_callback_copy(y_expect, host_y_expect),
                 make_callback_copy(out_grad_expect[0], host_out_grad0_expect),
M
Megvii Engine Team 已提交
470
                 make_callback_copy(out_grad_expect[1], host_out_grad1_expect)});
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad0_expect, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad1_expect, host_out_grad1);
}

TEST(TestOprCollectiveComm, AllGatherWithGradThisNodeOnly) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({10});
    auto host_x1 = gen({10});
    auto host_grad0 = gen({20});
    auto host_grad1 = gen({20});

    HostTensorND host_y0, host_y1, host_y_expect;
    HostTensorND host_out_grad0, host_out_grad1;
    HostTensorND host_out_grad0_expect, host_out_grad1_expect;

    auto client = std::make_shared<test::MockGroupClient>();

    auto run_0 = [&]() {  // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "all_gather", 2, false, 0, true, client,
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

M
Megvii Engine Team 已提交
519 520 521
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad0)});
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
        func0->execute();
    };

    auto run_1 = [&]() {  // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "all_gather", 2, false, 1, true, client,
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

M
Megvii Engine Team 已提交
539 540 541
        auto func1 = graph1->compile(
                {make_callback_copy(y1, host_y1),
                 make_callback_copy(g, host_out_grad1)});
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
        func1->execute();
    };

    auto run_2 = [&]() {  // check
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = opr::Concat::make({x0, x1}, 0);

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);

        opr::Subtensor::IndexDesc axis0;
        auto shape0 = opr::GetVarShape::make(grad0, 0);
        axis0.push_back({0, 0, shape0 / 2});
        auto out_grad0_expect = opr::Subtensor::make(grad0, axis0);

        opr::Subtensor::IndexDesc axis1;
        axis1.push_back({0, shape0 / 2});
        auto out_grad1_expect = opr::Subtensor::make(grad1, axis1);

        auto func2 = graph2->compile(
                {make_callback_copy(y_expect, host_y_expect),
                 make_callback_copy(out_grad0_expect, host_out_grad0_expect),
                 make_callback_copy(out_grad1_expect, host_out_grad1_expect)});
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad0_expect, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad1_expect, host_out_grad1);
}

TEST(TestOprCollectiveComm, ReduceScatterSum) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

590 591 592 593 594
    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y0_expect, host_y1_expect;

595
    auto client = std::make_shared<test::MockGroupClient>();
596 597 598 599 600 601
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x1c = opr::Copy::make(x1, cn1);

602 603 604 605
    auto y0 = opr::CollectiveComm::make(
            {x0}, graph.get(), "reduce_scatter_sum", 2, false, 0, false, client,
            {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
606 607
            {x1c}, graph.get(), "reduce_scatter_sum", 2, false, 1, false, client,
            {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
608 609
    auto y_expect = make_reduce_scatter_sum_output({x0, x1});

610 611 612 613
    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1),
             make_callback_copy(y_expect[0], host_y0_expect),
             make_callback_copy(y_expect[1], host_y1_expect)});
614 615 616 617 618 619 620 621 622 623 624
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y1_expect, host_y1);
}

TEST(TestOprCollectiveComm, ReduceScatterSumMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

625 626 627 628 629
    HostTensorGenerator<> gen;
    auto host_x0 = gen({8});
    auto host_x1 = gen({8});
    HostTensorND host_y0, host_y1, host_y0_expect, host_y1_expect;

630
    auto client = std::make_shared<test::MockGroupClient>();
631

632
    auto run_0 = [&]() {  // rank 0
633 634
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
635
        auto y0 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
636 637
                {x0}, graph0.get(), "reduce_scatter_sum", 2, false, 0, false, client,
                {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
638 639 640 641
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

642
    auto run_1 = [&]() {  // rank 1
643 644
        auto graph1 = ComputingGraph::make();
        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
645
        auto y1 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
646 647
                {x1}, graph1.get(), "reduce_scatter_sum", 2, false, 1, false, client,
                {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
648 649 650 651
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
        func1->execute();
    };

652
    auto run_2 = [&]() {  // check
653 654 655 656 657
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_reduce_scatter_sum_output({x0, x1});
        auto func = graph2->compile(
658 659
                {make_callback_copy(y_expect[0], host_y0_expect),
                 make_callback_copy(y_expect[1], host_y1_expect)});
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
        func->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y1_expect, host_y1);
}

TEST(TestOprCollectiveComm, ReduceScatterSumWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({20});
    auto host_x1 = gen({20});
    auto host_grad0 = gen({10});
    auto host_grad1 = gen({10});

    HostTensorND host_y0, host_y1, host_y0_expect, host_y1_expect;
    HostTensorND host_out_grad0, host_out_grad1, host_out_grad_expect;

689
    auto client = std::make_shared<test::MockGroupClient>();
690

691
    auto run_0 = [&]() {  // rank 0
692 693 694 695
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
696
        auto y0 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
697 698
                {x0}, graph0.get(), "reduce_scatter_sum", 2, false, 0, false, client,
                {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
699 700 701 702 703 704
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

M
Megvii Engine Team 已提交
705 706 707
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad0)});
708 709 710
        func0->execute();
    };

711
    auto run_1 = [&]() {  // rank 1
712 713 714 715
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
716
        auto y1 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
717 718
                {x1}, graph1.get(), "reduce_scatter_sum", 2, false, 1, false, client,
                {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
719 720 721 722 723 724
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

M
Megvii Engine Team 已提交
725 726 727
        auto func1 = graph1->compile(
                {make_callback_copy(y1, host_y1),
                 make_callback_copy(g, host_out_grad1)});
728 729 730
        func1->execute();
    };

731
    auto run_2 = [&]() {  // check
732 733 734 735 736 737 738 739 740 741 742
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_reduce_scatter_sum_output({x0, x1});

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = opr::Concat::make({grad0, grad1}, 0);

        auto func2 = graph2->compile(
743 744 745
                {make_callback_copy(y_expect[0], host_y0_expect),
                 make_callback_copy(y_expect[1], host_y1_expect),
                 make_callback_copy(out_grad_expect, host_out_grad_expect)});
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y1_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad1);
}

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
TEST(TestOprCollectiveComm, ReduceScatterSumWithGradThisNodeOnly) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    HostTensorGenerator<> zeros(0, 0);
    auto host_x0 = gen({20});
    auto host_x1 = gen({20});
    auto host_grad0 = gen({10});
    auto host_grad1 = gen({10});
    auto host_zero_grad = zeros({10});

    HostTensorND host_y0, host_y1, host_y0_expect, host_y1_expect;
    HostTensorND host_out_grad0, host_out_grad1, host_out_grad_expect0,
            host_out_grad_expect1;

    auto client = std::make_shared<test::MockGroupClient>();

    auto run_0 = [&]() {  // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto y0 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
788 789
                {x0}, graph0.get(), "reduce_scatter_sum", 2, false, 0, true, client,
                {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
790 791 792 793 794 795
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

M
Megvii Engine Team 已提交
796 797 798
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad0)});
799 800 801 802 803 804 805 806 807
        func0->execute();
    };

    auto run_1 = [&]() {  // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
        auto y1 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
808 809
                {x1}, graph1.get(), "reduce_scatter_sum", 2, false, 1, true, client,
                {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
810 811 812 813 814 815
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

M
Megvii Engine Team 已提交
816 817 818
        auto func1 = graph1->compile(
                {make_callback_copy(y1, host_y1),
                 make_callback_copy(g, host_out_grad1)});
819 820 821 822 823 824 825 826 827 828 829 830
        func1->execute();
    };

    auto run_2 = [&]() {  // check
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_reduce_scatter_sum_output({x0, x1});

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
M
Megvii Engine Team 已提交
831
        auto zero_grad = opr::Host2DeviceCopy::make(*graph2, host_zero_grad, cn0);
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
        auto out_grad_expect0 = opr::Concat::make({grad0, zero_grad}, 0);
        auto out_grad_expect1 = opr::Concat::make({zero_grad, grad1}, 0);

        auto func2 = graph2->compile(
                {make_callback_copy(y_expect[0], host_y0_expect),
                 make_callback_copy(y_expect[1], host_y1_expect),
                 make_callback_copy(out_grad_expect0, host_out_grad_expect0),
                 make_callback_copy(out_grad_expect1, host_out_grad_expect1)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y1_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect0, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect1, host_out_grad1);
}

857 858 859 860 861
TEST(TestOprCollectiveComm, ReduceSum) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

862 863 864 865 866
    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

867
    auto client = std::make_shared<test::MockGroupClient>();
868 869 870 871 872 873
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x1c = opr::Copy::make(x1, cn1);

874 875 876 877 878 879
    auto y0 = opr::CollectiveComm::make(
            {x0}, graph.get(), "reduce_sum", 2, true, 0, false, client,
            {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make(
            {x1c}, graph.get(), "reduce_sum", 2, false, 1, false, client,
            {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
880 881
    auto y_expect = x0 + x1;

M
Megvii Engine Team 已提交
882 883 884
    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1),
             make_callback_copy(y_expect, host_y_expect)});
885 886 887 888 889 890 891 892 893 894
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
}

TEST(TestOprCollectiveComm, ReduceSumMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

895 896 897 898 899
    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y_expect;

900
    auto client = std::make_shared<test::MockGroupClient>();
901

902
    auto run_0 = [&]() {  // rank 0
903 904
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
905 906
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "reduce", 2, true, 0, false, client,
907 908 909 910 911
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

912
    auto run_1 = [&]() {  // rank 1
913 914
        auto graph1 = ComputingGraph::make();
        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
915 916
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "reduce", 2, false, 1, false, client,
917 918 919 920 921
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        auto func1 = graph1->compile({{y1, nullptr}});
        func1->execute();
    };

922
    auto run_2 = [&]() {  // check
923 924 925 926
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = x0 + x1;
M
Megvii Engine Team 已提交
927
        auto func2 = graph2->compile({make_callback_copy(y_expect, host_y_expect)});
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
}

TEST(TestOprCollectiveComm, ReduceSumWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({28, 28});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad = gen(shape);

    HostTensorND host_y0, host_y0_expect, host_out_grad0, host_out_grad1;

955
    auto client = std::make_shared<test::MockGroupClient>();
956

957
    auto run_0 = [&]() {  // rank 0
958 959 960 961
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
962 963
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "reduce", 2, true, 0, false, client,
964 965 966 967 968 969 970
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad = opr::Host2DeviceCopy::make(*graph0, host_grad, cn0);
        auto loss = opr::Dot::make(y0, grad);
        auto g = opr::VirtualGrad::make(loss, x0);

M
Megvii Engine Team 已提交
971 972 973
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad0)});
974 975 976
        func0->execute();
    };

977
    auto run_1 = [&]() {  // rank 1
978 979 980 981
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
982 983
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "reduce", 2, false, 1, false, client,
984 985 986 987 988 989 990
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad = opr::Host2DeviceCopy::make(*graph1, gen({1}), cn1);
        auto loss = opr::Dot::make(y1, grad);
        auto g = opr::VirtualGrad::make(loss, x1);

M
Megvii Engine Team 已提交
991 992
        auto func1 =
                graph1->compile({{y1, nullptr}, make_callback_copy(g, host_out_grad1)});
993 994 995
        func1->execute();
    };

996
    auto run_2 = [&]() {  // check
997 998 999 1000
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y0_expect = x0 + x1;
M
Megvii Engine Team 已提交
1001
        auto func2 = graph2->compile({make_callback_copy(y0_expect, host_y0_expect)});
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_grad, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(*host_grad, host_out_grad1);
}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
TEST(TestOprCollectiveComm, Gather) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

    auto client = std::make_shared<test::MockGroupClient>();
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x1c = opr::Copy::make(x1, cn1);

M
Megvii Engine Team 已提交
1035 1036 1037 1038 1039 1040
    auto y0 = opr::CollectiveComm::make(
            {x0}, graph.get(), "gather", 2, true, 0, false, client, {Mode::GATHER},
            dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make(
            {x1c}, graph.get(), "gather", 2, false, 1, false, client, {Mode::GATHER},
            dtype::Float32(), "nccl")[0];
1041 1042
    auto y_expect = opr::Concat::make({x0, x1}, 0);

M
Megvii Engine Team 已提交
1043 1044 1045
    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1),
             make_callback_copy(y_expect, host_y_expect)});
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
}

TEST(TestOprCollectiveComm, GatherMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y_expect;

    auto client = std::make_shared<test::MockGroupClient>();

1063
    auto run_0 = [&]() {  // rank 0
1064 1065
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
1066
        auto y0 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
1067 1068
                {x0}, graph0.get(), "gather", 2, true, 0, false, client, {Mode::GATHER},
                dtype::Float32(), "nccl")[0];
1069 1070 1071 1072
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

1073
    auto run_1 = [&]() {  // rank 1
1074 1075
        auto graph1 = ComputingGraph::make();
        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
1076 1077
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "gather", 2, false, 1, false, client,
1078 1079 1080 1081 1082
                {Mode::GATHER}, dtype::Float32(), "nccl")[0];
        auto func1 = graph1->compile({{y1, nullptr}});
        func1->execute();
    };

1083
    auto run_2 = [&]() {  // check
1084 1085 1086 1087
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = opr::Concat::make({x0, x1}, 0);
M
Megvii Engine Team 已提交
1088
        auto func2 = graph2->compile({make_callback_copy(y_expect, host_y_expect)});
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
}

TEST(TestOprCollectiveComm, GatherWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({28, 28});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y0_expect, host_out_grad0, host_out_grad1;

    auto client = std::make_shared<test::MockGroupClient>();

1119
    auto run_0 = [&]() {  // rank 0
1120 1121 1122 1123
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
1124
        auto y0 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
1125 1126
                {x0}, graph0.get(), "gather", 2, true, 0, false, client, {Mode::GATHER},
                dtype::Float32(), "nccl")[0];
1127 1128 1129 1130 1131 1132 1133 1134
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph0, host_grad1, cn0);
        auto grad = opr::Concat::make({grad0, grad1}, 0);
        auto loss = opr::Dot::make(y0, grad);
        auto g = opr::VirtualGrad::make(loss, x0);

M
Megvii Engine Team 已提交
1135 1136 1137
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad0)});
1138 1139 1140
        func0->execute();
    };

1141
    auto run_1 = [&]() {  // rank 1
1142 1143 1144 1145
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
1146 1147
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "gather", 2, false, 1, false, client,
1148 1149 1150 1151 1152 1153 1154
                {Mode::GATHER}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad = opr::Host2DeviceCopy::make(*graph1, gen({1}), cn1);
        auto loss = opr::Dot::make(y1, grad);
        auto g = opr::VirtualGrad::make(loss, x1);

M
Megvii Engine Team 已提交
1155 1156
        auto func1 =
                graph1->compile({{y1, nullptr}, make_callback_copy(g, host_out_grad1)});
1157 1158 1159
        func1->execute();
    };

1160
    auto run_2 = [&]() {  // check
1161 1162 1163 1164
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y0_expect = opr::Concat::make({x0, x1}, 0);
M
Megvii Engine Team 已提交
1165
        auto func2 = graph2->compile({make_callback_copy(y0_expect, host_y0_expect)});
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_grad0, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(*host_grad1, host_out_grad1);
}

1182 1183 1184 1185
TEST(TestOprCollectiveComm, Broadcast) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");
1186 1187 1188 1189 1190

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

1191
    auto client = std::make_shared<test::MockGroupClient>();
1192 1193 1194
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
M
Megvii Engine Team 已提交
1195 1196 1197 1198 1199 1200 1201
    auto y0 = opr::CollectiveComm::make(
            {x0}, graph.get(), "broadcast", 2, true, 0, false, client,
            {Mode::BROADCAST}, dtype::Float32(), "nccl")[0];
    auto y_dev = std::make_shared<DeviceTensorND>(DeviceTensorND()
                                                          .comp_node(cn1)
                                                          .dtype(dtype::Float32())
                                                          .resize(host_x0->shape()));
1202 1203 1204 1205 1206 1207
    auto y1 = opr::CollectiveComm::make(
            {}, graph.get(), "broadcast", 2, false, 1, false, client, {y_dev},
            {Mode::BROADCAST}, dtype::Float32(), "nccl", {cn1})[0];

    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
    func->execute();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y1);
}

TEST(TestOprCollectiveComm, BroadcastMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");
1218 1219 1220 1221 1222

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    HostTensorND host_y0, host_y1;

1223
    auto client = std::make_shared<test::MockGroupClient>();
1224

1225
    auto run_0 = [&]() {  // rank 0
1226 1227
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
1228 1229
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "broadcast", 2, true, 0, false, client,
1230 1231 1232 1233 1234
                {Mode::BROADCAST}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

1235
    auto run_1 = [&]() {  // rank 1
1236
        auto graph1 = ComputingGraph::make();
M
Megvii Engine Team 已提交
1237 1238 1239 1240 1241
        auto y_dev =
                std::make_shared<DeviceTensorND>(DeviceTensorND()
                                                         .comp_node(cn1)
                                                         .dtype(dtype::Float32())
                                                         .resize(host_x0->shape()));
1242
        auto y1 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
1243 1244
                {}, graph1.get(), "broadcast", 2, false, 1, false, client, {y_dev},
                {Mode::BROADCAST}, dtype::Float32(), "nccl", {cn1})[0];
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
        func1->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);

    t0.join();
    t1.join();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y1);
}

TEST(TestOprCollectiveComm, BroadcastWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({28, 28});
    auto host_x0 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y1, host_out_grad, host_out_grad_expect;

1272
    auto client = std::make_shared<test::MockGroupClient>();
1273

1274
    auto run_0 = [&]() {  // rank 0
1275 1276 1277 1278
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
1279 1280
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "broadcast", 2, true, 0, false, client,
1281 1282 1283 1284 1285 1286 1287
                {Mode::BROADCAST}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

M
Megvii Engine Team 已提交
1288 1289 1290
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad)});
1291 1292 1293
        func0->execute();
    };

1294
    auto run_1 = [&]() {  // rank 1
1295 1296 1297
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

1298 1299
        auto y1 = opr::CollectiveComm::make(
                {}, graph1.get(), "broadcast", 2, false, 1, false, client,
1300 1301 1302
                {Mode::BROADCAST}, dtype::Float32(), "nccl", {cn1})[0];

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
1303
        auto g = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
1304 1305
                {grad1}, graph1.get(), "broadcast:grad", 2, false, 1, false, client,
                Mode::REDUCE_SUM, dtype::Float32(), "nccl")[0];
1306 1307
        g.node()->owner_opr()->node_prop().attribute().priority = 1;

M
Megvii Engine Team 已提交
1308
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1), {g, nullptr}});
1309 1310 1311
        func1->execute();
    };

1312
    auto run_2 = [&]() {  // check
1313 1314 1315 1316
        auto graph2 = ComputingGraph::make();
        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = grad0 + grad1;
1317 1318
        auto func2 = graph2->compile(
                {make_callback_copy(out_grad_expect, host_out_grad_expect)});
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad);
}
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

TEST(TestOprCollectiveComm, Scatter) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1;

    auto client = std::make_shared<test::MockGroupClient>();
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x = opr::Concat::make({x0, x1}, 0);
M
Megvii Engine Team 已提交
1351 1352 1353 1354 1355 1356
    auto y0 = opr::CollectiveComm::make(
            {x}, graph.get(), "scatter", 2, true, 0, false, client, {Mode::SCATTER},
            dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make(
            {}, graph.get(), "scatter", 2, false, 1, false, client, {Mode::SCATTER},
            dtype::Float32(), "nccl", {cn1})[0];
1357

1358 1359
    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
    func->execute();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x1, host_y1);
}

TEST(TestOprCollectiveComm, ScatterMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1;

    auto client = std::make_shared<test::MockGroupClient>();

1378
    auto run_0 = [&]() {  // rank 0
1379 1380 1381 1382
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph0, host_x1, cn0);
        auto x = opr::Concat::make({x0, x1}, 0);
1383 1384
        auto y0 = opr::CollectiveComm::make(
                {x}, graph0.get(), "scatter", 2, true, 0, false, client,
1385 1386 1387 1388 1389
                {Mode::SCATTER}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

1390
    auto run_1 = [&]() {  // rank 1
1391
        auto graph1 = ComputingGraph::make();
1392 1393
        auto y1 = opr::CollectiveComm::make(
                {}, graph1.get(), "scatter", 2, false, 1, false, client,
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
                {Mode::SCATTER}, dtype::Float32(), "nccl", {cn1})[0];
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
        func1->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);

    t0.join();
    t1.join();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x1, host_y1);
}

TEST(TestOprCollectiveComm, ScatterWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({28, 28});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y1, host_out_grad, host_out_grad_expect;

    auto client = std::make_shared<test::MockGroupClient>();

1425
    auto run_0 = [&]() {  // rank 0
1426 1427 1428 1429 1430 1431
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph0, host_x1, cn0);
        auto x = opr::Concat::make({x0, x1}, 0);
1432 1433
        auto y0 = opr::CollectiveComm::make(
                {x}, graph0.get(), "scatter", 2, true, 0, false, client,
1434 1435 1436 1437 1438 1439 1440
                {Mode::SCATTER}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x);

M
Megvii Engine Team 已提交
1441 1442 1443
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad)});
1444 1445 1446
        func0->execute();
    };

1447
    auto run_1 = [&]() {  // rank 1
1448 1449 1450
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

1451 1452
        auto y1 = opr::CollectiveComm::make(
                {}, graph1.get(), "scatter", 2, false, 1, false, client,
1453 1454 1455
                {Mode::SCATTER}, dtype::Float32(), "nccl", {cn1})[0];

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
1456
        auto g = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
1457 1458
                {grad1}, graph1.get(), "scatter:grad", 2, false, 1, false, client,
                Mode::GATHER, dtype::Float32(), "nccl")[0];
1459 1460
        g.node()->owner_opr()->node_prop().attribute().priority = 1;

M
Megvii Engine Team 已提交
1461
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1), {g, nullptr}});
1462 1463 1464
        func1->execute();
    };

1465
    auto run_2 = [&]() {  // check
1466 1467 1468 1469
        auto graph2 = ComputingGraph::make();
        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = opr::Concat::make({grad0, grad1}, 0);
1470 1471
        auto func2 = graph2->compile(
                {make_callback_copy(out_grad_expect, host_out_grad_expect)});
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x1, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad);
}

TEST(TestOprCollectiveComm, AllToAll) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x00 = gen(shape);
    auto host_x01 = gen(shape);
    auto host_x10 = gen(shape);
    auto host_x11 = gen(shape);
    HostTensorND host_y0, host_y1, host_expect_y0, host_expect_y1;

    auto client = std::make_shared<test::MockGroupClient>();
    auto graph = ComputingGraph::make();

    auto x00 = opr::Host2DeviceCopy::make(*graph, host_x00, cn0);
    auto x01 = opr::Host2DeviceCopy::make(*graph, host_x01, cn0);
    auto x0 = opr::Concat::make({x00, x01}, 0);
    auto x10 = opr::Host2DeviceCopy::make(*graph, host_x10, cn1);
    auto x11 = opr::Host2DeviceCopy::make(*graph, host_x11, cn1);
    auto x1 = opr::Concat::make({x10, x11}, 0);

    auto x01c = opr::Copy::make(x01, {cn1});
    auto x10c = opr::Copy::make(x10, {cn0});

    auto expect_y0 = opr::Concat::make({x00, x10c}, 0);
    auto expect_y1 = opr::Concat::make({x01c, x11}, 0);

M
Megvii Engine Team 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
    auto y0 = opr::CollectiveComm::make(
            {x0}, graph.get(), "alltoall", 2, false, 0, false, client,
            {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make(
            {x1}, graph.get(), "alltoall", 2, false, 1, false, client,
            {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];

    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1),
             make_callback_copy(expect_y0, host_expect_y0),
             make_callback_copy(expect_y1, host_expect_y1)});
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_expect_y0, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_expect_y1, host_y1);
}

TEST(TestOprCollectiveComm, AllToAllMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x00 = gen(shape);
    auto host_x01 = gen(shape);
    auto host_x10 = gen(shape);
    auto host_x11 = gen(shape);
    HostTensorND host_y0, host_y1, host_expect_y0, host_expect_y1;

    auto client = std::make_shared<test::MockGroupClient>();

1549
    auto run_0 = [&]() {  // rank 0
1550 1551 1552 1553 1554 1555
        auto graph0 = ComputingGraph::make();
        auto x00 = opr::Host2DeviceCopy::make(*graph0, host_x00, cn0);
        auto x01 = opr::Host2DeviceCopy::make(*graph0, host_x01, cn0);
        auto x10 = opr::Host2DeviceCopy::make(*graph0, host_x10, cn0);
        auto x0 = opr::Concat::make({x00, x01}, 0);
        auto expect_y0 = opr::Concat::make({x00, x10}, 0);
1556 1557
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "alltoall", 2, false, 0, false, client,
1558 1559 1560 1561 1562 1563 1564
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(expect_y0, host_expect_y0)});
        func0->execute();
    };

1565
    auto run_1 = [&]() {  // rank 1
1566 1567 1568 1569 1570 1571
        auto graph1 = ComputingGraph::make();
        auto x10 = opr::Host2DeviceCopy::make(*graph1, host_x10, cn1);
        auto x11 = opr::Host2DeviceCopy::make(*graph1, host_x11, cn1);
        auto x01 = opr::Host2DeviceCopy::make(*graph1, host_x01, cn1);
        auto x1 = opr::Concat::make({x10, x11}, 0);
        auto expect_y1 = opr::Concat::make({x01, x11}, 0);
1572 1573
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "alltoall", 2, false, 1, false, client,
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        auto func1 = graph1->compile(
                {make_callback_copy(y1, host_y1),
                 make_callback_copy(expect_y1, host_expect_y1)});
        func1->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);

    t0.join();
    t1.join();

    MGB_ASSERT_TENSOR_EQ(host_expect_y0, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_expect_y1, host_y1);
}

TEST(TestOprCollectiveComm, AllToAllWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x00 = gen(shape);
    auto host_x01 = gen(shape);
    auto host_x10 = gen(shape);
    auto host_x11 = gen(shape);
    auto host_grad00 = gen(shape);
    auto host_grad01 = gen(shape);
    auto host_grad10 = gen(shape);
    auto host_grad11 = gen(shape);

    HostTensorND host_y0, host_y1, host_expect_y0, host_expect_y1, host_grad0,
            host_grad1, host_expect_grad0, host_expect_grad1;

    auto client = std::make_shared<test::MockGroupClient>();

1612
    auto run_0 = [&]() {  // rank 0
1613 1614 1615 1616 1617 1618 1619 1620
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x00 = opr::Host2DeviceCopy::make(*graph0, host_x00, cn0);
        auto x01 = opr::Host2DeviceCopy::make(*graph0, host_x01, cn0);
        auto x10 = opr::Host2DeviceCopy::make(*graph0, host_x10, cn0);
        auto x0 = opr::Concat::make({x00, x01}, 0);
        auto expect_y0 = opr::Concat::make({x00, x10}, 0);
1621 1622
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "alltoall", 2, false, 0, false, client,
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad00 = opr::Host2DeviceCopy::make(*graph0, host_grad00, cn0);
        auto grad10 = opr::Host2DeviceCopy::make(*graph0, host_grad10, cn0);
        auto grad_y0 = opr::Concat::make({grad00, grad10}, 0);
        auto loss = opr::Dot::make(y0, grad_y0);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile(
M
Megvii Engine Team 已提交
1633
                {make_callback_copy(y0, host_y0), make_callback_copy(g, host_grad0),
1634
                 make_callback_copy(expect_y0, host_expect_y0)});
1635 1636 1637
        func0->execute();
    };

1638
    auto run_1 = [&]() {  // rank 1
1639 1640 1641 1642 1643 1644 1645 1646
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x10 = opr::Host2DeviceCopy::make(*graph1, host_x10, cn1);
        auto x11 = opr::Host2DeviceCopy::make(*graph1, host_x11, cn1);
        auto x01 = opr::Host2DeviceCopy::make(*graph1, host_x01, cn1);
        auto x1 = opr::Concat::make({x10, x11}, 0);
        auto expect_y1 = opr::Concat::make({x01, x11}, 0);
1647 1648
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "alltoall", 2, false, 1, false, client,
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad01 = opr::Host2DeviceCopy::make(*graph1, host_grad01, cn1);
        auto grad11 = opr::Host2DeviceCopy::make(*graph1, host_grad11, cn1);
        auto grad_y1 = opr::Concat::make({grad01, grad11}, 0);
        auto loss = opr::Dot::make(y1, grad_y1);
        auto g = opr::VirtualGrad::make(loss, x1);

        auto func0 = graph1->compile(
M
Megvii Engine Team 已提交
1659
                {make_callback_copy(y1, host_y1), make_callback_copy(g, host_grad1),
1660
                 make_callback_copy(expect_y1, host_expect_y1)});
1661 1662 1663
        func0->execute();
    };

1664
    auto run_2 = [&]() {  // check
1665 1666 1667 1668 1669 1670 1671
        auto graph2 = ComputingGraph::make();
        auto grad00 = opr::Host2DeviceCopy::make(*graph2, host_grad00, cn0);
        auto grad01 = opr::Host2DeviceCopy::make(*graph2, host_grad01, cn0);
        auto grad10 = opr::Host2DeviceCopy::make(*graph2, host_grad10, cn0);
        auto grad11 = opr::Host2DeviceCopy::make(*graph2, host_grad11, cn0);
        auto out_grad0_expect = opr::Concat::make({grad00, grad01}, 0);
        auto out_grad1_expect = opr::Concat::make({grad10, grad11}, 0);
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
        auto func2 = graph2->compile(
                {make_callback_copy(out_grad0_expect, host_expect_grad0),
                 make_callback_copy(out_grad1_expect, host_expect_grad1)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_expect_y0, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_expect_y1, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_expect_grad0, host_grad0);
    MGB_ASSERT_TENSOR_EQ(host_expect_grad1, host_grad1);
}

TEST(TestOprCollectiveComm, AllToAllWithGradThisNodeOnly) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    HostTensorGenerator<> zeros(0, 0);
    TensorShape shape({10});
    auto host_x00 = gen(shape);
    auto host_x01 = gen(shape);
    auto host_x10 = gen(shape);
    auto host_x11 = gen(shape);
    auto host_grad00 = gen(shape);
    auto host_grad01 = gen(shape);
    auto host_grad10 = gen(shape);
    auto host_grad11 = gen(shape);
    auto host_zero_grad = zeros(shape);

    HostTensorND host_y0, host_y1, host_expect_y0, host_expect_y1, host_grad0,
            host_grad1, host_expect_grad0, host_expect_grad1;

    auto client = std::make_shared<test::MockGroupClient>();

    auto run_0 = [&]() {  // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x00 = opr::Host2DeviceCopy::make(*graph0, host_x00, cn0);
        auto x01 = opr::Host2DeviceCopy::make(*graph0, host_x01, cn0);
        auto x10 = opr::Host2DeviceCopy::make(*graph0, host_x10, cn0);
        auto x0 = opr::Concat::make({x00, x01}, 0);
        auto expect_y0 = opr::Concat::make({x00, x10}, 0);
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "alltoall", 2, false, 0, true, client,
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad00 = opr::Host2DeviceCopy::make(*graph0, host_grad00, cn0);
        auto grad10 = opr::Host2DeviceCopy::make(*graph0, host_grad10, cn0);
        auto grad_y0 = opr::Concat::make({grad00, grad10}, 0);
        auto loss = opr::Dot::make(y0, grad_y0);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile(
M
Megvii Engine Team 已提交
1736
                {make_callback_copy(y0, host_y0), make_callback_copy(g, host_grad0),
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
                 make_callback_copy(expect_y0, host_expect_y0)});
        func0->execute();
    };

    auto run_1 = [&]() {  // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x10 = opr::Host2DeviceCopy::make(*graph1, host_x10, cn1);
        auto x11 = opr::Host2DeviceCopy::make(*graph1, host_x11, cn1);
        auto x01 = opr::Host2DeviceCopy::make(*graph1, host_x01, cn1);
        auto x1 = opr::Concat::make({x10, x11}, 0);
        auto expect_y1 = opr::Concat::make({x01, x11}, 0);
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "alltoall", 2, false, 1, true, client,
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad01 = opr::Host2DeviceCopy::make(*graph1, host_grad01, cn1);
        auto grad11 = opr::Host2DeviceCopy::make(*graph1, host_grad11, cn1);
        auto grad_y1 = opr::Concat::make({grad01, grad11}, 0);
        auto loss = opr::Dot::make(y1, grad_y1);
        auto g = opr::VirtualGrad::make(loss, x1);

        auto func0 = graph1->compile(
M
Megvii Engine Team 已提交
1762
                {make_callback_copy(y1, host_y1), make_callback_copy(g, host_grad1),
1763 1764 1765 1766 1767 1768 1769 1770
                 make_callback_copy(expect_y1, host_expect_y1)});
        func0->execute();
    };

    auto run_2 = [&]() {  // check
        auto graph2 = ComputingGraph::make();
        auto grad00 = opr::Host2DeviceCopy::make(*graph2, host_grad00, cn0);
        auto grad11 = opr::Host2DeviceCopy::make(*graph2, host_grad11, cn0);
M
Megvii Engine Team 已提交
1771
        auto zero_grad = opr::Host2DeviceCopy::make(*graph2, host_zero_grad, cn0);
1772 1773 1774 1775 1776
        auto out_grad0_expect = opr::Concat::make({grad00, zero_grad}, 0);
        auto out_grad1_expect = opr::Concat::make({zero_grad, grad11}, 0);
        auto func2 = graph2->compile(
                {make_callback_copy(out_grad0_expect, host_expect_grad0),
                 make_callback_copy(out_grad1_expect, host_expect_grad1)});
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_expect_y0, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_expect_y1, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_expect_grad0, host_grad0);
    MGB_ASSERT_TENSOR_EQ(host_expect_grad1, host_grad1);
}