collective_comm.cpp 50.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/**
 * \file src/opr-mm/test/collective_comm.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/opr/collective_comm.h"
#include "megbrain/opr/basic_arith.h"
#include "megbrain/opr/blas.h"
#include "megbrain/opr/io.h"
#include "megbrain/opr/tensor_manip.h"
#include "megbrain/opr/utility.h"
#include "megbrain/test/helper.h"
#include "megbrain/graph.h"
20
#include "mock_client.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

using namespace mgb;

using Mode = opr::CollectiveComm::Param::Mode;

SymbolVar make_all_reduce_output(const Mode mode,
                                 const SymbolVarArray& inputs) {
    if (mode == Mode::ALL_REDUCE_MAX)
        return opr::Elemwise::make(inputs, opr::Elemwise::Mode::MAX);
    if (mode == Mode::ALL_REDUCE_MIN)
        return opr::Elemwise::make(inputs, opr::Elemwise::Mode::MIN);
    if (mode == Mode::ALL_REDUCE_SUM)
        return opr::Elemwise::make(inputs, opr::Elemwise::Mode::ADD);
    mgb_assert(false);
}

SymbolVarArray make_reduce_scatter_sum_output(const SymbolVarArray& inputs) {
    auto rdc = opr::Elemwise::make(inputs, opr::Elemwise::Mode::ADD);
    return opr::Split::make(
            rdc, opr::Split::Options::make_average(0, inputs.size()));
}

TEST(TestOprCollectiveComm, AllReduce) {
    REQUIRE_GPU(2);
45 46 47 48 49 50 51 52 53 54

    auto run_mode = [](const Mode mode) {
        auto cn0 = CompNode::load("gpu0");
        auto cn1 = CompNode::load("gpu1");
    
        HostTensorGenerator<> gen;
        auto host_x0 = gen({28, 28});
        auto host_x1 = gen({28, 28});
        HostTensorND host_y0, host_y1, host_y_expect;
    
55
        auto client = std::make_shared<test::MockGroupClient>();
56 57 58 59 60 61 62
        auto graph = ComputingGraph::make();
    
        auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
        auto x1c = opr::Copy::make(x1, cn1);
    
        auto y0 = opr::CollectiveComm::make({x0}, graph.get(), "all_reduce",
63
                2, false, 0, client, {mode}, dtype::Float32(), "nccl")[0];
64
        auto y1 = opr::CollectiveComm::make({x1c}, graph.get(), "all_reduce",
65
                2, false, 1, client, {mode}, dtype::Float32(), "nccl")[0];
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
        auto y_expect = make_all_reduce_output(mode, {x0, x1});
    
        auto func = graph->compile({make_callback_copy(y0, host_y0),
                                    make_callback_copy(y1, host_y1),
                                    make_callback_copy(y_expect, host_y_expect)});
        func->execute();
    
        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    };

    run_mode(Mode::ALL_REDUCE_MAX);
    run_mode(Mode::ALL_REDUCE_MIN);
    run_mode(Mode::ALL_REDUCE_SUM);
}

TEST(TestOprCollectiveComm, AllReduceMultiThread) {
    REQUIRE_GPU(2);
84 85 86 87 88 89 90 91 92
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    auto run_mode = [&](const Mode mode) {
        HostTensorGenerator<> gen;
        auto host_x0 = gen({28, 28});
        auto host_x1 = gen({28, 28});
        HostTensorND host_y0, host_y1, host_y_expect;

93
        auto client = std::make_shared<test::MockGroupClient>();
94 95 96 97 98

        auto run_0 = [&]() {
            auto graph0 = ComputingGraph::make();
            auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0);
            auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "all_reduce",
99
                    2, false, 0, client, {mode}, dtype::Float32(), "nccl")[0];
100 101 102 103 104 105 106 107
            auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
            func0->execute();
        };

        auto run_1 = [&]() {
            auto graph1 = ComputingGraph::make();
            auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
            auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "all_reduce",
108
                    2, false, 1, client, {mode}, dtype::Float32(), "nccl")[0];
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
            auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
            func1->execute();
        };

        auto run_2 = [&]() {
            auto graph2 = ComputingGraph::make();
            auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
            auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
            auto y_expect = make_all_reduce_output(mode, {x0, x1});
            auto func2 = graph2->compile({make_callback_copy(y_expect, host_y_expect)});
            func2->execute();
        };

        std::thread t0(run_0);
        std::thread t1(run_1);
        std::thread t2(run_2);

        t0.join();
        t1.join();
        t2.join();

        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    };

    run_mode(Mode::ALL_REDUCE_MAX);
    run_mode(Mode::ALL_REDUCE_MIN);
    run_mode(Mode::ALL_REDUCE_SUM);
}

TEST(TestOprCollectiveComm, AllReduceWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y1, host_y_expect;
    HostTensorND host_out_grad0, host_out_grad1, host_out_grad_expect;

154
    auto client = std::make_shared<test::MockGroupClient>();
155 156 157 158 159 160

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
161
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "all_reduce", 2, false, 0, client,
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
                {Mode::ALL_REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile(
            {make_callback_copy(y0, host_y0),
             make_callback_copy(g, host_out_grad0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
180
        auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "all_reduce", 2, false, 1, client,
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
                {Mode::ALL_REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

        auto func1 = graph1->compile(
            {make_callback_copy(y1, host_y1),
             make_callback_copy(g, host_out_grad1)});
        func1->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_all_reduce_output(Mode::ALL_REDUCE_SUM, {x0, x1});

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = make_all_reduce_output(Mode::ALL_REDUCE_SUM, {grad0, grad1});

        auto func2 = graph2->compile(
            {make_callback_copy(y_expect, host_y_expect),
             make_callback_copy(out_grad_expect, host_out_grad_expect)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad1);
}

TEST(TestOprCollectiveComm, AllGather) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

235
    auto client = std::make_shared<test::MockGroupClient>();
236 237 238 239 240 241 242
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x1c = opr::Copy::make(x1, cn1);

    auto y0 = opr::CollectiveComm::make({x0}, graph.get(), "all_gather",
243
            2, false, 0, client, {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
244
    auto y1 = opr::CollectiveComm::make({x1c}, graph.get(), "all_gather",
245
            2, false, 1, client, {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    auto y_expect = opr::Concat::make({x0, x1}, 0);

    auto func = graph->compile({make_callback_copy(y0, host_y0),
                                make_callback_copy(y1, host_y1),
                                make_callback_copy(y_expect, host_y_expect)});
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
}

TEST(TestOprCollectiveComm, AllGatherMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

267
    auto client = std::make_shared<test::MockGroupClient>();
268 269 270 271

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
272
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "all_gather", 2, false, 0, client,
273 274 275 276 277 278 279 280
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
281
        auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "all_gather", 2, false, 1, client,
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
        func1->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = opr::Concat::make({x0, x1}, 0);
        auto func2 = graph2->compile({make_callback_copy(y_expect, host_y_expect)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
}

TEST(TestOprCollectiveComm, AllGatherWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({10});
    auto host_x1 = gen({10});
    auto host_grad0 = gen({20});
    auto host_grad1 = gen({20});

    HostTensorND host_y0, host_y1, host_y_expect;
    HostTensorND host_out_grad0, host_out_grad1;
    HostTensorND host_out_grad0_expect, host_out_grad1_expect;

323
    auto client = std::make_shared<test::MockGroupClient>();
324 325 326 327 328 329

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
330
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "all_gather", 2, false, 0, client,
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile(
            {make_callback_copy(y0, host_y0),
             make_callback_copy(g, host_out_grad0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
349
        auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "all_gather", 2, false, 1, client,
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

        auto func1 = graph1->compile(
            {make_callback_copy(y1, host_y1),
             make_callback_copy(g, host_out_grad1)});
        func1->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = opr::Concat::make({x0, x1}, 0);

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = make_reduce_scatter_sum_output({grad0, grad1});

        auto func2 = graph2->compile(
            {make_callback_copy(y_expect, host_y_expect),
             make_callback_copy(out_grad_expect[0], host_out_grad0_expect),
             make_callback_copy(out_grad_expect[1], host_out_grad1_expect)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad0_expect, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad1_expect, host_out_grad1);
}

TEST(TestOprCollectiveComm, ReduceScatterSum) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

400 401 402 403 404
    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y0_expect, host_y1_expect;

405
    auto client = std::make_shared<test::MockGroupClient>();
406 407 408 409 410 411 412
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x1c = opr::Copy::make(x1, cn1);

    auto y0 = opr::CollectiveComm::make({x0}, graph.get(), "reduce_scatter_sum",
413
            2, false, 0, client, {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
414
    auto y1 = opr::CollectiveComm::make({x1c}, graph.get(), "reduce_scatter_sum",
415
            2, false, 1, client, {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
    auto y_expect = make_reduce_scatter_sum_output({x0, x1});

    auto func = graph->compile({make_callback_copy(y0, host_y0),
                                make_callback_copy(y1, host_y1),
                                make_callback_copy(y_expect[0], host_y0_expect),
                                make_callback_copy(y_expect[1], host_y1_expect)});
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y1_expect, host_y1);
}

TEST(TestOprCollectiveComm, ReduceScatterSumMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

433 434 435 436 437
    HostTensorGenerator<> gen;
    auto host_x0 = gen({8});
    auto host_x1 = gen({8});
    HostTensorND host_y0, host_y1, host_y0_expect, host_y1_expect;

438
    auto client = std::make_shared<test::MockGroupClient>();
439 440 441 442 443

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "reduce_scatter_sum",
444
                       2, false, 0, client, {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
445 446 447 448 449 450 451 452
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
        auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "reduce_scatter_sum",
453
                       2, false, 1, client, {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
        func1->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_reduce_scatter_sum_output({x0, x1});
        auto func = graph2->compile(
            {make_callback_copy(y_expect[0], host_y0_expect),
             make_callback_copy(y_expect[1], host_y1_expect)});
        func->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y1_expect, host_y1);
}

TEST(TestOprCollectiveComm, ReduceScatterSumWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({20});
    auto host_x1 = gen({20});
    auto host_grad0 = gen({10});
    auto host_grad1 = gen({10});

    HostTensorND host_y0, host_y1, host_y0_expect, host_y1_expect;
    HostTensorND host_out_grad0, host_out_grad1, host_out_grad_expect;

495
    auto client = std::make_shared<test::MockGroupClient>();
496 497 498 499 500 501 502

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "reduce_scatter_sum",
503
                2, false, 0, client, {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile(
            {make_callback_copy(y0, host_y0),
             make_callback_copy(g, host_out_grad0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
        auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "reduce_scatter_sum",
522
                2, false, 1, client, {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

        auto func1 = graph1->compile(
            {make_callback_copy(y1, host_y1),
             make_callback_copy(g, host_out_grad1)});
        func1->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_reduce_scatter_sum_output({x0, x1});

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = opr::Concat::make({grad0, grad1}, 0);

        auto func2 = graph2->compile(
            {make_callback_copy(y_expect[0], host_y0_expect),
             make_callback_copy(y_expect[1], host_y1_expect),
             make_callback_copy(out_grad_expect, host_out_grad_expect)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y1_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad1);
}

TEST(TestOprCollectiveComm, ReduceSum) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

572 573 574 575 576
    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

577
    auto client = std::make_shared<test::MockGroupClient>();
578 579 580 581 582 583 584
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x1c = opr::Copy::make(x1, cn1);

    auto y0 = opr::CollectiveComm::make({x0}, graph.get(), "reduce_sum",
585
            2, true, 0, client, {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
586
    auto y1 = opr::CollectiveComm::make({x1c}, graph.get(), "reduce_sum",
587
            2, false, 1, client, {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
    auto y_expect = x0 + x1;

    auto func = graph->compile({make_callback_copy(y0, host_y0),
                                make_callback_copy(y1, host_y1),
                                make_callback_copy(y_expect, host_y_expect)});
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
}

TEST(TestOprCollectiveComm, ReduceSumMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

603 604 605 606 607
    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y_expect;

608
    auto client = std::make_shared<test::MockGroupClient>();
609 610 611 612

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
613
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "reduce", 2, true, 0, client,
614 615 616 617 618 619 620 621
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
622
        auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "reduce", 2, false, 1, client,
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        auto func1 = graph1->compile({{y1, nullptr}});
        func1->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = x0 + x1;
        auto func2 = graph2->compile({make_callback_copy(y_expect, host_y_expect)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
}

TEST(TestOprCollectiveComm, ReduceSumWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({28, 28});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad = gen(shape);

    HostTensorND host_y0, host_y0_expect, host_out_grad0, host_out_grad1;

661
    auto client = std::make_shared<test::MockGroupClient>();
662 663 664 665 666 667

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
668
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "reduce", 2, true, 0, client,
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad = opr::Host2DeviceCopy::make(*graph0, host_grad, cn0);
        auto loss = opr::Dot::make(y0, grad);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile(
            {make_callback_copy(y0, host_y0),
             make_callback_copy(g, host_out_grad0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
687
        auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "reduce", 2, false, 1, client,
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad = opr::Host2DeviceCopy::make(*graph1, gen({1}), cn1);
        auto loss = opr::Dot::make(y1, grad);
        auto g = opr::VirtualGrad::make(loss, x1);

        auto func1 = graph1->compile({{y1, nullptr}, make_callback_copy(g, host_out_grad1)});
        func1->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y0_expect = x0 + x1;
        auto func2 = graph2->compile({
            make_callback_copy(y0_expect, host_y0_expect)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_grad, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(*host_grad, host_out_grad1);
}

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
TEST(TestOprCollectiveComm, Gather) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

    auto client = std::make_shared<test::MockGroupClient>();
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x1c = opr::Copy::make(x1, cn1);

    auto y0 = opr::CollectiveComm::make({x0}, graph.get(), "gather",
            2, true, 0, client, {Mode::GATHER}, dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make({x1c}, graph.get(), "gather",
            2, false, 1, client, {Mode::GATHER}, dtype::Float32(), "nccl")[0];
    auto y_expect = opr::Concat::make({x0, x1}, 0);

    auto func = graph->compile({make_callback_copy(y0, host_y0),
                                make_callback_copy(y1, host_y1),
                                make_callback_copy(y_expect, host_y_expect)});
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
}

TEST(TestOprCollectiveComm, GatherMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y_expect;

    auto client = std::make_shared<test::MockGroupClient>();

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "gather", 2, true, 0, client,
                {Mode::GATHER}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
        auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "gather", 2, false, 1, client,
                {Mode::GATHER}, dtype::Float32(), "nccl")[0];
        auto func1 = graph1->compile({{y1, nullptr}});
        func1->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = opr::Concat::make({x0, x1}, 0);
        auto func2 = graph2->compile({make_callback_copy(y_expect, host_y_expect)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
}

TEST(TestOprCollectiveComm, GatherWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({28, 28});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y0_expect, host_out_grad0, host_out_grad1;

    auto client = std::make_shared<test::MockGroupClient>();

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "gather", 2, true, 0, client,
                {Mode::GATHER}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph0, host_grad1, cn0);
        auto grad = opr::Concat::make({grad0, grad1}, 0);
        auto loss = opr::Dot::make(y0, grad);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile(
            {make_callback_copy(y0, host_y0),
             make_callback_copy(g, host_out_grad0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
        auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "gather", 2, false, 1, client,
                {Mode::GATHER}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad = opr::Host2DeviceCopy::make(*graph1, gen({1}), cn1);
        auto loss = opr::Dot::make(y1, grad);
        auto g = opr::VirtualGrad::make(loss, x1);

        auto func1 = graph1->compile({{y1, nullptr}, make_callback_copy(g, host_out_grad1)});
        func1->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y0_expect = opr::Concat::make({x0, x1}, 0);
        auto func2 = graph2->compile({
            make_callback_copy(y0_expect, host_y0_expect)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_grad0, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(*host_grad1, host_out_grad1);
}

880 881 882 883
TEST(TestOprCollectiveComm, Broadcast) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");
884 885 886 887 888

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

889
    auto client = std::make_shared<test::MockGroupClient>();
890 891 892 893
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto y0 = opr::CollectiveComm::make({x0}, graph.get(), "broadcast",
894
            2, true, 0, client, {Mode::BROADCAST}, dtype::Float32(), "nccl")[0];
895 896 897 898
    auto y_dev = std::make_shared<DeviceTensorND>(DeviceTensorND()
                                                  .comp_node(cn1)
                                                  .dtype(dtype::Float32())
                                                  .resize(host_x0->shape()));
899
    auto y1 = opr::CollectiveComm::make({}, graph.get(), "broadcast", 2, false, 1,
900 901 902 903 904 905 906 907 908 909 910 911 912 913
            client, {y_dev}, {Mode::BROADCAST}, dtype::Float32(), "nccl", {cn1})[0];

    auto func = graph->compile({make_callback_copy(y0, host_y0),
                                make_callback_copy(y1, host_y1)});
    func->execute();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y1);
}

TEST(TestOprCollectiveComm, BroadcastMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");
914 915 916 917 918

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    HostTensorND host_y0, host_y1;

919
    auto client = std::make_shared<test::MockGroupClient>();
920 921 922 923

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
924
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "broadcast", 2, true, 0, client,
925 926 927 928 929 930 931 932 933 934 935
                {Mode::BROADCAST}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        auto y_dev = std::make_shared<DeviceTensorND>(DeviceTensorND()
                                                      .comp_node(cn1)
                                                      .dtype(dtype::Float32())
                                                      .resize(host_x0->shape()));
936
        auto y1 = opr::CollectiveComm::make({}, graph1.get(), "broadcast", 2, false, 1, client,
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
                {y_dev}, {Mode::BROADCAST}, dtype::Float32(), "nccl", {cn1})[0];
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
        func1->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);

    t0.join();
    t1.join();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y1);
}

TEST(TestOprCollectiveComm, BroadcastWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({28, 28});
    auto host_x0 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y1, host_out_grad, host_out_grad_expect;

965
    auto client = std::make_shared<test::MockGroupClient>();
966 967 968 969 970 971

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
972
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "broadcast", 2, true, 0, client,
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
                {Mode::BROADCAST}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile(
            {make_callback_copy(y0, host_y0),
             make_callback_copy(g, host_out_grad)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

990
        auto y1 = opr::CollectiveComm::make({}, graph1.get(), "broadcast", 2, false, 1, client,
991 992 993
                {Mode::BROADCAST}, dtype::Float32(), "nccl", {cn1})[0];

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
994
        auto g = opr::CollectiveComm::make({grad1}, graph1.get(), "broadcast:grad", 2, false, 1, client,
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
                Mode::REDUCE_SUM, dtype::Float32(), "nccl")[0];
        g.node()->owner_opr()->node_prop().attribute().priority = 1;

        auto func1 = graph1->compile({make_callback_copy(y1, host_y1), {g, nullptr}});
        func1->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();
        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = grad0 + grad1;
        auto func2 = graph2->compile({
            make_callback_copy(out_grad_expect, host_out_grad_expect)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad);
}
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

TEST(TestOprCollectiveComm, Scatter) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1;

    auto client = std::make_shared<test::MockGroupClient>();
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x = opr::Concat::make({x0, x1}, 0);
    auto y0 = opr::CollectiveComm::make({x}, graph.get(), "scatter",
            2, true, 0, client, {Mode::SCATTER}, dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make({}, graph.get(), "scatter", 2, false, 1,
            client, {Mode::SCATTER}, dtype::Float32(), "nccl", {cn1})[0];

    auto func = graph->compile({make_callback_copy(y0, host_y0),
                                make_callback_copy(y1, host_y1)});
    func->execute();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x1, host_y1);
}

TEST(TestOprCollectiveComm, ScatterMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1;

    auto client = std::make_shared<test::MockGroupClient>();

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph0, host_x1, cn0);
        auto x = opr::Concat::make({x0, x1}, 0);
        auto y0 = opr::CollectiveComm::make({x}, graph0.get(), "scatter", 2, true, 0, client,
                {Mode::SCATTER}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        auto y1 = opr::CollectiveComm::make({}, graph1.get(), "scatter", 2, false, 1, client,
                {Mode::SCATTER}, dtype::Float32(), "nccl", {cn1})[0];
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
        func1->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);

    t0.join();
    t1.join();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x1, host_y1);
}

TEST(TestOprCollectiveComm, ScatterWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({28, 28});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y1, host_out_grad, host_out_grad_expect;

    auto client = std::make_shared<test::MockGroupClient>();

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph0, host_x1, cn0);
        auto x = opr::Concat::make({x0, x1}, 0);
        auto y0 = opr::CollectiveComm::make({x}, graph0.get(), "scatter", 2, true, 0, client,
                {Mode::SCATTER}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x);

        auto func0 = graph0->compile(
            {make_callback_copy(y0, host_y0),
             make_callback_copy(g, host_out_grad)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto y1 = opr::CollectiveComm::make({}, graph1.get(), "scatter", 2, false, 1, client,
                {Mode::SCATTER}, dtype::Float32(), "nccl", {cn1})[0];

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto g = opr::CollectiveComm::make({grad1}, graph1.get(), "scatter:grad", 2, false, 1, client,
                Mode::GATHER, dtype::Float32(), "nccl")[0];
        g.node()->owner_opr()->node_prop().attribute().priority = 1;

        auto func1 = graph1->compile({make_callback_copy(y1, host_y1), {g, nullptr}});
        func1->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();
        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = opr::Concat::make({grad0, grad1}, 0);
        auto func2 = graph2->compile({
            make_callback_copy(out_grad_expect, host_out_grad_expect)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x1, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad);
}

TEST(TestOprCollectiveComm, AllToAll) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x00 = gen(shape);
    auto host_x01 = gen(shape);
    auto host_x10 = gen(shape);
    auto host_x11 = gen(shape);
    HostTensorND host_y0, host_y1, host_expect_y0, host_expect_y1;

    auto client = std::make_shared<test::MockGroupClient>();
    auto graph = ComputingGraph::make();

    auto x00 = opr::Host2DeviceCopy::make(*graph, host_x00, cn0);
    auto x01 = opr::Host2DeviceCopy::make(*graph, host_x01, cn0);
    auto x0 = opr::Concat::make({x00, x01}, 0);
    auto x10 = opr::Host2DeviceCopy::make(*graph, host_x10, cn1);
    auto x11 = opr::Host2DeviceCopy::make(*graph, host_x11, cn1);
    auto x1 = opr::Concat::make({x10, x11}, 0);

    auto x01c = opr::Copy::make(x01, {cn1});
    auto x10c = opr::Copy::make(x10, {cn0});

    auto expect_y0 = opr::Concat::make({x00, x10c}, 0);
    auto expect_y1 = opr::Concat::make({x01c, x11}, 0);

    auto y0 = opr::CollectiveComm::make({x0}, graph.get(), "alltoall",
            2, false, 0, client, {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make({x1}, graph.get(), "alltoall", 2, false, 1,
            client, {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];

    auto func = graph->compile({make_callback_copy(y0, host_y0),
                                make_callback_copy(y1, host_y1),
                                make_callback_copy(expect_y0, host_expect_y0),
                                make_callback_copy(expect_y1, host_expect_y1)});
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_expect_y0, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_expect_y1, host_y1);
}

TEST(TestOprCollectiveComm, AllToAllMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x00 = gen(shape);
    auto host_x01 = gen(shape);
    auto host_x10 = gen(shape);
    auto host_x11 = gen(shape);
    HostTensorND host_y0, host_y1, host_expect_y0, host_expect_y1;

    auto client = std::make_shared<test::MockGroupClient>();

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        auto x00 = opr::Host2DeviceCopy::make(*graph0, host_x00, cn0);
        auto x01 = opr::Host2DeviceCopy::make(*graph0, host_x01, cn0);
        auto x10 = opr::Host2DeviceCopy::make(*graph0, host_x10, cn0);
        auto x0 = opr::Concat::make({x00, x01}, 0);
        auto expect_y0 = opr::Concat::make({x00, x10}, 0);
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "alltoall", 2, false, 0, client,
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(expect_y0, host_expect_y0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        auto x10 = opr::Host2DeviceCopy::make(*graph1, host_x10, cn1);
        auto x11 = opr::Host2DeviceCopy::make(*graph1, host_x11, cn1);
        auto x01 = opr::Host2DeviceCopy::make(*graph1, host_x01, cn1);
        auto x1 = opr::Concat::make({x10, x11}, 0);
        auto expect_y1 = opr::Concat::make({x01, x11}, 0);
        auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "alltoall", 2, false, 1, client,
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        auto func1 = graph1->compile(
                {make_callback_copy(y1, host_y1),
                 make_callback_copy(expect_y1, host_expect_y1)});
        func1->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);

    t0.join();
    t1.join();

    MGB_ASSERT_TENSOR_EQ(host_expect_y0, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_expect_y1, host_y1);
}

TEST(TestOprCollectiveComm, AllToAllWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x00 = gen(shape);
    auto host_x01 = gen(shape);
    auto host_x10 = gen(shape);
    auto host_x11 = gen(shape);
    auto host_grad00 = gen(shape);
    auto host_grad01 = gen(shape);
    auto host_grad10 = gen(shape);
    auto host_grad11 = gen(shape);

    HostTensorND host_y0, host_y1, host_expect_y0, host_expect_y1, host_grad0,
            host_grad1, host_expect_grad0, host_expect_grad1;

    auto client = std::make_shared<test::MockGroupClient>();

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x00 = opr::Host2DeviceCopy::make(*graph0, host_x00, cn0);
        auto x01 = opr::Host2DeviceCopy::make(*graph0, host_x01, cn0);
        auto x10 = opr::Host2DeviceCopy::make(*graph0, host_x10, cn0);
        auto x0 = opr::Concat::make({x00, x01}, 0);
        auto expect_y0 = opr::Concat::make({x00, x10}, 0);
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "alltoall", 2, false, 0, client,
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad00 = opr::Host2DeviceCopy::make(*graph0, host_grad00, cn0);
        auto grad10 = opr::Host2DeviceCopy::make(*graph0, host_grad10, cn0);
        auto grad_y0 = opr::Concat::make({grad00, grad10}, 0);
        auto loss = opr::Dot::make(y0, grad_y0);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile(
            {make_callback_copy(y0, host_y0),
             make_callback_copy(g, host_grad0),
             make_callback_copy(expect_y0, host_expect_y0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x10 = opr::Host2DeviceCopy::make(*graph1, host_x10, cn1);
        auto x11 = opr::Host2DeviceCopy::make(*graph1, host_x11, cn1);
        auto x01 = opr::Host2DeviceCopy::make(*graph1, host_x01, cn1);
        auto x1 = opr::Concat::make({x10, x11}, 0);
        auto expect_y1 = opr::Concat::make({x01, x11}, 0);
        auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "alltoall", 2, false, 1, client,
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad01 = opr::Host2DeviceCopy::make(*graph1, host_grad01, cn1);
        auto grad11 = opr::Host2DeviceCopy::make(*graph1, host_grad11, cn1);
        auto grad_y1 = opr::Concat::make({grad01, grad11}, 0);
        auto loss = opr::Dot::make(y1, grad_y1);
        auto g = opr::VirtualGrad::make(loss, x1);

        auto func0 = graph1->compile(
            {make_callback_copy(y1, host_y1),
             make_callback_copy(g, host_grad1),
             make_callback_copy(expect_y1, host_expect_y1)});
        func0->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();
        auto grad00 = opr::Host2DeviceCopy::make(*graph2, host_grad00, cn0);
        auto grad01 = opr::Host2DeviceCopy::make(*graph2, host_grad01, cn0);
        auto grad10 = opr::Host2DeviceCopy::make(*graph2, host_grad10, cn0);
        auto grad11 = opr::Host2DeviceCopy::make(*graph2, host_grad11, cn0);
        auto out_grad0_expect = opr::Concat::make({grad00, grad01}, 0);
        auto out_grad1_expect = opr::Concat::make({grad10, grad11}, 0);
        auto func2 = graph2->compile({
            make_callback_copy(out_grad0_expect, host_expect_grad0),
            make_callback_copy(out_grad1_expect, host_expect_grad1)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_expect_y0, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_expect_y1, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_expect_grad0, host_grad0);
    MGB_ASSERT_TENSOR_EQ(host_expect_grad1, host_grad1);
}