collective_comm.cpp 66.7 KB
Newer Older
1 2 3 4
/**
 * \file src/opr-mm/test/collective_comm.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/opr/collective_comm.h"
13
#include "megbrain/graph.h"
14 15 16 17 18 19
#include "megbrain/opr/basic_arith.h"
#include "megbrain/opr/blas.h"
#include "megbrain/opr/io.h"
#include "megbrain/opr/tensor_manip.h"
#include "megbrain/opr/utility.h"
#include "megbrain/test/helper.h"
20
#include "mock_client.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

using namespace mgb;

using Mode = opr::CollectiveComm::Param::Mode;

SymbolVar make_all_reduce_output(const Mode mode,
                                 const SymbolVarArray& inputs) {
    if (mode == Mode::ALL_REDUCE_MAX)
        return opr::Elemwise::make(inputs, opr::Elemwise::Mode::MAX);
    if (mode == Mode::ALL_REDUCE_MIN)
        return opr::Elemwise::make(inputs, opr::Elemwise::Mode::MIN);
    if (mode == Mode::ALL_REDUCE_SUM)
        return opr::Elemwise::make(inputs, opr::Elemwise::Mode::ADD);
    mgb_assert(false);
}

SymbolVarArray make_reduce_scatter_sum_output(const SymbolVarArray& inputs) {
    auto rdc = opr::Elemwise::make(inputs, opr::Elemwise::Mode::ADD);
    return opr::Split::make(
            rdc, opr::Split::Options::make_average(0, inputs.size()));
}

TEST(TestOprCollectiveComm, AllReduce) {
    REQUIRE_GPU(2);
45 46 47 48

    auto run_mode = [](const Mode mode) {
        auto cn0 = CompNode::load("gpu0");
        auto cn1 = CompNode::load("gpu1");
49

50 51 52 53
        HostTensorGenerator<> gen;
        auto host_x0 = gen({28, 28});
        auto host_x1 = gen({28, 28});
        HostTensorND host_y0, host_y1, host_y_expect;
54

55
        auto client = std::make_shared<test::MockGroupClient>();
56
        auto graph = ComputingGraph::make();
57

58 59 60
        auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
        auto x1c = opr::Copy::make(x1, cn1);
61 62 63 64 65 66 67

        auto y0 = opr::CollectiveComm::make({x0}, graph.get(), "all_reduce", 2,
                                            false, 0, false, client, {mode},
                                            dtype::Float32(), "nccl")[0];
        auto y1 = opr::CollectiveComm::make({x1c}, graph.get(), "all_reduce", 2,
                                            false, 1, false, client, {mode},
                                            dtype::Float32(), "nccl")[0];
68
        auto y_expect = make_all_reduce_output(mode, {x0, x1});
69 70 71 72 73

        auto func =
                graph->compile({make_callback_copy(y0, host_y0),
                                make_callback_copy(y1, host_y1),
                                make_callback_copy(y_expect, host_y_expect)});
74
        func->execute();
75

76 77 78 79 80 81 82 83 84 85 86
        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    };

    run_mode(Mode::ALL_REDUCE_MAX);
    run_mode(Mode::ALL_REDUCE_MIN);
    run_mode(Mode::ALL_REDUCE_SUM);
}

TEST(TestOprCollectiveComm, AllReduceMultiThread) {
    REQUIRE_GPU(2);
87 88 89 90 91 92 93 94 95
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    auto run_mode = [&](const Mode mode) {
        HostTensorGenerator<> gen;
        auto host_x0 = gen({28, 28});
        auto host_x1 = gen({28, 28});
        HostTensorND host_y0, host_y1, host_y_expect;

96
        auto client = std::make_shared<test::MockGroupClient>();
97 98 99 100

        auto run_0 = [&]() {
            auto graph0 = ComputingGraph::make();
            auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0);
101 102 103
            auto y0 = opr::CollectiveComm::make(
                    {x0}, graph0.get(), "all_reduce", 2, false, 0, false,
                    client, {mode}, dtype::Float32(), "nccl")[0];
104 105 106 107 108 109 110
            auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
            func0->execute();
        };

        auto run_1 = [&]() {
            auto graph1 = ComputingGraph::make();
            auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
111 112 113
            auto y1 = opr::CollectiveComm::make(
                    {x1}, graph1.get(), "all_reduce", 2, false, 1, false,
                    client, {mode}, dtype::Float32(), "nccl")[0];
114 115 116 117 118 119 120 121 122
            auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
            func1->execute();
        };

        auto run_2 = [&]() {
            auto graph2 = ComputingGraph::make();
            auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
            auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
            auto y_expect = make_all_reduce_output(mode, {x0, x1});
123 124
            auto func2 = graph2->compile(
                    {make_callback_copy(y_expect, host_y_expect)});
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
            func2->execute();
        };

        std::thread t0(run_0);
        std::thread t1(run_1);
        std::thread t2(run_2);

        t0.join();
        t1.join();
        t2.join();

        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    };

    run_mode(Mode::ALL_REDUCE_MAX);
    run_mode(Mode::ALL_REDUCE_MIN);
    run_mode(Mode::ALL_REDUCE_SUM);
}

TEST(TestOprCollectiveComm, AllReduceWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y1, host_y_expect;
    HostTensorND host_out_grad0, host_out_grad1, host_out_grad_expect;

160
    auto client = std::make_shared<test::MockGroupClient>();
161

162
    auto run_0 = [&]() {  // rank 0
163 164 165 166
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
167 168
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "all_reduce", 2, false, 0, false, client,
169 170 171 172 173 174 175
                {Mode::ALL_REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

176 177
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0),
                                      make_callback_copy(g, host_out_grad0)});
178 179 180
        func0->execute();
    };

181
    auto run_1 = [&]() {  // rank 1
182 183 184 185
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
186 187
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "all_reduce", 2, false, 1, false, client,
188 189 190 191 192 193 194
                {Mode::ALL_REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

195 196
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1),
                                      make_callback_copy(g, host_out_grad1)});
197 198 199
        func1->execute();
    };

200
    auto run_2 = [&]() {  // check
201 202 203 204 205 206 207 208
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_all_reduce_output(Mode::ALL_REDUCE_SUM, {x0, x1});

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
209 210
        auto out_grad_expect =
                make_all_reduce_output(Mode::ALL_REDUCE_SUM, {grad0, grad1});
211 212

        auto func2 = graph2->compile(
213 214
                {make_callback_copy(y_expect, host_y_expect),
                 make_callback_copy(out_grad_expect, host_out_grad_expect)});
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad1);
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
TEST(TestOprCollectiveComm, AllReduceWithGradThisNodeOnly) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y1, host_y_expect;
    HostTensorND host_out_grad0, host_out_grad1, host_out_grad_expect;

    auto client = std::make_shared<test::MockGroupClient>();

    auto run_0 = [&]() {  // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "all_reduce", 2, false, 0, true, client,
                {Mode::ALL_REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile({make_callback_copy(y0, host_y0),
                                      make_callback_copy(g, host_out_grad0)});
        func0->execute();
    };

    auto run_1 = [&]() {  // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "all_reduce", 2, false, 1, true, client,
                {Mode::ALL_REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

        auto func1 = graph1->compile({make_callback_copy(y1, host_y1),
                                      make_callback_copy(g, host_out_grad1)});
        func1->execute();
    };

    auto run_2 = [&]() {  // check
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_all_reduce_output(Mode::ALL_REDUCE_SUM, {x0, x1});

        auto func2 =
                graph2->compile({make_callback_copy(y_expect, host_y_expect)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(*host_grad0, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(*host_grad1, host_out_grad1);
}

313 314 315 316 317 318 319 320 321 322
TEST(TestOprCollectiveComm, AllGather) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

323
    auto client = std::make_shared<test::MockGroupClient>();
324 325 326 327 328 329
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x1c = opr::Copy::make(x1, cn1);

330 331 332 333 334 335
    auto y0 = opr::CollectiveComm::make(
            {x0}, graph.get(), "all_gather", 2, false, 0, false, client,
            {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make(
            {x1c}, graph.get(), "all_gather", 2, false, 1, false, client,
            {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
    auto y_expect = opr::Concat::make({x0, x1}, 0);

    auto func = graph->compile({make_callback_copy(y0, host_y0),
                                make_callback_copy(y1, host_y1),
                                make_callback_copy(y_expect, host_y_expect)});
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
}

TEST(TestOprCollectiveComm, AllGatherMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

357
    auto client = std::make_shared<test::MockGroupClient>();
358

359
    auto run_0 = [&]() {  // rank 0
360 361
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
362 363
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "all_gather", 2, false, 0, false, client,
364 365 366 367 368
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

369
    auto run_1 = [&]() {  // rank 1
370 371
        auto graph1 = ComputingGraph::make();
        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
372 373
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "all_gather", 2, false, 1, false, client,
374 375 376 377 378
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
        func1->execute();
    };

379
    auto run_2 = [&]() {  // check
380 381 382 383
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = opr::Concat::make({x0, x1}, 0);
384 385
        auto func2 =
                graph2->compile({make_callback_copy(y_expect, host_y_expect)});
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
}

TEST(TestOprCollectiveComm, AllGatherWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({10});
    auto host_x1 = gen({10});
    auto host_grad0 = gen({20});
    auto host_grad1 = gen({20});

    HostTensorND host_y0, host_y1, host_y_expect;
    HostTensorND host_out_grad0, host_out_grad1;
    HostTensorND host_out_grad0_expect, host_out_grad1_expect;

416
    auto client = std::make_shared<test::MockGroupClient>();
417

418
    auto run_0 = [&]() {  // rank 0
419 420 421 422
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
423 424
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "all_gather", 2, false, 0, false, client,
425 426 427 428 429 430 431
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

432 433
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0),
                                      make_callback_copy(g, host_out_grad0)});
434 435 436
        func0->execute();
    };

437
    auto run_1 = [&]() {  // rank 1
438 439 440 441
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
442 443
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "all_gather", 2, false, 1, false, client,
444 445 446 447 448 449 450
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

451 452
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1),
                                      make_callback_copy(g, host_out_grad1)});
453 454 455
        func1->execute();
    };

456
    auto run_2 = [&]() {  // check
457 458 459 460 461 462 463 464 465 466 467
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = opr::Concat::make({x0, x1}, 0);

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = make_reduce_scatter_sum_output({grad0, grad1});

        auto func2 = graph2->compile(
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
                {make_callback_copy(y_expect, host_y_expect),
                 make_callback_copy(out_grad_expect[0], host_out_grad0_expect),
                 make_callback_copy(out_grad_expect[1],
                                    host_out_grad1_expect)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad0_expect, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad1_expect, host_out_grad1);
}

TEST(TestOprCollectiveComm, AllGatherWithGradThisNodeOnly) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({10});
    auto host_x1 = gen({10});
    auto host_grad0 = gen({20});
    auto host_grad1 = gen({20});

    HostTensorND host_y0, host_y1, host_y_expect;
    HostTensorND host_out_grad0, host_out_grad1;
    HostTensorND host_out_grad0_expect, host_out_grad1_expect;

    auto client = std::make_shared<test::MockGroupClient>();

    auto run_0 = [&]() {  // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "all_gather", 2, false, 0, true, client,
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile({make_callback_copy(y0, host_y0),
                                      make_callback_copy(g, host_out_grad0)});
        func0->execute();
    };

    auto run_1 = [&]() {  // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "all_gather", 2, false, 1, true, client,
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

        auto func1 = graph1->compile({make_callback_copy(y1, host_y1),
                                      make_callback_copy(g, host_out_grad1)});
        func1->execute();
    };

    auto run_2 = [&]() {  // check
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = opr::Concat::make({x0, x1}, 0);

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);

        opr::Subtensor::IndexDesc axis0;
        auto shape0 = opr::GetVarShape::make(grad0, 0);
        axis0.push_back({0, 0, shape0 / 2});
        auto out_grad0_expect = opr::Subtensor::make(grad0, axis0);

        opr::Subtensor::IndexDesc axis1;
        axis1.push_back({0, shape0 / 2});
        auto out_grad1_expect = opr::Subtensor::make(grad1, axis1);

        auto func2 = graph2->compile(
                {make_callback_copy(y_expect, host_y_expect),
                 make_callback_copy(out_grad0_expect, host_out_grad0_expect),
                 make_callback_copy(out_grad1_expect, host_out_grad1_expect)});
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad0_expect, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad1_expect, host_out_grad1);
}

TEST(TestOprCollectiveComm, ReduceScatterSum) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

589 590 591 592 593
    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y0_expect, host_y1_expect;

594
    auto client = std::make_shared<test::MockGroupClient>();
595 596 597 598 599 600
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x1c = opr::Copy::make(x1, cn1);

601 602 603 604 605 606
    auto y0 = opr::CollectiveComm::make(
            {x0}, graph.get(), "reduce_scatter_sum", 2, false, 0, false, client,
            {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make(
            {x1c}, graph.get(), "reduce_scatter_sum", 2, false, 1, false,
            client, {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
607 608
    auto y_expect = make_reduce_scatter_sum_output({x0, x1});

609 610 611 612
    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1),
             make_callback_copy(y_expect[0], host_y0_expect),
             make_callback_copy(y_expect[1], host_y1_expect)});
613 614 615 616 617 618 619 620 621 622 623
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y1_expect, host_y1);
}

TEST(TestOprCollectiveComm, ReduceScatterSumMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

624 625 626 627 628
    HostTensorGenerator<> gen;
    auto host_x0 = gen({8});
    auto host_x1 = gen({8});
    HostTensorND host_y0, host_y1, host_y0_expect, host_y1_expect;

629
    auto client = std::make_shared<test::MockGroupClient>();
630

631
    auto run_0 = [&]() {  // rank 0
632 633
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
634 635 636 637
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "reduce_scatter_sum", 2, false, 0, false,
                client, {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(),
                "nccl")[0];
638 639 640 641
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

642
    auto run_1 = [&]() {  // rank 1
643 644
        auto graph1 = ComputingGraph::make();
        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
645 646 647 648
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "reduce_scatter_sum", 2, false, 1, false,
                client, {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(),
                "nccl")[0];
649 650 651 652
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
        func1->execute();
    };

653
    auto run_2 = [&]() {  // check
654 655 656 657 658
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_reduce_scatter_sum_output({x0, x1});
        auto func = graph2->compile(
659 660
                {make_callback_copy(y_expect[0], host_y0_expect),
                 make_callback_copy(y_expect[1], host_y1_expect)});
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
        func->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y1_expect, host_y1);
}

TEST(TestOprCollectiveComm, ReduceScatterSumWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({20});
    auto host_x1 = gen({20});
    auto host_grad0 = gen({10});
    auto host_grad1 = gen({10});

    HostTensorND host_y0, host_y1, host_y0_expect, host_y1_expect;
    HostTensorND host_out_grad0, host_out_grad1, host_out_grad_expect;

690
    auto client = std::make_shared<test::MockGroupClient>();
691

692
    auto run_0 = [&]() {  // rank 0
693 694 695 696
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
697 698 699 700
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "reduce_scatter_sum", 2, false, 0, false,
                client, {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(),
                "nccl")[0];
701 702 703 704 705 706
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

707 708
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0),
                                      make_callback_copy(g, host_out_grad0)});
709 710 711
        func0->execute();
    };

712
    auto run_1 = [&]() {  // rank 1
713 714 715 716
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
717 718 719 720
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "reduce_scatter_sum", 2, false, 1, false,
                client, {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(),
                "nccl")[0];
721 722 723 724 725 726
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

727 728
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1),
                                      make_callback_copy(g, host_out_grad1)});
729 730 731
        func1->execute();
    };

732
    auto run_2 = [&]() {  // check
733 734 735 736 737 738 739 740 741 742 743
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_reduce_scatter_sum_output({x0, x1});

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = opr::Concat::make({grad0, grad1}, 0);

        auto func2 = graph2->compile(
744 745 746
                {make_callback_copy(y_expect[0], host_y0_expect),
                 make_callback_copy(y_expect[1], host_y1_expect),
                 make_callback_copy(out_grad_expect, host_out_grad_expect)});
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y1_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad1);
}

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
TEST(TestOprCollectiveComm, ReduceScatterSumWithGradThisNodeOnly) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    HostTensorGenerator<> zeros(0, 0);
    auto host_x0 = gen({20});
    auto host_x1 = gen({20});
    auto host_grad0 = gen({10});
    auto host_grad1 = gen({10});
    auto host_zero_grad = zeros({10});

    HostTensorND host_y0, host_y1, host_y0_expect, host_y1_expect;
    HostTensorND host_out_grad0, host_out_grad1, host_out_grad_expect0,
            host_out_grad_expect1;

    auto client = std::make_shared<test::MockGroupClient>();

    auto run_0 = [&]() {  // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "reduce_scatter_sum", 2, false, 0, true,
                client, {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(),
                "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile({make_callback_copy(y0, host_y0),
                                      make_callback_copy(g, host_out_grad0)});
        func0->execute();
    };

    auto run_1 = [&]() {  // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "reduce_scatter_sum", 2, false, 1, true,
                client, {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(),
                "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

        auto func1 = graph1->compile({make_callback_copy(y1, host_y1),
                                      make_callback_copy(g, host_out_grad1)});
        func1->execute();
    };

    auto run_2 = [&]() {  // check
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_reduce_scatter_sum_output({x0, x1});

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto zero_grad =
                opr::Host2DeviceCopy::make(*graph2, host_zero_grad, cn0);
        auto out_grad_expect0 = opr::Concat::make({grad0, zero_grad}, 0);
        auto out_grad_expect1 = opr::Concat::make({zero_grad, grad1}, 0);

        auto func2 = graph2->compile(
                {make_callback_copy(y_expect[0], host_y0_expect),
                 make_callback_copy(y_expect[1], host_y1_expect),
                 make_callback_copy(out_grad_expect0, host_out_grad_expect0),
                 make_callback_copy(out_grad_expect1, host_out_grad_expect1)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y1_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect0, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect1, host_out_grad1);
}

859 860 861 862 863
TEST(TestOprCollectiveComm, ReduceSum) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

864 865 866 867 868
    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

869
    auto client = std::make_shared<test::MockGroupClient>();
870 871 872 873 874 875
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x1c = opr::Copy::make(x1, cn1);

876 877 878 879 880 881
    auto y0 = opr::CollectiveComm::make(
            {x0}, graph.get(), "reduce_sum", 2, true, 0, false, client,
            {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make(
            {x1c}, graph.get(), "reduce_sum", 2, false, 1, false, client,
            {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
    auto y_expect = x0 + x1;

    auto func = graph->compile({make_callback_copy(y0, host_y0),
                                make_callback_copy(y1, host_y1),
                                make_callback_copy(y_expect, host_y_expect)});
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
}

TEST(TestOprCollectiveComm, ReduceSumMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

897 898 899 900 901
    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y_expect;

902
    auto client = std::make_shared<test::MockGroupClient>();
903

904
    auto run_0 = [&]() {  // rank 0
905 906
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
907 908
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "reduce", 2, true, 0, false, client,
909 910 911 912 913
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

914
    auto run_1 = [&]() {  // rank 1
915 916
        auto graph1 = ComputingGraph::make();
        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
917 918
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "reduce", 2, false, 1, false, client,
919 920 921 922 923
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        auto func1 = graph1->compile({{y1, nullptr}});
        func1->execute();
    };

924
    auto run_2 = [&]() {  // check
925 926 927 928
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = x0 + x1;
929 930
        auto func2 =
                graph2->compile({make_callback_copy(y_expect, host_y_expect)});
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
}

TEST(TestOprCollectiveComm, ReduceSumWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({28, 28});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad = gen(shape);

    HostTensorND host_y0, host_y0_expect, host_out_grad0, host_out_grad1;

958
    auto client = std::make_shared<test::MockGroupClient>();
959

960
    auto run_0 = [&]() {  // rank 0
961 962 963 964
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
965 966
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "reduce", 2, true, 0, false, client,
967 968 969 970 971 972 973
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad = opr::Host2DeviceCopy::make(*graph0, host_grad, cn0);
        auto loss = opr::Dot::make(y0, grad);
        auto g = opr::VirtualGrad::make(loss, x0);

974 975
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0),
                                      make_callback_copy(g, host_out_grad0)});
976 977 978
        func0->execute();
    };

979
    auto run_1 = [&]() {  // rank 1
980 981 982 983
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
984 985
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "reduce", 2, false, 1, false, client,
986 987 988 989 990 991 992
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad = opr::Host2DeviceCopy::make(*graph1, gen({1}), cn1);
        auto loss = opr::Dot::make(y1, grad);
        auto g = opr::VirtualGrad::make(loss, x1);

993 994
        auto func1 = graph1->compile(
                {{y1, nullptr}, make_callback_copy(g, host_out_grad1)});
995 996 997
        func1->execute();
    };

998
    auto run_2 = [&]() {  // check
999 1000 1001 1002
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y0_expect = x0 + x1;
1003 1004
        auto func2 = graph2->compile(
                {make_callback_copy(y0_expect, host_y0_expect)});
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_grad, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(*host_grad, host_out_grad1);
}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
TEST(TestOprCollectiveComm, Gather) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

    auto client = std::make_shared<test::MockGroupClient>();
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x1c = opr::Copy::make(x1, cn1);

1038 1039 1040 1041 1042 1043
    auto y0 = opr::CollectiveComm::make({x0}, graph.get(), "gather", 2, true, 0,
                                        false, client, {Mode::GATHER},
                                        dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make({x1c}, graph.get(), "gather", 2, false,
                                        1, false, client, {Mode::GATHER},
                                        dtype::Float32(), "nccl")[0];
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
    auto y_expect = opr::Concat::make({x0, x1}, 0);

    auto func = graph->compile({make_callback_copy(y0, host_y0),
                                make_callback_copy(y1, host_y1),
                                make_callback_copy(y_expect, host_y_expect)});
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
}

TEST(TestOprCollectiveComm, GatherMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y_expect;

    auto client = std::make_shared<test::MockGroupClient>();

1066
    auto run_0 = [&]() {  // rank 0
1067 1068
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
1069 1070
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "gather", 2, true, 0, false, client,
1071 1072 1073 1074 1075
                {Mode::GATHER}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

1076
    auto run_1 = [&]() {  // rank 1
1077 1078
        auto graph1 = ComputingGraph::make();
        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
1079 1080
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "gather", 2, false, 1, false, client,
1081 1082 1083 1084 1085
                {Mode::GATHER}, dtype::Float32(), "nccl")[0];
        auto func1 = graph1->compile({{y1, nullptr}});
        func1->execute();
    };

1086
    auto run_2 = [&]() {  // check
1087 1088 1089 1090
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = opr::Concat::make({x0, x1}, 0);
1091 1092
        auto func2 =
                graph2->compile({make_callback_copy(y_expect, host_y_expect)});
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
}

TEST(TestOprCollectiveComm, GatherWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({28, 28});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y0_expect, host_out_grad0, host_out_grad1;

    auto client = std::make_shared<test::MockGroupClient>();

1123
    auto run_0 = [&]() {  // rank 0
1124 1125 1126 1127
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
1128 1129
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "gather", 2, true, 0, false, client,
1130 1131 1132 1133 1134 1135 1136 1137 1138
                {Mode::GATHER}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph0, host_grad1, cn0);
        auto grad = opr::Concat::make({grad0, grad1}, 0);
        auto loss = opr::Dot::make(y0, grad);
        auto g = opr::VirtualGrad::make(loss, x0);

1139 1140
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0),
                                      make_callback_copy(g, host_out_grad0)});
1141 1142 1143
        func0->execute();
    };

1144
    auto run_1 = [&]() {  // rank 1
1145 1146 1147 1148
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
1149 1150
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "gather", 2, false, 1, false, client,
1151 1152 1153 1154 1155 1156 1157
                {Mode::GATHER}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad = opr::Host2DeviceCopy::make(*graph1, gen({1}), cn1);
        auto loss = opr::Dot::make(y1, grad);
        auto g = opr::VirtualGrad::make(loss, x1);

1158 1159
        auto func1 = graph1->compile(
                {{y1, nullptr}, make_callback_copy(g, host_out_grad1)});
1160 1161 1162
        func1->execute();
    };

1163
    auto run_2 = [&]() {  // check
1164 1165 1166 1167
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y0_expect = opr::Concat::make({x0, x1}, 0);
1168 1169
        auto func2 = graph2->compile(
                {make_callback_copy(y0_expect, host_y0_expect)});
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_grad0, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(*host_grad1, host_out_grad1);
}

1186 1187 1188 1189
TEST(TestOprCollectiveComm, Broadcast) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");
1190 1191 1192 1193 1194

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

1195
    auto client = std::make_shared<test::MockGroupClient>();
1196 1197 1198
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
    auto y0 = opr::CollectiveComm::make({x0}, graph.get(), "broadcast", 2, true,
                                        0, false, client, {Mode::BROADCAST},
                                        dtype::Float32(), "nccl")[0];
    auto y_dev =
            std::make_shared<DeviceTensorND>(DeviceTensorND()
                                                     .comp_node(cn1)
                                                     .dtype(dtype::Float32())
                                                     .resize(host_x0->shape()));
    auto y1 = opr::CollectiveComm::make(
            {}, graph.get(), "broadcast", 2, false, 1, false, client, {y_dev},
            {Mode::BROADCAST}, dtype::Float32(), "nccl", {cn1})[0];

    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
    func->execute();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y1);
}

TEST(TestOprCollectiveComm, BroadcastMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");
1223 1224 1225 1226 1227

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    HostTensorND host_y0, host_y1;

1228
    auto client = std::make_shared<test::MockGroupClient>();
1229

1230
    auto run_0 = [&]() {  // rank 0
1231 1232
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
1233 1234
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "broadcast", 2, true, 0, false, client,
1235 1236 1237 1238 1239
                {Mode::BROADCAST}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

1240
    auto run_1 = [&]() {  // rank 1
1241
        auto graph1 = ComputingGraph::make();
1242 1243 1244 1245 1246 1247 1248
        auto y_dev = std::make_shared<DeviceTensorND>(
                DeviceTensorND()
                        .comp_node(cn1)
                        .dtype(dtype::Float32())
                        .resize(host_x0->shape()));
        auto y1 = opr::CollectiveComm::make(
                {}, graph1.get(), "broadcast", 2, false, 1, false, client,
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
                {y_dev}, {Mode::BROADCAST}, dtype::Float32(), "nccl", {cn1})[0];
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
        func1->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);

    t0.join();
    t1.join();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y1);
}

TEST(TestOprCollectiveComm, BroadcastWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({28, 28});
    auto host_x0 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y1, host_out_grad, host_out_grad_expect;

1277
    auto client = std::make_shared<test::MockGroupClient>();
1278

1279
    auto run_0 = [&]() {  // rank 0
1280 1281 1282 1283
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
1284 1285
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "broadcast", 2, true, 0, false, client,
1286 1287 1288 1289 1290 1291 1292
                {Mode::BROADCAST}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

1293 1294
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0),
                                      make_callback_copy(g, host_out_grad)});
1295 1296 1297
        func0->execute();
    };

1298
    auto run_1 = [&]() {  // rank 1
1299 1300 1301
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

1302 1303
        auto y1 = opr::CollectiveComm::make(
                {}, graph1.get(), "broadcast", 2, false, 1, false, client,
1304 1305 1306
                {Mode::BROADCAST}, dtype::Float32(), "nccl", {cn1})[0];

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
1307 1308 1309
        auto g = opr::CollectiveComm::make(
                {grad1}, graph1.get(), "broadcast:grad", 2, false, 1, false,
                client, Mode::REDUCE_SUM, dtype::Float32(), "nccl")[0];
1310 1311
        g.node()->owner_opr()->node_prop().attribute().priority = 1;

1312 1313
        auto func1 = graph1->compile(
                {make_callback_copy(y1, host_y1), {g, nullptr}});
1314 1315 1316
        func1->execute();
    };

1317
    auto run_2 = [&]() {  // check
1318 1319 1320 1321
        auto graph2 = ComputingGraph::make();
        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = grad0 + grad1;
1322 1323
        auto func2 = graph2->compile(
                {make_callback_copy(out_grad_expect, host_out_grad_expect)});
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad);
}
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355

TEST(TestOprCollectiveComm, Scatter) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1;

    auto client = std::make_shared<test::MockGroupClient>();
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x = opr::Concat::make({x0, x1}, 0);
1356 1357 1358
    auto y0 = opr::CollectiveComm::make({x}, graph.get(), "scatter", 2, true, 0,
                                        false, client, {Mode::SCATTER},
                                        dtype::Float32(), "nccl")[0];
1359
    auto y1 = opr::CollectiveComm::make({}, graph.get(), "scatter", 2, false, 1,
1360 1361
                                        false, client, {Mode::SCATTER},
                                        dtype::Float32(), "nccl", {cn1})[0];
1362

1363 1364
    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
    func->execute();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x1, host_y1);
}

TEST(TestOprCollectiveComm, ScatterMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1;

    auto client = std::make_shared<test::MockGroupClient>();

1383
    auto run_0 = [&]() {  // rank 0
1384 1385 1386 1387
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph0, host_x1, cn0);
        auto x = opr::Concat::make({x0, x1}, 0);
1388 1389
        auto y0 = opr::CollectiveComm::make(
                {x}, graph0.get(), "scatter", 2, true, 0, false, client,
1390 1391 1392 1393 1394
                {Mode::SCATTER}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

1395
    auto run_1 = [&]() {  // rank 1
1396
        auto graph1 = ComputingGraph::make();
1397 1398
        auto y1 = opr::CollectiveComm::make(
                {}, graph1.get(), "scatter", 2, false, 1, false, client,
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
                {Mode::SCATTER}, dtype::Float32(), "nccl", {cn1})[0];
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
        func1->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);

    t0.join();
    t1.join();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x1, host_y1);
}

TEST(TestOprCollectiveComm, ScatterWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({28, 28});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y1, host_out_grad, host_out_grad_expect;

    auto client = std::make_shared<test::MockGroupClient>();

1430
    auto run_0 = [&]() {  // rank 0
1431 1432 1433 1434 1435 1436
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph0, host_x1, cn0);
        auto x = opr::Concat::make({x0, x1}, 0);
1437 1438
        auto y0 = opr::CollectiveComm::make(
                {x}, graph0.get(), "scatter", 2, true, 0, false, client,
1439 1440 1441 1442 1443 1444 1445
                {Mode::SCATTER}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x);

1446 1447
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0),
                                      make_callback_copy(g, host_out_grad)});
1448 1449 1450
        func0->execute();
    };

1451
    auto run_1 = [&]() {  // rank 1
1452 1453 1454
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

1455 1456
        auto y1 = opr::CollectiveComm::make(
                {}, graph1.get(), "scatter", 2, false, 1, false, client,
1457 1458 1459
                {Mode::SCATTER}, dtype::Float32(), "nccl", {cn1})[0];

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
1460 1461 1462
        auto g = opr::CollectiveComm::make(
                {grad1}, graph1.get(), "scatter:grad", 2, false, 1, false,
                client, Mode::GATHER, dtype::Float32(), "nccl")[0];
1463 1464
        g.node()->owner_opr()->node_prop().attribute().priority = 1;

1465 1466
        auto func1 = graph1->compile(
                {make_callback_copy(y1, host_y1), {g, nullptr}});
1467 1468 1469
        func1->execute();
    };

1470
    auto run_2 = [&]() {  // check
1471 1472 1473 1474
        auto graph2 = ComputingGraph::make();
        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = opr::Concat::make({grad0, grad1}, 0);
1475 1476
        auto func2 = graph2->compile(
                {make_callback_copy(out_grad_expect, host_out_grad_expect)});
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x1, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad);
}

TEST(TestOprCollectiveComm, AllToAll) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x00 = gen(shape);
    auto host_x01 = gen(shape);
    auto host_x10 = gen(shape);
    auto host_x11 = gen(shape);
    HostTensorND host_y0, host_y1, host_expect_y0, host_expect_y1;

    auto client = std::make_shared<test::MockGroupClient>();
    auto graph = ComputingGraph::make();

    auto x00 = opr::Host2DeviceCopy::make(*graph, host_x00, cn0);
    auto x01 = opr::Host2DeviceCopy::make(*graph, host_x01, cn0);
    auto x0 = opr::Concat::make({x00, x01}, 0);
    auto x10 = opr::Host2DeviceCopy::make(*graph, host_x10, cn1);
    auto x11 = opr::Host2DeviceCopy::make(*graph, host_x11, cn1);
    auto x1 = opr::Concat::make({x10, x11}, 0);

    auto x01c = opr::Copy::make(x01, {cn1});
    auto x10c = opr::Copy::make(x10, {cn0});

    auto expect_y0 = opr::Concat::make({x00, x10c}, 0);
    auto expect_y1 = opr::Concat::make({x01c, x11}, 0);

1522 1523 1524 1525 1526 1527
    auto y0 = opr::CollectiveComm::make({x0}, graph.get(), "alltoall", 2, false,
                                        0, false, client, {Mode::ALL_TO_ALL},
                                        dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make({x1}, graph.get(), "alltoall", 2, false,
                                        1, false, client, {Mode::ALL_TO_ALL},
                                        dtype::Float32(), "nccl")[0];
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553

    auto func = graph->compile({make_callback_copy(y0, host_y0),
                                make_callback_copy(y1, host_y1),
                                make_callback_copy(expect_y0, host_expect_y0),
                                make_callback_copy(expect_y1, host_expect_y1)});
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_expect_y0, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_expect_y1, host_y1);
}

TEST(TestOprCollectiveComm, AllToAllMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x00 = gen(shape);
    auto host_x01 = gen(shape);
    auto host_x10 = gen(shape);
    auto host_x11 = gen(shape);
    HostTensorND host_y0, host_y1, host_expect_y0, host_expect_y1;

    auto client = std::make_shared<test::MockGroupClient>();

1554
    auto run_0 = [&]() {  // rank 0
1555 1556 1557 1558 1559 1560
        auto graph0 = ComputingGraph::make();
        auto x00 = opr::Host2DeviceCopy::make(*graph0, host_x00, cn0);
        auto x01 = opr::Host2DeviceCopy::make(*graph0, host_x01, cn0);
        auto x10 = opr::Host2DeviceCopy::make(*graph0, host_x10, cn0);
        auto x0 = opr::Concat::make({x00, x01}, 0);
        auto expect_y0 = opr::Concat::make({x00, x10}, 0);
1561 1562
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "alltoall", 2, false, 0, false, client,
1563 1564 1565 1566 1567 1568 1569
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(expect_y0, host_expect_y0)});
        func0->execute();
    };

1570
    auto run_1 = [&]() {  // rank 1
1571 1572 1573 1574 1575 1576
        auto graph1 = ComputingGraph::make();
        auto x10 = opr::Host2DeviceCopy::make(*graph1, host_x10, cn1);
        auto x11 = opr::Host2DeviceCopy::make(*graph1, host_x11, cn1);
        auto x01 = opr::Host2DeviceCopy::make(*graph1, host_x01, cn1);
        auto x1 = opr::Concat::make({x10, x11}, 0);
        auto expect_y1 = opr::Concat::make({x01, x11}, 0);
1577 1578
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "alltoall", 2, false, 1, false, client,
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        auto func1 = graph1->compile(
                {make_callback_copy(y1, host_y1),
                 make_callback_copy(expect_y1, host_expect_y1)});
        func1->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);

    t0.join();
    t1.join();

    MGB_ASSERT_TENSOR_EQ(host_expect_y0, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_expect_y1, host_y1);
}

TEST(TestOprCollectiveComm, AllToAllWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x00 = gen(shape);
    auto host_x01 = gen(shape);
    auto host_x10 = gen(shape);
    auto host_x11 = gen(shape);
    auto host_grad00 = gen(shape);
    auto host_grad01 = gen(shape);
    auto host_grad10 = gen(shape);
    auto host_grad11 = gen(shape);

    HostTensorND host_y0, host_y1, host_expect_y0, host_expect_y1, host_grad0,
            host_grad1, host_expect_grad0, host_expect_grad1;

    auto client = std::make_shared<test::MockGroupClient>();

1617
    auto run_0 = [&]() {  // rank 0
1618 1619 1620 1621 1622 1623 1624 1625
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x00 = opr::Host2DeviceCopy::make(*graph0, host_x00, cn0);
        auto x01 = opr::Host2DeviceCopy::make(*graph0, host_x01, cn0);
        auto x10 = opr::Host2DeviceCopy::make(*graph0, host_x10, cn0);
        auto x0 = opr::Concat::make({x00, x01}, 0);
        auto expect_y0 = opr::Concat::make({x00, x10}, 0);
1626 1627
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "alltoall", 2, false, 0, false, client,
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad00 = opr::Host2DeviceCopy::make(*graph0, host_grad00, cn0);
        auto grad10 = opr::Host2DeviceCopy::make(*graph0, host_grad10, cn0);
        auto grad_y0 = opr::Concat::make({grad00, grad10}, 0);
        auto loss = opr::Dot::make(y0, grad_y0);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile(
1638 1639 1640
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_grad0),
                 make_callback_copy(expect_y0, host_expect_y0)});
1641 1642 1643
        func0->execute();
    };

1644
    auto run_1 = [&]() {  // rank 1
1645 1646 1647 1648 1649 1650 1651 1652
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x10 = opr::Host2DeviceCopy::make(*graph1, host_x10, cn1);
        auto x11 = opr::Host2DeviceCopy::make(*graph1, host_x11, cn1);
        auto x01 = opr::Host2DeviceCopy::make(*graph1, host_x01, cn1);
        auto x1 = opr::Concat::make({x10, x11}, 0);
        auto expect_y1 = opr::Concat::make({x01, x11}, 0);
1653 1654
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "alltoall", 2, false, 1, false, client,
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad01 = opr::Host2DeviceCopy::make(*graph1, host_grad01, cn1);
        auto grad11 = opr::Host2DeviceCopy::make(*graph1, host_grad11, cn1);
        auto grad_y1 = opr::Concat::make({grad01, grad11}, 0);
        auto loss = opr::Dot::make(y1, grad_y1);
        auto g = opr::VirtualGrad::make(loss, x1);

        auto func0 = graph1->compile(
1665 1666 1667
                {make_callback_copy(y1, host_y1),
                 make_callback_copy(g, host_grad1),
                 make_callback_copy(expect_y1, host_expect_y1)});
1668 1669 1670
        func0->execute();
    };

1671
    auto run_2 = [&]() {  // check
1672 1673 1674 1675 1676 1677 1678
        auto graph2 = ComputingGraph::make();
        auto grad00 = opr::Host2DeviceCopy::make(*graph2, host_grad00, cn0);
        auto grad01 = opr::Host2DeviceCopy::make(*graph2, host_grad01, cn0);
        auto grad10 = opr::Host2DeviceCopy::make(*graph2, host_grad10, cn0);
        auto grad11 = opr::Host2DeviceCopy::make(*graph2, host_grad11, cn0);
        auto out_grad0_expect = opr::Concat::make({grad00, grad01}, 0);
        auto out_grad1_expect = opr::Concat::make({grad10, grad11}, 0);
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
        auto func2 = graph2->compile(
                {make_callback_copy(out_grad0_expect, host_expect_grad0),
                 make_callback_copy(out_grad1_expect, host_expect_grad1)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_expect_y0, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_expect_y1, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_expect_grad0, host_grad0);
    MGB_ASSERT_TENSOR_EQ(host_expect_grad1, host_grad1);
}

TEST(TestOprCollectiveComm, AllToAllWithGradThisNodeOnly) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    HostTensorGenerator<> zeros(0, 0);
    TensorShape shape({10});
    auto host_x00 = gen(shape);
    auto host_x01 = gen(shape);
    auto host_x10 = gen(shape);
    auto host_x11 = gen(shape);
    auto host_grad00 = gen(shape);
    auto host_grad01 = gen(shape);
    auto host_grad10 = gen(shape);
    auto host_grad11 = gen(shape);
    auto host_zero_grad = zeros(shape);

    HostTensorND host_y0, host_y1, host_expect_y0, host_expect_y1, host_grad0,
            host_grad1, host_expect_grad0, host_expect_grad1;

    auto client = std::make_shared<test::MockGroupClient>();

    auto run_0 = [&]() {  // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x00 = opr::Host2DeviceCopy::make(*graph0, host_x00, cn0);
        auto x01 = opr::Host2DeviceCopy::make(*graph0, host_x01, cn0);
        auto x10 = opr::Host2DeviceCopy::make(*graph0, host_x10, cn0);
        auto x0 = opr::Concat::make({x00, x01}, 0);
        auto expect_y0 = opr::Concat::make({x00, x10}, 0);
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "alltoall", 2, false, 0, true, client,
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad00 = opr::Host2DeviceCopy::make(*graph0, host_grad00, cn0);
        auto grad10 = opr::Host2DeviceCopy::make(*graph0, host_grad10, cn0);
        auto grad_y0 = opr::Concat::make({grad00, grad10}, 0);
        auto loss = opr::Dot::make(y0, grad_y0);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_grad0),
                 make_callback_copy(expect_y0, host_expect_y0)});
        func0->execute();
    };

    auto run_1 = [&]() {  // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x10 = opr::Host2DeviceCopy::make(*graph1, host_x10, cn1);
        auto x11 = opr::Host2DeviceCopy::make(*graph1, host_x11, cn1);
        auto x01 = opr::Host2DeviceCopy::make(*graph1, host_x01, cn1);
        auto x1 = opr::Concat::make({x10, x11}, 0);
        auto expect_y1 = opr::Concat::make({x01, x11}, 0);
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "alltoall", 2, false, 1, true, client,
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad01 = opr::Host2DeviceCopy::make(*graph1, host_grad01, cn1);
        auto grad11 = opr::Host2DeviceCopy::make(*graph1, host_grad11, cn1);
        auto grad_y1 = opr::Concat::make({grad01, grad11}, 0);
        auto loss = opr::Dot::make(y1, grad_y1);
        auto g = opr::VirtualGrad::make(loss, x1);

        auto func0 = graph1->compile(
                {make_callback_copy(y1, host_y1),
                 make_callback_copy(g, host_grad1),
                 make_callback_copy(expect_y1, host_expect_y1)});
        func0->execute();
    };

    auto run_2 = [&]() {  // check
        auto graph2 = ComputingGraph::make();
        auto grad00 = opr::Host2DeviceCopy::make(*graph2, host_grad00, cn0);
        auto grad11 = opr::Host2DeviceCopy::make(*graph2, host_grad11, cn0);
        auto zero_grad =
                opr::Host2DeviceCopy::make(*graph2, host_zero_grad, cn0);
        auto out_grad0_expect = opr::Concat::make({grad00, zero_grad}, 0);
        auto out_grad1_expect = opr::Concat::make({zero_grad, grad11}, 0);
        auto func2 = graph2->compile(
                {make_callback_copy(out_grad0_expect, host_expect_grad0),
                 make_callback_copy(out_grad1_expect, host_expect_grad1)});
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_expect_y0, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_expect_y1, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_expect_grad0, host_grad0);
    MGB_ASSERT_TENSOR_EQ(host_expect_grad1, host_grad1);
}