collective_comm.cpp 65.2 KB
Newer Older
1
#include "megbrain/opr/collective_comm.h"
2
#include "megbrain/graph.h"
3 4 5 6 7 8
#include "megbrain/opr/basic_arith.h"
#include "megbrain/opr/blas.h"
#include "megbrain/opr/io.h"
#include "megbrain/opr/tensor_manip.h"
#include "megbrain/opr/utility.h"
#include "megbrain/test/helper.h"
9
#include "mock_client.h"
10 11 12 13 14

using namespace mgb;

using Mode = opr::CollectiveComm::Param::Mode;

M
Megvii Engine Team 已提交
15
SymbolVar make_all_reduce_output(const Mode mode, const SymbolVarArray& inputs) {
16 17 18 19 20 21 22 23 24 25 26
    if (mode == Mode::ALL_REDUCE_MAX)
        return opr::Elemwise::make(inputs, opr::Elemwise::Mode::MAX);
    if (mode == Mode::ALL_REDUCE_MIN)
        return opr::Elemwise::make(inputs, opr::Elemwise::Mode::MIN);
    if (mode == Mode::ALL_REDUCE_SUM)
        return opr::Elemwise::make(inputs, opr::Elemwise::Mode::ADD);
    mgb_assert(false);
}

SymbolVarArray make_reduce_scatter_sum_output(const SymbolVarArray& inputs) {
    auto rdc = opr::Elemwise::make(inputs, opr::Elemwise::Mode::ADD);
M
Megvii Engine Team 已提交
27
    return opr::Split::make(rdc, opr::Split::Options::make_average(0, inputs.size()));
28 29 30 31
}

TEST(TestOprCollectiveComm, AllReduce) {
    REQUIRE_GPU(2);
32 33 34 35

    auto run_mode = [](const Mode mode) {
        auto cn0 = CompNode::load("gpu0");
        auto cn1 = CompNode::load("gpu1");
36

37 38 39 40
        HostTensorGenerator<> gen;
        auto host_x0 = gen({28, 28});
        auto host_x1 = gen({28, 28});
        HostTensorND host_y0, host_y1, host_y_expect;
41

42
        auto client = std::make_shared<test::MockGroupClient>();
43
        auto graph = ComputingGraph::make();
44

45 46 47
        auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
        auto x1c = opr::Copy::make(x1, cn1);
48

M
Megvii Engine Team 已提交
49 50 51 52 53 54
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph.get(), "all_reduce", 2, false, 0, false, client, {mode},
                dtype::Float32(), "nccl")[0];
        auto y1 = opr::CollectiveComm::make(
                {x1c}, graph.get(), "all_reduce", 2, false, 1, false, client, {mode},
                dtype::Float32(), "nccl")[0];
55
        auto y_expect = make_all_reduce_output(mode, {x0, x1});
56

M
Megvii Engine Team 已提交
57 58 59
        auto func = graph->compile(
                {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1),
                 make_callback_copy(y_expect, host_y_expect)});
60
        func->execute();
61

62 63 64 65 66 67 68 69 70 71 72
        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    };

    run_mode(Mode::ALL_REDUCE_MAX);
    run_mode(Mode::ALL_REDUCE_MIN);
    run_mode(Mode::ALL_REDUCE_SUM);
}

TEST(TestOprCollectiveComm, AllReduceMultiThread) {
    REQUIRE_GPU(2);
73 74 75 76 77 78 79 80 81
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    auto run_mode = [&](const Mode mode) {
        HostTensorGenerator<> gen;
        auto host_x0 = gen({28, 28});
        auto host_x1 = gen({28, 28});
        HostTensorND host_y0, host_y1, host_y_expect;

82
        auto client = std::make_shared<test::MockGroupClient>();
83 84 85 86

        auto run_0 = [&]() {
            auto graph0 = ComputingGraph::make();
            auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0);
87
            auto y0 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
88 89
                    {x0}, graph0.get(), "all_reduce", 2, false, 0, false, client,
                    {mode}, dtype::Float32(), "nccl")[0];
90 91 92 93 94 95 96
            auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
            func0->execute();
        };

        auto run_1 = [&]() {
            auto graph1 = ComputingGraph::make();
            auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
97
            auto y1 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
98 99
                    {x1}, graph1.get(), "all_reduce", 2, false, 1, false, client,
                    {mode}, dtype::Float32(), "nccl")[0];
100 101 102 103 104 105 106 107 108
            auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
            func1->execute();
        };

        auto run_2 = [&]() {
            auto graph2 = ComputingGraph::make();
            auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
            auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
            auto y_expect = make_all_reduce_output(mode, {x0, x1});
M
Megvii Engine Team 已提交
109
            auto func2 = graph2->compile({make_callback_copy(y_expect, host_y_expect)});
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
            func2->execute();
        };

        std::thread t0(run_0);
        std::thread t1(run_1);
        std::thread t2(run_2);

        t0.join();
        t1.join();
        t2.join();

        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    };

    run_mode(Mode::ALL_REDUCE_MAX);
    run_mode(Mode::ALL_REDUCE_MIN);
    run_mode(Mode::ALL_REDUCE_SUM);
}

TEST(TestOprCollectiveComm, AllReduceWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y1, host_y_expect;
    HostTensorND host_out_grad0, host_out_grad1, host_out_grad_expect;

145
    auto client = std::make_shared<test::MockGroupClient>();
146

147
    auto run_0 = [&]() {  // rank 0
148 149 150 151
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
152 153
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "all_reduce", 2, false, 0, false, client,
154 155 156 157 158 159 160
                {Mode::ALL_REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

M
Megvii Engine Team 已提交
161 162 163
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad0)});
164 165 166
        func0->execute();
    };

167
    auto run_1 = [&]() {  // rank 1
168 169 170 171
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
172 173
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "all_reduce", 2, false, 1, false, client,
174 175 176 177 178 179 180
                {Mode::ALL_REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

M
Megvii Engine Team 已提交
181 182 183
        auto func1 = graph1->compile(
                {make_callback_copy(y1, host_y1),
                 make_callback_copy(g, host_out_grad1)});
184 185 186
        func1->execute();
    };

187
    auto run_2 = [&]() {  // check
188 189 190 191 192 193 194 195
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_all_reduce_output(Mode::ALL_REDUCE_SUM, {x0, x1});

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
196 197
        auto out_grad_expect =
                make_all_reduce_output(Mode::ALL_REDUCE_SUM, {grad0, grad1});
198 199

        auto func2 = graph2->compile(
200 201
                {make_callback_copy(y_expect, host_y_expect),
                 make_callback_copy(out_grad_expect, host_out_grad_expect)});
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad1);
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
TEST(TestOprCollectiveComm, AllReduceWithGradThisNodeOnly) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y1, host_y_expect;
    HostTensorND host_out_grad0, host_out_grad1, host_out_grad_expect;

    auto client = std::make_shared<test::MockGroupClient>();

    auto run_0 = [&]() {  // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "all_reduce", 2, false, 0, true, client,
                {Mode::ALL_REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

M
Megvii Engine Team 已提交
250 251 252
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad0)});
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        func0->execute();
    };

    auto run_1 = [&]() {  // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "all_reduce", 2, false, 1, true, client,
                {Mode::ALL_REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

M
Megvii Engine Team 已提交
270 271 272
        auto func1 = graph1->compile(
                {make_callback_copy(y1, host_y1),
                 make_callback_copy(g, host_out_grad1)});
273 274 275 276 277 278 279 280 281 282
        func1->execute();
    };

    auto run_2 = [&]() {  // check
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_all_reduce_output(Mode::ALL_REDUCE_SUM, {x0, x1});

M
Megvii Engine Team 已提交
283
        auto func2 = graph2->compile({make_callback_copy(y_expect, host_y_expect)});
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(*host_grad0, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(*host_grad1, host_out_grad1);
}

301 302 303 304 305 306 307 308 309 310
TEST(TestOprCollectiveComm, AllGather) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

311
    auto client = std::make_shared<test::MockGroupClient>();
312 313 314 315 316 317
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x1c = opr::Copy::make(x1, cn1);

318 319 320 321 322 323
    auto y0 = opr::CollectiveComm::make(
            {x0}, graph.get(), "all_gather", 2, false, 0, false, client,
            {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make(
            {x1c}, graph.get(), "all_gather", 2, false, 1, false, client,
            {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
324 325
    auto y_expect = opr::Concat::make({x0, x1}, 0);

M
Megvii Engine Team 已提交
326 327 328
    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1),
             make_callback_copy(y_expect, host_y_expect)});
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
}

TEST(TestOprCollectiveComm, AllGatherMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

345
    auto client = std::make_shared<test::MockGroupClient>();
346

347
    auto run_0 = [&]() {  // rank 0
348 349
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
350 351
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "all_gather", 2, false, 0, false, client,
352 353 354 355 356
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

357
    auto run_1 = [&]() {  // rank 1
358 359
        auto graph1 = ComputingGraph::make();
        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
360 361
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "all_gather", 2, false, 1, false, client,
362 363 364 365 366
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
        func1->execute();
    };

367
    auto run_2 = [&]() {  // check
368 369 370 371
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = opr::Concat::make({x0, x1}, 0);
M
Megvii Engine Team 已提交
372
        auto func2 = graph2->compile({make_callback_copy(y_expect, host_y_expect)});
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
}

TEST(TestOprCollectiveComm, AllGatherWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({10});
    auto host_x1 = gen({10});
    auto host_grad0 = gen({20});
    auto host_grad1 = gen({20});

    HostTensorND host_y0, host_y1, host_y_expect;
    HostTensorND host_out_grad0, host_out_grad1;
    HostTensorND host_out_grad0_expect, host_out_grad1_expect;

403
    auto client = std::make_shared<test::MockGroupClient>();
404

405
    auto run_0 = [&]() {  // rank 0
406 407 408 409
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
410 411
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "all_gather", 2, false, 0, false, client,
412 413 414 415 416 417 418
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

M
Megvii Engine Team 已提交
419 420 421
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad0)});
422 423 424
        func0->execute();
    };

425
    auto run_1 = [&]() {  // rank 1
426 427 428 429
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
430 431
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "all_gather", 2, false, 1, false, client,
432 433 434 435 436 437 438
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

M
Megvii Engine Team 已提交
439 440 441
        auto func1 = graph1->compile(
                {make_callback_copy(y1, host_y1),
                 make_callback_copy(g, host_out_grad1)});
442 443 444
        func1->execute();
    };

445
    auto run_2 = [&]() {  // check
446 447 448 449 450 451 452 453 454 455 456
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = opr::Concat::make({x0, x1}, 0);

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = make_reduce_scatter_sum_output({grad0, grad1});

        auto func2 = graph2->compile(
457 458
                {make_callback_copy(y_expect, host_y_expect),
                 make_callback_copy(out_grad_expect[0], host_out_grad0_expect),
M
Megvii Engine Team 已提交
459
                 make_callback_copy(out_grad_expect[1], host_out_grad1_expect)});
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad0_expect, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad1_expect, host_out_grad1);
}

TEST(TestOprCollectiveComm, AllGatherWithGradThisNodeOnly) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({10});
    auto host_x1 = gen({10});
    auto host_grad0 = gen({20});
    auto host_grad1 = gen({20});

    HostTensorND host_y0, host_y1, host_y_expect;
    HostTensorND host_out_grad0, host_out_grad1;
    HostTensorND host_out_grad0_expect, host_out_grad1_expect;

    auto client = std::make_shared<test::MockGroupClient>();

    auto run_0 = [&]() {  // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "all_gather", 2, false, 0, true, client,
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

M
Megvii Engine Team 已提交
508 509 510
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad0)});
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
        func0->execute();
    };

    auto run_1 = [&]() {  // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "all_gather", 2, false, 1, true, client,
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

M
Megvii Engine Team 已提交
528 529 530
        auto func1 = graph1->compile(
                {make_callback_copy(y1, host_y1),
                 make_callback_copy(g, host_out_grad1)});
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
        func1->execute();
    };

    auto run_2 = [&]() {  // check
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = opr::Concat::make({x0, x1}, 0);

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);

        opr::Subtensor::IndexDesc axis0;
        auto shape0 = opr::GetVarShape::make(grad0, 0);
        axis0.push_back({0, 0, shape0 / 2});
        auto out_grad0_expect = opr::Subtensor::make(grad0, axis0);

        opr::Subtensor::IndexDesc axis1;
        axis1.push_back({0, shape0 / 2});
        auto out_grad1_expect = opr::Subtensor::make(grad1, axis1);

        auto func2 = graph2->compile(
                {make_callback_copy(y_expect, host_y_expect),
                 make_callback_copy(out_grad0_expect, host_out_grad0_expect),
                 make_callback_copy(out_grad1_expect, host_out_grad1_expect)});
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad0_expect, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad1_expect, host_out_grad1);
}

TEST(TestOprCollectiveComm, ReduceScatterSum) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

579 580 581 582 583
    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y0_expect, host_y1_expect;

584
    auto client = std::make_shared<test::MockGroupClient>();
585 586 587 588 589 590
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x1c = opr::Copy::make(x1, cn1);

591 592 593 594
    auto y0 = opr::CollectiveComm::make(
            {x0}, graph.get(), "reduce_scatter_sum", 2, false, 0, false, client,
            {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
595 596
            {x1c}, graph.get(), "reduce_scatter_sum", 2, false, 1, false, client,
            {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
597 598
    auto y_expect = make_reduce_scatter_sum_output({x0, x1});

599 600 601 602
    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1),
             make_callback_copy(y_expect[0], host_y0_expect),
             make_callback_copy(y_expect[1], host_y1_expect)});
603 604 605 606 607 608 609 610 611 612 613
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y1_expect, host_y1);
}

TEST(TestOprCollectiveComm, ReduceScatterSumMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

614 615 616 617 618
    HostTensorGenerator<> gen;
    auto host_x0 = gen({8});
    auto host_x1 = gen({8});
    HostTensorND host_y0, host_y1, host_y0_expect, host_y1_expect;

619
    auto client = std::make_shared<test::MockGroupClient>();
620

621
    auto run_0 = [&]() {  // rank 0
622 623
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
624
        auto y0 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
625 626
                {x0}, graph0.get(), "reduce_scatter_sum", 2, false, 0, false, client,
                {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
627 628 629 630
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

631
    auto run_1 = [&]() {  // rank 1
632 633
        auto graph1 = ComputingGraph::make();
        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
634
        auto y1 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
635 636
                {x1}, graph1.get(), "reduce_scatter_sum", 2, false, 1, false, client,
                {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
637 638 639 640
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
        func1->execute();
    };

641
    auto run_2 = [&]() {  // check
642 643 644 645 646
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_reduce_scatter_sum_output({x0, x1});
        auto func = graph2->compile(
647 648
                {make_callback_copy(y_expect[0], host_y0_expect),
                 make_callback_copy(y_expect[1], host_y1_expect)});
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
        func->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y1_expect, host_y1);
}

TEST(TestOprCollectiveComm, ReduceScatterSumWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({20});
    auto host_x1 = gen({20});
    auto host_grad0 = gen({10});
    auto host_grad1 = gen({10});

    HostTensorND host_y0, host_y1, host_y0_expect, host_y1_expect;
    HostTensorND host_out_grad0, host_out_grad1, host_out_grad_expect;

678
    auto client = std::make_shared<test::MockGroupClient>();
679

680
    auto run_0 = [&]() {  // rank 0
681 682 683 684
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
685
        auto y0 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
686 687
                {x0}, graph0.get(), "reduce_scatter_sum", 2, false, 0, false, client,
                {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
688 689 690 691 692 693
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

M
Megvii Engine Team 已提交
694 695 696
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad0)});
697 698 699
        func0->execute();
    };

700
    auto run_1 = [&]() {  // rank 1
701 702 703 704
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
705
        auto y1 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
706 707
                {x1}, graph1.get(), "reduce_scatter_sum", 2, false, 1, false, client,
                {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
708 709 710 711 712 713
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

M
Megvii Engine Team 已提交
714 715 716
        auto func1 = graph1->compile(
                {make_callback_copy(y1, host_y1),
                 make_callback_copy(g, host_out_grad1)});
717 718 719
        func1->execute();
    };

720
    auto run_2 = [&]() {  // check
721 722 723 724 725 726 727 728 729 730 731
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_reduce_scatter_sum_output({x0, x1});

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = opr::Concat::make({grad0, grad1}, 0);

        auto func2 = graph2->compile(
732 733 734
                {make_callback_copy(y_expect[0], host_y0_expect),
                 make_callback_copy(y_expect[1], host_y1_expect),
                 make_callback_copy(out_grad_expect, host_out_grad_expect)});
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y1_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad1);
}

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
TEST(TestOprCollectiveComm, ReduceScatterSumWithGradThisNodeOnly) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    HostTensorGenerator<> zeros(0, 0);
    auto host_x0 = gen({20});
    auto host_x1 = gen({20});
    auto host_grad0 = gen({10});
    auto host_grad1 = gen({10});
    auto host_zero_grad = zeros({10});

    HostTensorND host_y0, host_y1, host_y0_expect, host_y1_expect;
    HostTensorND host_out_grad0, host_out_grad1, host_out_grad_expect0,
            host_out_grad_expect1;

    auto client = std::make_shared<test::MockGroupClient>();

    auto run_0 = [&]() {  // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto y0 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
777 778
                {x0}, graph0.get(), "reduce_scatter_sum", 2, false, 0, true, client,
                {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
779 780 781 782 783 784
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

M
Megvii Engine Team 已提交
785 786 787
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad0)});
788 789 790 791 792 793 794 795 796
        func0->execute();
    };

    auto run_1 = [&]() {  // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
        auto y1 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
797 798
                {x1}, graph1.get(), "reduce_scatter_sum", 2, false, 1, true, client,
                {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
799 800 801 802 803 804
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

M
Megvii Engine Team 已提交
805 806 807
        auto func1 = graph1->compile(
                {make_callback_copy(y1, host_y1),
                 make_callback_copy(g, host_out_grad1)});
808 809 810 811 812 813 814 815 816 817 818 819
        func1->execute();
    };

    auto run_2 = [&]() {  // check
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_reduce_scatter_sum_output({x0, x1});

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
M
Megvii Engine Team 已提交
820
        auto zero_grad = opr::Host2DeviceCopy::make(*graph2, host_zero_grad, cn0);
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
        auto out_grad_expect0 = opr::Concat::make({grad0, zero_grad}, 0);
        auto out_grad_expect1 = opr::Concat::make({zero_grad, grad1}, 0);

        auto func2 = graph2->compile(
                {make_callback_copy(y_expect[0], host_y0_expect),
                 make_callback_copy(y_expect[1], host_y1_expect),
                 make_callback_copy(out_grad_expect0, host_out_grad_expect0),
                 make_callback_copy(out_grad_expect1, host_out_grad_expect1)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y1_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect0, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect1, host_out_grad1);
}

846 847 848 849 850
TEST(TestOprCollectiveComm, ReduceSum) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

851 852 853 854 855
    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

856
    auto client = std::make_shared<test::MockGroupClient>();
857 858 859 860 861 862
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x1c = opr::Copy::make(x1, cn1);

863 864 865 866 867 868
    auto y0 = opr::CollectiveComm::make(
            {x0}, graph.get(), "reduce_sum", 2, true, 0, false, client,
            {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make(
            {x1c}, graph.get(), "reduce_sum", 2, false, 1, false, client,
            {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
869 870
    auto y_expect = x0 + x1;

M
Megvii Engine Team 已提交
871 872 873
    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1),
             make_callback_copy(y_expect, host_y_expect)});
874 875 876 877 878 879 880 881 882 883
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
}

TEST(TestOprCollectiveComm, ReduceSumMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

884 885 886 887 888
    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y_expect;

889
    auto client = std::make_shared<test::MockGroupClient>();
890

891
    auto run_0 = [&]() {  // rank 0
892 893
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
894 895
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "reduce", 2, true, 0, false, client,
896 897 898 899 900
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

901
    auto run_1 = [&]() {  // rank 1
902 903
        auto graph1 = ComputingGraph::make();
        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
904 905
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "reduce", 2, false, 1, false, client,
906 907 908 909 910
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        auto func1 = graph1->compile({{y1, nullptr}});
        func1->execute();
    };

911
    auto run_2 = [&]() {  // check
912 913 914 915
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = x0 + x1;
M
Megvii Engine Team 已提交
916
        auto func2 = graph2->compile({make_callback_copy(y_expect, host_y_expect)});
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
}

TEST(TestOprCollectiveComm, ReduceSumWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({28, 28});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad = gen(shape);

    HostTensorND host_y0, host_y0_expect, host_out_grad0, host_out_grad1;

944
    auto client = std::make_shared<test::MockGroupClient>();
945

946
    auto run_0 = [&]() {  // rank 0
947 948 949 950
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
951 952
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "reduce", 2, true, 0, false, client,
953 954 955 956 957 958 959
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad = opr::Host2DeviceCopy::make(*graph0, host_grad, cn0);
        auto loss = opr::Dot::make(y0, grad);
        auto g = opr::VirtualGrad::make(loss, x0);

M
Megvii Engine Team 已提交
960 961 962
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad0)});
963 964 965
        func0->execute();
    };

966
    auto run_1 = [&]() {  // rank 1
967 968 969 970
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
971 972
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "reduce", 2, false, 1, false, client,
973 974 975 976 977 978 979
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad = opr::Host2DeviceCopy::make(*graph1, gen({1}), cn1);
        auto loss = opr::Dot::make(y1, grad);
        auto g = opr::VirtualGrad::make(loss, x1);

M
Megvii Engine Team 已提交
980 981
        auto func1 =
                graph1->compile({{y1, nullptr}, make_callback_copy(g, host_out_grad1)});
982 983 984
        func1->execute();
    };

985
    auto run_2 = [&]() {  // check
986 987 988 989
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y0_expect = x0 + x1;
M
Megvii Engine Team 已提交
990
        auto func2 = graph2->compile({make_callback_copy(y0_expect, host_y0_expect)});
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_grad, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(*host_grad, host_out_grad1);
}

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
TEST(TestOprCollectiveComm, Gather) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

    auto client = std::make_shared<test::MockGroupClient>();
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x1c = opr::Copy::make(x1, cn1);

M
Megvii Engine Team 已提交
1024 1025 1026 1027 1028 1029
    auto y0 = opr::CollectiveComm::make(
            {x0}, graph.get(), "gather", 2, true, 0, false, client, {Mode::GATHER},
            dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make(
            {x1c}, graph.get(), "gather", 2, false, 1, false, client, {Mode::GATHER},
            dtype::Float32(), "nccl")[0];
1030 1031
    auto y_expect = opr::Concat::make({x0, x1}, 0);

M
Megvii Engine Team 已提交
1032 1033 1034
    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1),
             make_callback_copy(y_expect, host_y_expect)});
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
}

TEST(TestOprCollectiveComm, GatherMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y_expect;

    auto client = std::make_shared<test::MockGroupClient>();

1052
    auto run_0 = [&]() {  // rank 0
1053 1054
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
1055
        auto y0 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
1056 1057
                {x0}, graph0.get(), "gather", 2, true, 0, false, client, {Mode::GATHER},
                dtype::Float32(), "nccl")[0];
1058 1059 1060 1061
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

1062
    auto run_1 = [&]() {  // rank 1
1063 1064
        auto graph1 = ComputingGraph::make();
        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
1065 1066
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "gather", 2, false, 1, false, client,
1067 1068 1069 1070 1071
                {Mode::GATHER}, dtype::Float32(), "nccl")[0];
        auto func1 = graph1->compile({{y1, nullptr}});
        func1->execute();
    };

1072
    auto run_2 = [&]() {  // check
1073 1074 1075 1076
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = opr::Concat::make({x0, x1}, 0);
M
Megvii Engine Team 已提交
1077
        auto func2 = graph2->compile({make_callback_copy(y_expect, host_y_expect)});
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
}

TEST(TestOprCollectiveComm, GatherWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({28, 28});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y0_expect, host_out_grad0, host_out_grad1;

    auto client = std::make_shared<test::MockGroupClient>();

1108
    auto run_0 = [&]() {  // rank 0
1109 1110 1111 1112
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
1113
        auto y0 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
1114 1115
                {x0}, graph0.get(), "gather", 2, true, 0, false, client, {Mode::GATHER},
                dtype::Float32(), "nccl")[0];
1116 1117 1118 1119 1120 1121 1122 1123
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph0, host_grad1, cn0);
        auto grad = opr::Concat::make({grad0, grad1}, 0);
        auto loss = opr::Dot::make(y0, grad);
        auto g = opr::VirtualGrad::make(loss, x0);

M
Megvii Engine Team 已提交
1124 1125 1126
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad0)});
1127 1128 1129
        func0->execute();
    };

1130
    auto run_1 = [&]() {  // rank 1
1131 1132 1133 1134
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
1135 1136
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "gather", 2, false, 1, false, client,
1137 1138 1139 1140 1141 1142 1143
                {Mode::GATHER}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad = opr::Host2DeviceCopy::make(*graph1, gen({1}), cn1);
        auto loss = opr::Dot::make(y1, grad);
        auto g = opr::VirtualGrad::make(loss, x1);

M
Megvii Engine Team 已提交
1144 1145
        auto func1 =
                graph1->compile({{y1, nullptr}, make_callback_copy(g, host_out_grad1)});
1146 1147 1148
        func1->execute();
    };

1149
    auto run_2 = [&]() {  // check
1150 1151 1152 1153
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y0_expect = opr::Concat::make({x0, x1}, 0);
M
Megvii Engine Team 已提交
1154
        auto func2 = graph2->compile({make_callback_copy(y0_expect, host_y0_expect)});
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_grad0, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(*host_grad1, host_out_grad1);
}

1171 1172 1173 1174
TEST(TestOprCollectiveComm, Broadcast) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");
1175 1176 1177 1178 1179

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

1180
    auto client = std::make_shared<test::MockGroupClient>();
1181 1182 1183
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
M
Megvii Engine Team 已提交
1184 1185 1186 1187 1188 1189 1190
    auto y0 = opr::CollectiveComm::make(
            {x0}, graph.get(), "broadcast", 2, true, 0, false, client,
            {Mode::BROADCAST}, dtype::Float32(), "nccl")[0];
    auto y_dev = std::make_shared<DeviceTensorND>(DeviceTensorND()
                                                          .comp_node(cn1)
                                                          .dtype(dtype::Float32())
                                                          .resize(host_x0->shape()));
1191 1192 1193 1194 1195 1196
    auto y1 = opr::CollectiveComm::make(
            {}, graph.get(), "broadcast", 2, false, 1, false, client, {y_dev},
            {Mode::BROADCAST}, dtype::Float32(), "nccl", {cn1})[0];

    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    func->execute();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y1);
}

TEST(TestOprCollectiveComm, BroadcastMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");
1207 1208 1209 1210 1211

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    HostTensorND host_y0, host_y1;

1212
    auto client = std::make_shared<test::MockGroupClient>();
1213

1214
    auto run_0 = [&]() {  // rank 0
1215 1216
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
1217 1218
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "broadcast", 2, true, 0, false, client,
1219 1220 1221 1222 1223
                {Mode::BROADCAST}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

1224
    auto run_1 = [&]() {  // rank 1
1225
        auto graph1 = ComputingGraph::make();
M
Megvii Engine Team 已提交
1226 1227 1228 1229 1230
        auto y_dev =
                std::make_shared<DeviceTensorND>(DeviceTensorND()
                                                         .comp_node(cn1)
                                                         .dtype(dtype::Float32())
                                                         .resize(host_x0->shape()));
1231
        auto y1 = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
1232 1233
                {}, graph1.get(), "broadcast", 2, false, 1, false, client, {y_dev},
                {Mode::BROADCAST}, dtype::Float32(), "nccl", {cn1})[0];
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
        func1->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);

    t0.join();
    t1.join();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y1);
}

TEST(TestOprCollectiveComm, BroadcastWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({28, 28});
    auto host_x0 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y1, host_out_grad, host_out_grad_expect;

1261
    auto client = std::make_shared<test::MockGroupClient>();
1262

1263
    auto run_0 = [&]() {  // rank 0
1264 1265 1266 1267
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
1268 1269
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "broadcast", 2, true, 0, false, client,
1270 1271 1272 1273 1274 1275 1276
                {Mode::BROADCAST}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

M
Megvii Engine Team 已提交
1277 1278 1279
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad)});
1280 1281 1282
        func0->execute();
    };

1283
    auto run_1 = [&]() {  // rank 1
1284 1285 1286
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

1287 1288
        auto y1 = opr::CollectiveComm::make(
                {}, graph1.get(), "broadcast", 2, false, 1, false, client,
1289 1290 1291
                {Mode::BROADCAST}, dtype::Float32(), "nccl", {cn1})[0];

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
1292
        auto g = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
1293 1294
                {grad1}, graph1.get(), "broadcast:grad", 2, false, 1, false, client,
                Mode::REDUCE_SUM, dtype::Float32(), "nccl")[0];
1295 1296
        g.node()->owner_opr()->node_prop().attribute().priority = 1;

M
Megvii Engine Team 已提交
1297
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1), {g, nullptr}});
1298 1299 1300
        func1->execute();
    };

1301
    auto run_2 = [&]() {  // check
1302 1303 1304 1305
        auto graph2 = ComputingGraph::make();
        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = grad0 + grad1;
1306 1307
        auto func2 = graph2->compile(
                {make_callback_copy(out_grad_expect, host_out_grad_expect)});
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad);
}
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

TEST(TestOprCollectiveComm, Scatter) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1;

    auto client = std::make_shared<test::MockGroupClient>();
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x = opr::Concat::make({x0, x1}, 0);
M
Megvii Engine Team 已提交
1340 1341 1342 1343 1344 1345
    auto y0 = opr::CollectiveComm::make(
            {x}, graph.get(), "scatter", 2, true, 0, false, client, {Mode::SCATTER},
            dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make(
            {}, graph.get(), "scatter", 2, false, 1, false, client, {Mode::SCATTER},
            dtype::Float32(), "nccl", {cn1})[0];
1346

1347 1348
    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1)});
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
    func->execute();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x1, host_y1);
}

TEST(TestOprCollectiveComm, ScatterMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1;

    auto client = std::make_shared<test::MockGroupClient>();

1367
    auto run_0 = [&]() {  // rank 0
1368 1369 1370 1371
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph0, host_x1, cn0);
        auto x = opr::Concat::make({x0, x1}, 0);
1372 1373
        auto y0 = opr::CollectiveComm::make(
                {x}, graph0.get(), "scatter", 2, true, 0, false, client,
1374 1375 1376 1377 1378
                {Mode::SCATTER}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

1379
    auto run_1 = [&]() {  // rank 1
1380
        auto graph1 = ComputingGraph::make();
1381 1382
        auto y1 = opr::CollectiveComm::make(
                {}, graph1.get(), "scatter", 2, false, 1, false, client,
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
                {Mode::SCATTER}, dtype::Float32(), "nccl", {cn1})[0];
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
        func1->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);

    t0.join();
    t1.join();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x1, host_y1);
}

TEST(TestOprCollectiveComm, ScatterWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({28, 28});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y1, host_out_grad, host_out_grad_expect;

    auto client = std::make_shared<test::MockGroupClient>();

1414
    auto run_0 = [&]() {  // rank 0
1415 1416 1417 1418 1419 1420
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph0, host_x1, cn0);
        auto x = opr::Concat::make({x0, x1}, 0);
1421 1422
        auto y0 = opr::CollectiveComm::make(
                {x}, graph0.get(), "scatter", 2, true, 0, false, client,
1423 1424 1425 1426 1427 1428 1429
                {Mode::SCATTER}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x);

M
Megvii Engine Team 已提交
1430 1431 1432
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(g, host_out_grad)});
1433 1434 1435
        func0->execute();
    };

1436
    auto run_1 = [&]() {  // rank 1
1437 1438 1439
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

1440 1441
        auto y1 = opr::CollectiveComm::make(
                {}, graph1.get(), "scatter", 2, false, 1, false, client,
1442 1443 1444
                {Mode::SCATTER}, dtype::Float32(), "nccl", {cn1})[0];

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
1445
        auto g = opr::CollectiveComm::make(
M
Megvii Engine Team 已提交
1446 1447
                {grad1}, graph1.get(), "scatter:grad", 2, false, 1, false, client,
                Mode::GATHER, dtype::Float32(), "nccl")[0];
1448 1449
        g.node()->owner_opr()->node_prop().attribute().priority = 1;

M
Megvii Engine Team 已提交
1450
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1), {g, nullptr}});
1451 1452 1453
        func1->execute();
    };

1454
    auto run_2 = [&]() {  // check
1455 1456 1457 1458
        auto graph2 = ComputingGraph::make();
        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = opr::Concat::make({grad0, grad1}, 0);
1459 1460
        auto func2 = graph2->compile(
                {make_callback_copy(out_grad_expect, host_out_grad_expect)});
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x1, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad);
}

TEST(TestOprCollectiveComm, AllToAll) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x00 = gen(shape);
    auto host_x01 = gen(shape);
    auto host_x10 = gen(shape);
    auto host_x11 = gen(shape);
    HostTensorND host_y0, host_y1, host_expect_y0, host_expect_y1;

    auto client = std::make_shared<test::MockGroupClient>();
    auto graph = ComputingGraph::make();

    auto x00 = opr::Host2DeviceCopy::make(*graph, host_x00, cn0);
    auto x01 = opr::Host2DeviceCopy::make(*graph, host_x01, cn0);
    auto x0 = opr::Concat::make({x00, x01}, 0);
    auto x10 = opr::Host2DeviceCopy::make(*graph, host_x10, cn1);
    auto x11 = opr::Host2DeviceCopy::make(*graph, host_x11, cn1);
    auto x1 = opr::Concat::make({x10, x11}, 0);

    auto x01c = opr::Copy::make(x01, {cn1});
    auto x10c = opr::Copy::make(x10, {cn0});

    auto expect_y0 = opr::Concat::make({x00, x10c}, 0);
    auto expect_y1 = opr::Concat::make({x01c, x11}, 0);

M
Megvii Engine Team 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
    auto y0 = opr::CollectiveComm::make(
            {x0}, graph.get(), "alltoall", 2, false, 0, false, client,
            {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
    auto y1 = opr::CollectiveComm::make(
            {x1}, graph.get(), "alltoall", 2, false, 1, false, client,
            {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];

    auto func = graph->compile(
            {make_callback_copy(y0, host_y0), make_callback_copy(y1, host_y1),
             make_callback_copy(expect_y0, host_expect_y0),
             make_callback_copy(expect_y1, host_expect_y1)});
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_expect_y0, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_expect_y1, host_y1);
}

TEST(TestOprCollectiveComm, AllToAllMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x00 = gen(shape);
    auto host_x01 = gen(shape);
    auto host_x10 = gen(shape);
    auto host_x11 = gen(shape);
    HostTensorND host_y0, host_y1, host_expect_y0, host_expect_y1;

    auto client = std::make_shared<test::MockGroupClient>();

1538
    auto run_0 = [&]() {  // rank 0
1539 1540 1541 1542 1543 1544
        auto graph0 = ComputingGraph::make();
        auto x00 = opr::Host2DeviceCopy::make(*graph0, host_x00, cn0);
        auto x01 = opr::Host2DeviceCopy::make(*graph0, host_x01, cn0);
        auto x10 = opr::Host2DeviceCopy::make(*graph0, host_x10, cn0);
        auto x0 = opr::Concat::make({x00, x01}, 0);
        auto expect_y0 = opr::Concat::make({x00, x10}, 0);
1545 1546
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "alltoall", 2, false, 0, false, client,
1547 1548 1549 1550 1551 1552 1553
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile(
                {make_callback_copy(y0, host_y0),
                 make_callback_copy(expect_y0, host_expect_y0)});
        func0->execute();
    };

1554
    auto run_1 = [&]() {  // rank 1
1555 1556 1557 1558 1559 1560
        auto graph1 = ComputingGraph::make();
        auto x10 = opr::Host2DeviceCopy::make(*graph1, host_x10, cn1);
        auto x11 = opr::Host2DeviceCopy::make(*graph1, host_x11, cn1);
        auto x01 = opr::Host2DeviceCopy::make(*graph1, host_x01, cn1);
        auto x1 = opr::Concat::make({x10, x11}, 0);
        auto expect_y1 = opr::Concat::make({x01, x11}, 0);
1561 1562
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "alltoall", 2, false, 1, false, client,
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        auto func1 = graph1->compile(
                {make_callback_copy(y1, host_y1),
                 make_callback_copy(expect_y1, host_expect_y1)});
        func1->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);

    t0.join();
    t1.join();

    MGB_ASSERT_TENSOR_EQ(host_expect_y0, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_expect_y1, host_y1);
}

TEST(TestOprCollectiveComm, AllToAllWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x00 = gen(shape);
    auto host_x01 = gen(shape);
    auto host_x10 = gen(shape);
    auto host_x11 = gen(shape);
    auto host_grad00 = gen(shape);
    auto host_grad01 = gen(shape);
    auto host_grad10 = gen(shape);
    auto host_grad11 = gen(shape);

    HostTensorND host_y0, host_y1, host_expect_y0, host_expect_y1, host_grad0,
            host_grad1, host_expect_grad0, host_expect_grad1;

    auto client = std::make_shared<test::MockGroupClient>();

1601
    auto run_0 = [&]() {  // rank 0
1602 1603 1604 1605 1606 1607 1608 1609
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x00 = opr::Host2DeviceCopy::make(*graph0, host_x00, cn0);
        auto x01 = opr::Host2DeviceCopy::make(*graph0, host_x01, cn0);
        auto x10 = opr::Host2DeviceCopy::make(*graph0, host_x10, cn0);
        auto x0 = opr::Concat::make({x00, x01}, 0);
        auto expect_y0 = opr::Concat::make({x00, x10}, 0);
1610 1611
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "alltoall", 2, false, 0, false, client,
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad00 = opr::Host2DeviceCopy::make(*graph0, host_grad00, cn0);
        auto grad10 = opr::Host2DeviceCopy::make(*graph0, host_grad10, cn0);
        auto grad_y0 = opr::Concat::make({grad00, grad10}, 0);
        auto loss = opr::Dot::make(y0, grad_y0);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile(
M
Megvii Engine Team 已提交
1622
                {make_callback_copy(y0, host_y0), make_callback_copy(g, host_grad0),
1623
                 make_callback_copy(expect_y0, host_expect_y0)});
1624 1625 1626
        func0->execute();
    };

1627
    auto run_1 = [&]() {  // rank 1
1628 1629 1630 1631 1632 1633 1634 1635
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x10 = opr::Host2DeviceCopy::make(*graph1, host_x10, cn1);
        auto x11 = opr::Host2DeviceCopy::make(*graph1, host_x11, cn1);
        auto x01 = opr::Host2DeviceCopy::make(*graph1, host_x01, cn1);
        auto x1 = opr::Concat::make({x10, x11}, 0);
        auto expect_y1 = opr::Concat::make({x01, x11}, 0);
1636 1637
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "alltoall", 2, false, 1, false, client,
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad01 = opr::Host2DeviceCopy::make(*graph1, host_grad01, cn1);
        auto grad11 = opr::Host2DeviceCopy::make(*graph1, host_grad11, cn1);
        auto grad_y1 = opr::Concat::make({grad01, grad11}, 0);
        auto loss = opr::Dot::make(y1, grad_y1);
        auto g = opr::VirtualGrad::make(loss, x1);

        auto func0 = graph1->compile(
M
Megvii Engine Team 已提交
1648
                {make_callback_copy(y1, host_y1), make_callback_copy(g, host_grad1),
1649
                 make_callback_copy(expect_y1, host_expect_y1)});
1650 1651 1652
        func0->execute();
    };

1653
    auto run_2 = [&]() {  // check
1654 1655 1656 1657 1658 1659 1660
        auto graph2 = ComputingGraph::make();
        auto grad00 = opr::Host2DeviceCopy::make(*graph2, host_grad00, cn0);
        auto grad01 = opr::Host2DeviceCopy::make(*graph2, host_grad01, cn0);
        auto grad10 = opr::Host2DeviceCopy::make(*graph2, host_grad10, cn0);
        auto grad11 = opr::Host2DeviceCopy::make(*graph2, host_grad11, cn0);
        auto out_grad0_expect = opr::Concat::make({grad00, grad01}, 0);
        auto out_grad1_expect = opr::Concat::make({grad10, grad11}, 0);
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
        auto func2 = graph2->compile(
                {make_callback_copy(out_grad0_expect, host_expect_grad0),
                 make_callback_copy(out_grad1_expect, host_expect_grad1)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_expect_y0, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_expect_y1, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_expect_grad0, host_grad0);
    MGB_ASSERT_TENSOR_EQ(host_expect_grad1, host_grad1);
}

TEST(TestOprCollectiveComm, AllToAllWithGradThisNodeOnly) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    HostTensorGenerator<> zeros(0, 0);
    TensorShape shape({10});
    auto host_x00 = gen(shape);
    auto host_x01 = gen(shape);
    auto host_x10 = gen(shape);
    auto host_x11 = gen(shape);
    auto host_grad00 = gen(shape);
    auto host_grad01 = gen(shape);
    auto host_grad10 = gen(shape);
    auto host_grad11 = gen(shape);
    auto host_zero_grad = zeros(shape);

    HostTensorND host_y0, host_y1, host_expect_y0, host_expect_y1, host_grad0,
            host_grad1, host_expect_grad0, host_expect_grad1;

    auto client = std::make_shared<test::MockGroupClient>();

    auto run_0 = [&]() {  // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x00 = opr::Host2DeviceCopy::make(*graph0, host_x00, cn0);
        auto x01 = opr::Host2DeviceCopy::make(*graph0, host_x01, cn0);
        auto x10 = opr::Host2DeviceCopy::make(*graph0, host_x10, cn0);
        auto x0 = opr::Concat::make({x00, x01}, 0);
        auto expect_y0 = opr::Concat::make({x00, x10}, 0);
        auto y0 = opr::CollectiveComm::make(
                {x0}, graph0.get(), "alltoall", 2, false, 0, true, client,
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad00 = opr::Host2DeviceCopy::make(*graph0, host_grad00, cn0);
        auto grad10 = opr::Host2DeviceCopy::make(*graph0, host_grad10, cn0);
        auto grad_y0 = opr::Concat::make({grad00, grad10}, 0);
        auto loss = opr::Dot::make(y0, grad_y0);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile(
M
Megvii Engine Team 已提交
1725
                {make_callback_copy(y0, host_y0), make_callback_copy(g, host_grad0),
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
                 make_callback_copy(expect_y0, host_expect_y0)});
        func0->execute();
    };

    auto run_1 = [&]() {  // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x10 = opr::Host2DeviceCopy::make(*graph1, host_x10, cn1);
        auto x11 = opr::Host2DeviceCopy::make(*graph1, host_x11, cn1);
        auto x01 = opr::Host2DeviceCopy::make(*graph1, host_x01, cn1);
        auto x1 = opr::Concat::make({x10, x11}, 0);
        auto expect_y1 = opr::Concat::make({x01, x11}, 0);
        auto y1 = opr::CollectiveComm::make(
                {x1}, graph1.get(), "alltoall", 2, false, 1, true, client,
                {Mode::ALL_TO_ALL}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad01 = opr::Host2DeviceCopy::make(*graph1, host_grad01, cn1);
        auto grad11 = opr::Host2DeviceCopy::make(*graph1, host_grad11, cn1);
        auto grad_y1 = opr::Concat::make({grad01, grad11}, 0);
        auto loss = opr::Dot::make(y1, grad_y1);
        auto g = opr::VirtualGrad::make(loss, x1);

        auto func0 = graph1->compile(
M
Megvii Engine Team 已提交
1751
                {make_callback_copy(y1, host_y1), make_callback_copy(g, host_grad1),
1752 1753 1754 1755 1756 1757 1758 1759
                 make_callback_copy(expect_y1, host_expect_y1)});
        func0->execute();
    };

    auto run_2 = [&]() {  // check
        auto graph2 = ComputingGraph::make();
        auto grad00 = opr::Host2DeviceCopy::make(*graph2, host_grad00, cn0);
        auto grad11 = opr::Host2DeviceCopy::make(*graph2, host_grad11, cn0);
M
Megvii Engine Team 已提交
1760
        auto zero_grad = opr::Host2DeviceCopy::make(*graph2, host_zero_grad, cn0);
1761 1762 1763 1764 1765
        auto out_grad0_expect = opr::Concat::make({grad00, zero_grad}, 0);
        auto out_grad1_expect = opr::Concat::make({zero_grad, grad11}, 0);
        auto func2 = graph2->compile(
                {make_callback_copy(out_grad0_expect, host_expect_grad0),
                 make_callback_copy(out_grad1_expect, host_expect_grad1)});
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_expect_y0, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_expect_y1, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_expect_grad0, host_grad0);
    MGB_ASSERT_TENSOR_EQ(host_expect_grad1, host_grad1);
}