test_tensor.py 21.2 KB
Newer Older
1 2 3
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
4
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
5 6 7 8
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9
import os
10 11
import platform

12 13
import numpy as np
import pytest
14
from utils import get_var_value, make_tensor, opr_test
15 16

import megengine.functional as F
M
Megvii Engine Team 已提交
17
from megengine import tensor
18
from megengine.core._trace_option import use_symbolic_shape
19
from megengine.core.tensor import megbrain_graph as G
20
from megengine.core.tensor.utils import astensor1d
21
from megengine.jit import trace
22
from megengine.utils.network import Network, set_symbolic_shape
23
from megengine.utils.network_node import VarNode
24 25 26 27


def test_eye():
    dtype = np.float32
28
    cases = [{"input": [10, 20]}, {"input": [30]}]
29
    for case in cases:
30
        np.testing.assert_allclose(
31 32 33
            F.eye(case["input"], dtype=dtype).numpy(),
            np.eye(*case["input"]).astype(dtype),
        )
34 35 36 37 38 39 40 41
        np.testing.assert_allclose(
            F.eye(*case["input"], dtype=dtype).numpy(),
            np.eye(*case["input"]).astype(dtype),
        )
        np.testing.assert_allclose(
            F.eye(tensor(case["input"]), dtype=dtype).numpy(),
            np.eye(*case["input"]).astype(dtype),
        )
42 43


44 45 46 47 48 49 50
@pytest.mark.parametrize("is_varnode", [True, False])
def test_concat(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

51 52 53 54 55 56 57 58 59 60 61
    def get_data_shape(length: int):
        return (length, 2, 3)

    data1 = np.random.random(get_data_shape(5)).astype("float32")
    data2 = np.random.random(get_data_shape(6)).astype("float32")
    data3 = np.random.random(get_data_shape(7)).astype("float32")

    def run(data1, data2):
        return F.concat([data1, data2])

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
62
    opr_test(cases, run, ref_fn=lambda x, y: np.concatenate([x, y]), network=network)
63 64


65 66 67 68 69 70 71 72 73 74 75 76
@pytest.mark.parametrize("is_varnode", [True, False])
def test_condtake(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = np.array([[1, 2, 3], [4, 5, 6]]).astype("float32")
    y = np.array([[True, False, True], [False, True, True]])
    xx = make_tensor(x, network)
    yy = make_tensor(y, network)
    val, idx = F.cond_take(yy, xx)
77 78 79 80 81 82
    if is_varnode:
        np.testing.assert_equal(get_var_value(val), x[y])
        np.testing.assert_equal(get_var_value(idx), np.where(y.reshape(-1))[0])
    else:
        np.testing.assert_equal(val.numpy(), x[y])
        np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0])
83 84


85 86 87 88 89 90 91 92 93
@pytest.mark.parametrize("is_varnode", [True, False])
def test_concat_device(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    data1 = make_tensor(np.random.random((3, 2, 2)).astype("float32"), network, "cpu0")
    data2 = make_tensor(np.random.random((2, 2, 2)).astype("float32"), network, "cpu1")
94 95 96 97 98

    out = F.concat([data1, data2], device="cpu0")
    assert str(out.device).split(":")[0] == "cpu0"


99 100 101 102 103 104 105
@pytest.mark.parametrize("is_varnode", [True, False])
def test_stack(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

106 107 108 109 110 111 112 113 114 115
    data1 = np.random.random((3, 2, 2)).astype("float32")
    data2 = np.random.random((3, 2, 2)).astype("float32")
    data3 = np.random.random((3, 2, 2)).astype("float32")

    cases = [{"input": [data1, data2]}, {"input": [data1, data3]}]
    for ai in range(3):

        def run(data1, data2):
            return F.stack([data1, data2], axis=ai)

116 117 118 119
        opr_test(
            cases, run, ref_fn=lambda x, y: np.stack([x, y], axis=ai), network=network
        )

120

121 122 123 124
@pytest.mark.parametrize("is_varnode", [True, False])
def test_split(is_varnode):
    if is_varnode:
        network = Network()
125
        saved_symbolic_shape = set_symbolic_shape(False)
126 127
    else:
        network = None
128 129

    data = np.random.random((2, 3, 4, 5)).astype(np.float32)
130
    inp = make_tensor(data, network)
131 132 133

    mge_out0 = F.split(inp, 2, axis=3)
    mge_out1 = F.split(inp, [3], axis=3)
134 135 136

    np_out = np.split(data, [3, 5], axis=3)

137 138 139 140
    assert len(mge_out0) == 2
    assert len(mge_out1) == 2

    np.testing.assert_equal(mge_out0[0].numpy(), np_out[0])
141 142
    np.testing.assert_equal(mge_out1[0].numpy(), np_out[0])

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    np.testing.assert_equal(mge_out0[1].numpy(), np_out[1])
    np.testing.assert_equal(mge_out1[1].numpy(), np_out[1])

    try:
        F.split(inp, 4)
        assert False
    except ValueError as e:
        pass

    try:
        F.split(inp, [3, 3, 5], axis=3)
        assert False
    except ValueError as e:
        assert str(e) == "Invalid nsplits_or_secions: [3, 3, 5]"

158 159 160
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)

161

162 163 164 165 166 167 168
@pytest.mark.parametrize("is_varnode", [True, False])
def test_reshape(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

169
    x = np.arange(6, dtype="float32")
170
    xx = make_tensor(x, network)
171 172 173 174 175
    y = x.reshape(1, 2, 3)

    for shape in [
        (1, 2, 3),
        (1, -1, 3),
176
        (1, make_tensor(-1, network), 3),
177
        np.array([1, -1, 3], dtype="int32"),
178
        make_tensor([1, -1, 3], network),
179 180 181 182 183
    ]:
        yy = F.reshape(xx, shape)
        np.testing.assert_equal(yy.numpy(), y)


184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
@pytest.mark.parametrize("is_trace", [True, False])
def test_reshape_on_empty_tensor(is_trace):
    input1_shape = (100, 0, 1)
    output1_shape = (100, 0, 10)
    data1 = tensor(np.random.random(input1_shape).astype(np.float32))

    input2_shape = (10, 0)
    output2_shape = (0,)
    data2 = tensor(np.random.random(input2_shape).astype(np.float32))

    input3_shape = (10, 0, 10)
    output3_shape = (0, 1, 2, 3)
    data3 = tensor(np.random.random(input3_shape).astype(np.float32))

    def comp(out, target_shp):
        assert out._tuple_shape == target_shp

    def func(x, shp):
        return F.reshape(x, shp)

    cases = [
        [data1, output1_shape],
        [data2, output2_shape],
        [data3, output3_shape],
    ]

    def test(func, inp, comp, target_shp):
        out = func(inp, target_shp)
        comp(out, target_shp)

    if is_trace:
        for symbolic in [False, True]:
            for inp, target_shp in cases:
                func_traced = trace(symbolic=symbolic)(func)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
    else:
        for inp, target_shp in cases:
            test(func, inp, comp, target_shp)


226 227 228 229
@pytest.mark.parametrize("is_varnode", [True, False])
def test_reshape_shape_inference(is_varnode):
    if is_varnode:
        network = Network()
230
        saved_symbolic_shape = set_symbolic_shape(False)
231 232 233 234 235 236 237 238 239 240
    else:
        network = None

    x_shape_known = make_tensor([1, 2, 3, 4], network)
    x_shape_unknown = F.broadcast_to(
        make_tensor([1.0], network), shape=make_tensor([1, 1, 1, 1], network).sum()
    )
    tshp_unknown = astensor1d(
        (make_tensor([2], network), make_tensor([2], network)), x_shape_known
    )
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    tshp_known = astensor1d((2, 2), x_shape_known)
    tshp_known_unspec = astensor1d((2, -1), x_shape_known)

    def check_shape(output, target):
        source = output.shape
        if isinstance(source, tensor):
            source = source.numpy()
        np.testing.assert_equal(source, target)

    def func(x, target_shape):
        return x.reshape(target_shape)

    cases = [
        {"input": [x_shape_known, tshp_unknown], "output": [(2, 2),]},
        {"input": [x_shape_unknown, tshp_unknown], "output": [(2, 2),]},
        {"input": [x_shape_known, tshp_known], "output": [(2, 2),]},
        {"input": [x_shape_known, tshp_known_unspec], "output": [(2, 2),]},
        {"input": [x_shape_unknown, tshp_known], "output": [(2, 2),]},
        {"input": [x_shape_unknown, tshp_known_unspec], "output": [(2, 2),]},
    ]
261
    opr_test(cases, func, compare_fn=check_shape, test_trace=True, network=network)
262 263
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)
264

265

266 267 268 269
@pytest.mark.parametrize("is_varnode", [True, False])
def test_squeeze(is_varnode):
    if is_varnode:
        network = Network()
270
        saved_symbolic_shape = set_symbolic_shape(False)
271 272
    else:
        network = None
273

274
    x = np.arange(6, dtype="float32").reshape(1, 2, 3, 1)
275
    xx = make_tensor(x, network)
276 277 278

    for axis in [None, 3, -4, (3, -4)]:
        y = np.squeeze(x, axis)
279
        yy = F.squeeze(xx, axis)
280 281
        np.testing.assert_equal(y, yy.numpy())

282 283 284
    if is_varnode:
        set_symbolic_shape(saved_symbolic_shape)

285

286 287 288 289 290 291 292
@pytest.mark.parametrize("is_varnode", [True, False])
def test_expand_dims(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

293
    x = np.arange(6, dtype="float32").reshape(2, 3)
294
    xx = make_tensor(x, network)
295 296 297

    for axis in [2, -3, (3, -4), (1, -4)]:
        y = np.expand_dims(x, axis)
298
        yy = F.expand_dims(xx, axis)
299 300 301
        np.testing.assert_equal(y, yy.numpy())


302 303 304 305 306 307 308 309 310 311 312 313 314
def test_expand_dims_for_scalar():
    x = np.array(1, dtype="float32")
    xx = make_tensor(x, None)
    for axis in [0, -1, (0, 1), (-1, -2), (0, -1)]:
        y = np.expand_dims(x, axis)
        yy = F.expand_dims(xx, axis)
        np.testing.assert_equal(y, yy.numpy())

    for axis in [1, -2, (1, 2), (-2, -3)]:
        np.testing.assert_raises(np.AxisError, np.expand_dims, x, axis)
        np.testing.assert_raises(AssertionError, F.expand_dims, xx, axis)


315 316 317 318 319 320 321
@pytest.mark.parametrize("is_varnode", [True, False])
def test_elemwise_dtype_promotion(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

322 323
    x = np.random.rand(2, 3).astype("float32")
    y = np.random.rand(1, 3).astype("float16")
324 325
    xx = make_tensor(x, network)
    yy = make_tensor(y, network)
326 327 328 329 330 331 332 333 334 335
    z = xx * yy
    np.testing.assert_equal(z.numpy(), x * y)

    z = xx + y
    np.testing.assert_equal(z.numpy(), x + y)

    z = x - yy
    np.testing.assert_equal(z.numpy(), x - y)


336 337 338 339 340 341 342
@pytest.mark.parametrize("is_varnode", [True, False])
def test_linspace(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

343 344 345 346 347 348 349 350
    cases = [
        {"input": [1, 9, 9]},
        {"input": [3, 10, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
351
        network=network,
352 353 354 355 356 357 358 359 360 361
    )

    cases = [
        {"input": [9, 1, 9]},
        {"input": [10, 3, 8]},
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(start, end, step, dtype=np.float32),
362
        network=network,
363 364 365
    )

    cases = [
366 367
        {"input": [1, make_tensor(9, network), 9]},
        {"input": [make_tensor(1, network), 9, make_tensor(9, network)]},
368 369 370 371 372
    ]
    opr_test(
        cases,
        F.linspace,
        ref_fn=lambda start, end, step: np.linspace(1, 9, 9, dtype=np.float32),
373
        network=network,
374 375 376
    )


377 378 379 380 381 382 383
@pytest.mark.parametrize("is_varnode", [True, False])
def test_arange(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

384 385 386 387 388 389 390 391
    cases = [
        {"input": [1, 9, 1]},
        {"input": [2, 10, 2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
392
        network=network,
393 394 395 396 397 398 399 400 401 402
    )

    cases = [
        {"input": [9, 1, -1]},
        {"input": [10, 2, -2]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
403
        network=network,
404 405 406 407 408 409 410 411 412 413
    )

    cases = [
        {"input": [9.3, 1.2, -0.5]},
        {"input": [10.3, 2.1, -1.7]},
    ]
    opr_test(
        cases,
        F.arange,
        ref_fn=lambda start, end, step: np.arange(start, end, step, dtype=np.float32),
414
        network=network,
415 416 417
    )


418 419 420 421 422 423 424
@pytest.mark.parametrize("is_varnode", [True, False])
def test_round(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

425 426 427 428 429 430
    data1_shape = (15,)
    data2_shape = (25,)
    data1 = np.random.random(data1_shape).astype(np.float32)
    data2 = np.random.random(data2_shape).astype(np.float32)

    cases = [{"input": data1}, {"input": data2}]
431
    opr_test(cases, F.round, ref_fn=np.round, network=network)
432 433


434 435 436 437 438 439 440
@pytest.mark.parametrize("is_varnode", [True, False])
def test_flatten(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

441 442 443 444 445 446
    data0_shape = (2, 3, 4, 5)
    data1_shape = (4, 5, 6, 7)
    data0 = np.random.random(data0_shape).astype(np.float32)
    data1 = np.random.random(data1_shape).astype(np.float32)

    def compare_fn(x, y):
447
        assert x._tuple_shape[0] == y
448 449 450 451

    output0 = (2 * 3 * 4 * 5,)
    output1 = (4 * 5 * 6 * 7,)
    cases = [
452 453
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
454
    ]
455
    opr_test(cases, F.flatten, compare_fn=compare_fn, network=network)
456 457 458 459

    output0 = (2, 3 * 4 * 5)
    output1 = (4, 5 * 6 * 7)
    cases = [
460 461
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
462
    ]
463
    opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=1, network=network)
464 465 466 467

    output0 = (2, 3, 4 * 5)
    output1 = (4, 5, 6 * 7)
    cases = [
468 469
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
470
    ]
471
    opr_test(cases, F.flatten, compare_fn=compare_fn, start_axis=2, network=network)
472 473 474 475

    output0 = (2, 3 * 4, 5)
    output1 = (4, 5 * 6, 7)
    cases = [
476 477
        {"input": data0, "output": output0},
        {"input": data1, "output": output1},
478
    ]
479 480 481 482 483 484 485 486 487
    opr_test(
        cases,
        F.flatten,
        compare_fn=compare_fn,
        start_axis=1,
        end_axis=2,
        network=network,
    )

488

489 490 491 492 493 494
@pytest.mark.parametrize("is_varnode", [True, False])
def test_broadcast(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None
495

496 497 498 499
    input1_shape = (20, 30)
    output1_shape = (30, 20, 30)
    data1 = np.random.random(input1_shape).astype(np.float32)

500
    input2_shape = (10, 1)
501 502 503
    output2_shape = (20, 10, 20)
    data2 = np.random.random(input2_shape).astype(np.float32)

504 505 506 507
    input3_shape = (10, 10)
    output3_shape = (10, 10)
    data3 = np.random.random(input3_shape).astype(np.float32)

508
    def compare_fn(x, y):
509
        assert x._tuple_shape[0] == y
510 511 512 513

    cases = [
        {"input": [data1, output1_shape], "output": output1_shape},
        {"input": [data2, output2_shape], "output": output2_shape},
514
        {"input": [data3, output3_shape], "output": output3_shape},
515
    ]
516
    opr_test(cases, F.broadcast_to, compare_fn=compare_fn, network=network)
517

518
    x = F.ones((2, 1, 3))
519
    with pytest.raises(RuntimeError):
520
        F.broadcast_to(x, (2, 3, 4))
521

522
    with pytest.raises(RuntimeError):
523
        F.broadcast_to(x, (4, 1, 3))
524

525
    with pytest.raises(RuntimeError):
526
        F.broadcast_to(x, (1, 3))
527

528

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
@pytest.mark.parametrize("is_trace", [True, False])
def test_broadcast_on_empty_tensor(is_trace):
    input1_shape = (100, 0, 1)
    output1_shape = (100, 0, 10)
    data1 = tensor(np.random.random(input1_shape).astype(np.float32))

    input2_shape = (10, 0)
    output2_shape = (10, 10, 0)
    data2 = tensor(np.random.random(input2_shape).astype(np.float32))

    input3_shape = (0, 0, 1, 10)
    output3_shape = (10, 0, 0, 10, 10)
    data3 = tensor(np.random.random(input3_shape).astype(np.float32))

    def comp(out, target_shp):
        assert out._tuple_shape == target_shp

    def func(x, shp):
        return F.broadcast_to(x, shp)

    cases = [
        [data1, output1_shape],
        [data2, output2_shape],
        [data3, output3_shape],
    ]

    def test(func, inp, comp, target_shp):
        out = func(inp, target_shp)
        comp(out, target_shp)

    if is_trace:
        for symbolic in [False, True]:
            for inp, target_shp in cases:
                func_traced = trace(symbolic=symbolic)(func)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
                test(func_traced, inp, comp, target_shp)
    else:
        for inp, target_shp in cases:
            test(func, inp, comp, target_shp)


571 572 573 574 575 576 577 578
@pytest.mark.parametrize("is_varnode", [True, False])
def test_utils_astensor1d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    reference = make_tensor(0, network)
579 580 581 582 583

    # literal
    x = [1, 2, 3]
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
584
        assert isinstance(xx, type(reference))
585 586 587 588 589 590
        np.testing.assert_equal(xx.numpy(), x)

    # numpy array
    x = np.asarray([1, 2, 3], dtype="int32")
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
591
        assert isinstance(xx, type(reference))
592 593 594
        np.testing.assert_equal(xx.numpy(), x.astype(dtype) if dtype else x)

    # tensor
595
    x = make_tensor([1, 2, 3], network)
596 597
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
598
        assert isinstance(xx, type(reference))
599 600 601
        np.testing.assert_equal(xx.numpy(), x.numpy())

    # mixed
602
    x = [1, make_tensor(2, network), 3]
603 604
    for dtype in [None, "float32"]:
        xx = astensor1d(x, reference, dtype=dtype)
605
        assert isinstance(xx, type(reference))
606 607 608 609 610 611 612 613 614 615 616
        np.testing.assert_equal(xx.numpy(), [1, 2, 3])


def test_device():
    x = tensor([1, 2, 3], dtype="float32")

    y1 = F.eye(x.shape, dtype="float32")
    y2 = F.eye(x.shape, dtype="float32", device=None)
    np.testing.assert_almost_equal(y1.numpy(), y2.numpy())

    y3 = F.eye(x.shape, dtype="float32", device="xpux")
617
    y4 = F.eye(x.shape, dtype="float32", device=x.device)
618 619 620 621 622
    np.testing.assert_almost_equal(y3.numpy(), y4.numpy())

    y5 = F.full((3, 2), 4, device=x.device)
    y6 = F.full((3, 2), 4, device="xpux")
    np.testing.assert_almost_equal(y5.numpy(), y6.numpy())
623 624


625 626 627 628 629 630 631 632
@pytest.mark.parametrize("is_varnode", [True, False])
def test_identity(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = make_tensor(np.random.random((5, 10)).astype(np.float32), network)
M
Megvii Engine Team 已提交
633
    y = F.copy(x)
634 635 636
    np.testing.assert_equal(y.numpy(), x)


637
def copy_test(dst, src, network):
638
    data = np.random.random((2, 3)).astype(np.float32)
639
    x = make_tensor(data, device=src, network=network)
640 641
    y = F.copy(x, dst)
    assert np.allclose(data, y.numpy())
642 643 644
    if network is None:
        z = x.to(dst)
        assert np.allclose(data, z.numpy())
645 646


647
@pytest.mark.require_ngpu(1)
648 649 650 651 652 653 654 655
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_h2d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("cpu0", "gpu0", network=network)
656 657


658
@pytest.mark.require_ngpu(1)
659 660 661 662 663 664 665 666
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_d2h(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("gpu0", "cpu0", network=network)
667 668


669
@pytest.mark.require_ngpu(2)
670 671 672 673 674 675 676 677 678
@pytest.mark.parametrize("is_varnode", [True, False])
def test_copy_d2d(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    copy_test("gpu0", "gpu1", network=network)
    copy_test("gpu0:0", "gpu0:1", network=network)
679 680 681 682 683 684 685 686 687 688 689 690 691 692


@pytest.mark.parametrize(
    "shape, repeats, axis",
    [
        ((2,), 2, 0),
        ((2, 3, 4, 5), 3, 0),
        ((2, 3, 4, 5), 4, 3),
        ((2,), 2, None),
        ((2, 3, 4, 5), 3, None),
        ((), 1, None),
        ((), 10, None),
    ],
)
693 694 695 696 697 698 699
@pytest.mark.parametrize("is_varnode", [True, False])
def test_repeat(shape, repeats, axis, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

700 701 702 703 704 705 706 707 708 709 710
    def repeat_func(inp):
        return F.repeat(inp=inp, repeats=repeats, axis=axis)

    if shape != ():
        cases = [
            {"input": np.random.randn(*shape).astype("float32")},
        ]
    else:
        cases = [{"input": np.array(1.23)}]

    opr_test(
711 712 713 714
        cases,
        repeat_func,
        ref_fn=lambda inp: np.repeat(inp, repeats, axis),
        network=network,
715 716 717 718 719 720 721 722 723 724 725 726
    )


@pytest.mark.parametrize(
    "shape, reps",
    [
        ((2,), (2,)),
        ((2, 3, 4, 5), (1, 1, 1, 1)),
        ((2, 3, 4, 5), (1, 2, 3, 4)),
        ((2, 3, 4, 5), (2, 2, 2, 2, 2, 2, 2)),
    ],
)
727 728 729 730 731 732 733
@pytest.mark.parametrize("is_varnode", [True])
def test_tile(shape, reps, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

734 735 736
    def tile_func(inp):
        return F.tile(inp=inp, reps=reps)

737
    cases = [{"input": np.random.randn(*shape).astype("float32")}]
738

739
    opr_test(cases, tile_func, ref_fn=lambda inp: np.tile(inp, reps), network=network)
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769


@pytest.mark.parametrize(
    "shape, shifts, axis",
    [
        ((2, 3), 0, None),
        ((2, 3), 1, 0),
        ((2, 3, 4, 5), (-1, 1), (0, 1)),
        ((2, 3, 4, 5), (-2, 1, 2), (1, 2, 3)),
    ],
)
@pytest.mark.parametrize("is_varnode", [True, False])
def test_roll(shape, shifts, axis, is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    inp = np.random.randn(*shape).astype("float32")

    def func(inp):
        return F.roll(inp, shifts, axis)

    cases = [
        {"input": inp},
    ]

    opr_test(
        cases, func, ref_fn=lambda inp: np.roll(inp, shifts, axis), network=network
    )