network_impl.cpp 50.9 KB
Newer Older
1 2 3 4 5 6
#include "lite_build_config.h"

#if LITE_BUILD_WITH_MGE
#include "common.h"
#include "lite/network.h"
#include "memory_allocator.h"
M
Megvii Engine Team 已提交
7
#include "network_impl.h"
8
#include "parse_info/parse_info_base.h"
M
Megvii Engine Team 已提交
9
#include "parse_model/model_parser.h"
10 11 12 13 14 15

#include "megbrain/common.h"
#include "megbrain/comp_node.h"
#include "megbrain/comp_node_env.h"
#include "megbrain/graph.h"
#include "megbrain/graph/cg.h"
16
#include "megbrain/opr/imgproc.h"
17
#include "megbrain/opr/io.h"
18
#include "megbrain/opr/tensor_manip.h"
19 20 21 22 23 24
#include "megbrain/tensor.h"

#if MGB_OPENCL
#include "megcore_opencl.h"
#endif

25 26 27 28
#if defined(MGB_ENABLE_CPUINFO_CHECK) && MGB_ENABLE_CPUINFO
#include "cpuinfo.h"
#endif

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#include <fstream>
#include <memory>
#include <set>

using namespace lite;
using namespace mgb;

LITE_DYN_TYPE_OBJ_FINAL_IMPL(NetworkImplDft);

void NetworkImplDft::set_config(const Config& config) {
    *m_user_config = config;
    m_compnode_locator = to_compnode_locator(m_user_config->device_type);
    m_compnode_locator.device = config.device_id;
}

void NetworkImplDft::shared_weight_with(const NetworkImplBase* src_network) {
    application_config();
    const auto& src_impl = src_network->cast_final_safe<NetworkImplDft>();
M
Megvii Engine Team 已提交
47
    LITE_ASSERT(src_impl.m_loader, "Clone network must after the network is loaded.");
48 49
    m_load_result = src_impl.m_loader->load(m_load_config, true);

50
    configure_after_loaded();
51 52 53 54 55
}

void NetworkImplDft::application_config() {
    auto device_type = m_user_config->device_type;
    m_compnode_locator.type = to_compnode_locator(device_type).type;
56 57 58 59
    //! when the device id is not configured, configure it
    if (m_compnode_locator.device == -1) {
        m_compnode_locator.device = m_user_config->device_id;
    }
60 61
    if (m_nr_threads > 1 && device_type == LiteDeviceType::LITE_CPU) {
        m_compnode_locator.type = mgb::CompNode::DeviceType::MULTITHREAD;
62 63 64
        if (m_compnode_locator.device == -1) {
            m_compnode_locator.device = m_user_config->device_id;
        }
65 66 67 68 69 70 71 72 73 74 75 76 77
    }
    //! model options
#define ConfigOption(mge_name, lite_name) \
    options.mge_name = m_user_config->options.lite_name;

    auto&& options = m_load_config.comp_graph->options();
    ConfigOption(graph_opt.weight_preprocess, weight_preprocess);
    ConfigOption(graph_opt.fuse_preprocess, fuse_preprocess);
    ConfigOption(fake_next_exec, fake_next_exec);
    ConfigOption(var_sanity_check_first_run, var_sanity_check_first_run);
    m_load_config.const_var_shape = m_user_config->options.const_shape;
    ConfigOption(force_dynamic_alloc, force_dynamic_alloc);
    ConfigOption(force_output_dynamic_alloc, force_output_dynamic_alloc);
78 79 80
    ConfigOption(
            force_output_use_user_specified_memory,
            force_output_use_user_specified_memory);
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    ConfigOption(no_profiling_on_shape_change, no_profiling_on_shape_change);
    ConfigOption(graph_opt.jit, jit_level);
    ConfigOption(comp_node_seq_record_level, comp_node_seq_record_level);
    ConfigOption(graph_opt_level, graph_opt_level);
    ConfigOption(async_exec_level, async_exec_level);

#undef ConfigOption
#define ConfigOptionLayoutTransform(name) \
    if (m_user_config->options.name) {    \
        options.graph_opt.name();         \
    }
    ConfigOptionLayoutTransform(enable_nchw44);
    ConfigOptionLayoutTransform(enable_nchw44_dot);
    ConfigOptionLayoutTransform(enable_nchw88);
    ConfigOptionLayoutTransform(enable_nhwcd4);
    ConfigOptionLayoutTransform(enable_nchw4);
    ConfigOptionLayoutTransform(enable_nchw32);
    ConfigOptionLayoutTransform(enable_nchw64);
#undef ConfigOptionLayoutTransform
    if (m_user_config->has_compression) {
        m_load_config.tensor_value_loader = decompressed_tensor_value_loader;
    }

104 105
    //! if device is LITE_NONE, the compnode information is stored in model or
    //! xpu in MegEngine
106
    if (device_type != LiteDeviceType::LITE_DEVICE_DEFAULT) {
107 108 109 110 111 112 113 114 115 116 117 118 119
        m_load_config.comp_node_mapper = [this](mgb::CompNode::Locator& loc) {
            if (loc.type == mgb::CompNode::DeviceType::UNSPEC) {
                loc.type = m_compnode_locator.type;
            }
            loc.device = m_compnode_locator.device;
            //! if user set the thread number and the compnode is multithread
            if (loc.type == mgb::CompNode::DeviceType::MULTITHREAD &&
                m_nr_threads != 1) {
                loc.stream = m_nr_threads;
            } else {
                loc.stream = m_compnode_locator.stream;
            }
        };
120 121 122
    }
}

M
Megvii Engine Team 已提交
123
void NetworkImplDft::set_memory_allocator(std::shared_ptr<Allocator> user_allocator) {
124 125 126 127 128 129
    auto allocator = std::make_shared<UserStaticMemAlloc>(user_allocator);
    LITE_ASSERT(m_load_config.comp_graph);
    m_load_config.comp_graph->set_device_memory_allocator(allocator);
}

//! share the runtime memory with other network, the weights is not shared
M
Megvii Engine Team 已提交
130
void NetworkImplDft::share_runtime_memory_with(Network::NetworkImplBase* network_impl) {
131 132
    LITE_ASSERT(network_impl);
    LITE_ASSERT(m_load_config.comp_graph);
M
Megvii Engine Team 已提交
133 134
    m_load_config.comp_graph->share_device_memory_with(*(
            network_impl->cast_final_safe<NetworkImplDft>().m_load_config.comp_graph));
135 136 137
}

void NetworkImplDft::set_cpu_inplace_mode() {
M
Megvii Engine Team 已提交
138 139 140
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU,
            "cpu inplace mode is only avaliable in CPU.");
141 142 143
    m_is_cpu_inplace_mode = true;
    if (m_compnode_locator.type == mgb::CompNode::DeviceType::CPU) {
        m_compnode_locator.device = mgb::CompNode::Locator::DEVICE_CPU_DEFAULT;
144
        m_user_config->device_id = mgb::CompNode::Locator::DEVICE_CPU_DEFAULT;
145 146 147 148
    } else {
        LITE_ASSERT(
                m_compnode_locator.type == CompNode::DeviceType::MULTITHREAD,
                "cpu inplace mode is only avaliable in CPU.");
M
Megvii Engine Team 已提交
149
        m_compnode_locator.device = mgb::CompNode::Locator::DEVICE_MULTITHREAD_DEFAULT;
150
        m_user_config->device_id = mgb::CompNode::Locator::DEVICE_MULTITHREAD_DEFAULT;
151 152 153 154
    }
}

void NetworkImplDft::set_cpu_threads_number(size_t nr_threads) {
M
Megvii Engine Team 已提交
155 156 157
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU,
            "multi threads mode is only avaliable in CPU.");
158 159 160
    if (nr_threads > 1) {
        m_nr_threads = nr_threads;
        m_compnode_locator.type = mgb::CompNode::DeviceType::MULTITHREAD;
161 162 163 164 165 166
        if (m_is_cpu_inplace_mode) {
            m_compnode_locator.device =
                    mgb::CompNode::Locator::DEVICE_MULTITHREAD_DEFAULT;
            m_user_config->device_id =
                    mgb::CompNode::Locator::DEVICE_MULTITHREAD_DEFAULT;
        }
167 168 169 170 171 172
        m_compnode_locator.nr_threads = nr_threads;
    }
}

void NetworkImplDft::set_runtime_thread_affinity(
        const ThreadAffinityCallback& thread_affinity_callback) {
M
Megvii Engine Team 已提交
173 174 175
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU,
            "multi threads mode is only avaliable in CPU.");
176 177 178 179 180 181 182 183
    mgb::CompNode::Locator loc;
    m_load_config.comp_node_mapper(loc);
    auto cn = mgb::CompNode::load(loc);
    if (m_nr_threads > 1) {
        mgb::CompNodeEnv::from_comp_node(cn).cpu_env().set_affinity(
                thread_affinity_callback);
    } else {
        mgb::CompNodeEnv::from_comp_node(cn).cpu_env().dispatch(
M
Megvii Engine Team 已提交
184
                [thread_affinity_callback](void) { thread_affinity_callback(0); });
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    }
}

void NetworkImplDft::set_device_id(int device_id) {
    m_compnode_locator.device = device_id;
    m_user_config->device_id = device_id;
}

void NetworkImplDft::set_stream_id(int stream_id) {
    m_compnode_locator.stream = stream_id;
}

void NetworkImplDft::use_tensorrt() {
    auto&& options = m_load_config.comp_graph->options();
    options.graph_opt.tensorrt = true;
}

//! set the callback in async model
void NetworkImplDft::set_async_callback(const AsyncCallback& callback) {
M
Megvii Engine Team 已提交
204 205 206 207 208
    LITE_ASSERT(!m_is_cpu_inplace_mode, "cpu inplace mode not support async mode");
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU ||
                    m_user_config->device_type == LiteDeviceType::LITE_CUDA,
            "Now only cpu and cuda>10.0 support async mode");
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    m_async = true;
    m_async_callback = std::move(callback);
}

void NetworkImplDft::make_output_spec() {
    m_output_spec.clear();
    for (auto&& out : m_network_io->outputs) {
        if (m_load_result.output_var_map.count(out.name)) {
            auto&& load_out = m_load_result.output_var_map[out.name];
            auto cb = [&out, this](const mgb::DeviceTensorND& dv) mutable {
                mgb::CompNode comp_node = dv.comp_node();
                if (out.io_type == LiteIOType::LITE_IO_SHAPE) {
                    auto mgb_layout = dv.layout();
                    out.lite_tensor->set_layout(to_lite_layout(mgb_layout));
                } else {
                    TensorHelper::implement(out.lite_tensor)
                            ->cast_final_safe<TensorImplDft>()
                            .copy_from_mge_tensor(dv);
                    out.lite_tensor->update_from_implement();
                }
                if (m_async) {
                    out.have_sync = true;
                    bool need_exec_cb = true;
                    for (auto&& j : m_network_io->outputs) {
                        if (!j.have_sync) {
                            need_exec_cb = false;
                        }
                    }
                    if (need_exec_cb) {
                        for (auto&& j : m_network_io->outputs) {
                            j.have_sync = false;
                        }
                        comp_node.add_callback([this]() { finish(); });
                    }
                }
            };
245 246 247 248 249 250 251
            //! if write to user-specified memory, the CallbackCaller must be nullptr.
            if (m_user_config->options.force_output_use_user_specified_memory ||
                m_user_config->options.force_output_dynamic_alloc) {
                m_output_spec.emplace_back(load_out, nullptr);
            } else {
                m_output_spec.emplace_back(load_out, std::move(cb));
            }
252
        } else {
M
Megvii Engine Team 已提交
253
            LITE_THROW(ssprintf("no output named : %s in the mode", out.name.c_str()));
254 255 256 257
        }
    }
}

258 259 260 261 262 263 264 265
void NetworkImplDft::replace_src_discrete_input_opr_pass() {
    mgb::ThinHashMap<mgb::SymbolVar, mgb::SymbolVar> out_var_map;

    auto dest_with_extra_deps =
            get_dest_vars_with_extra_deps(m_load_result.output_var_list);
    gopt::SubGraph graph{dest_with_extra_deps};
    auto rewriter = graph.make_rewriter();

266 267 268 269 270 271 272 273 274 275 276
    auto on_opr = [&](cg::OperatorNodeBase* opr) {
        bool replace_output = false;
        for (auto inp : opr->input()) {
            if ((inp->owner_opr()->same_type<mgb::opr::Host2DeviceCopy>() ||
                 inp->owner_opr()->same_type<mgb::opr::VolatileSharedDeviceTensor>()) &&
                inp->name() == m_user_config->discrete_input_name) {
                bool is_h2d = true;
                if (inp->owner_opr()->same_type<mgb::opr::Host2DeviceCopy>()) {
                    is_h2d = true;
                } else {
                    is_h2d = false;
277
                }
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

                SymbolVarArray srcs;
                if (is_h2d) {
                    auto h2d = inp->owner_opr();
                    for (auto&& i :
                         get_discrete_tensors(m_user_config->discrete_input_name)) {
                        auto val = TensorHelper::implement(i)
                                           ->cast_final_safe<TensorImplDft>()
                                           .m_host_tensor;
                        LITE_ASSERT(val);
                        srcs.push_back(mgb::opr::Host2DeviceCopy::make(
                                *m_load_result.graph, val, h2d->config()));
                    }
                } else {
                    auto volatiled = inp->owner_opr();
                    for (auto&& i :
                         get_discrete_tensors(m_user_config->discrete_input_name)) {
                        auto val = TensorHelper::implement(i)
                                           ->cast_final_safe<TensorImplDft>()
                                           .m_dev_tensor;
                        LITE_ASSERT(val);
                        srcs.push_back(mgb::opr::VolatileSharedDeviceTensor::make(
                                *m_load_result.graph, val, volatiled->config()));
                    }
302 303
                }

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
                if (opr->same_type<mgb::opr::WarpPerspective>()) {
                    auto& warp = opr->cast_final<mgb::opr::WarpPerspective>();
                    SymbolVar new_out;
                    if (opr->input().size() == 3) {
                        new_out = mgb::opr::WarpPerspective::make(
                                srcs, warp.input(1), warp.input(2), warp.param(),
                                warp.config());
                    } else {
                        LITE_ASSERT(opr->input().size() == 4);
                        new_out = mgb::opr::WarpPerspective::make(
                                srcs, warp.input(1), warp.input(2), warp.input(3),
                                warp.param(), warp.config());
                    }
                    rewriter.replace_var(
                            warp.output(0), new_out.node(),
                            "replace WarpPerspective to WarpPerspective multi src "
                            "version.");
                    replace_output = true;
                } else {
                    auto concat = mgb::opr::Concat::make(srcs, 0);
                    rewriter.replace_var(inp, concat.node(), "add a concat opr.");
                }
326
            }
327 328
        }
        if (!replace_output) {
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
            rewriter.auto_replace_outputs(opr);
        }
    };
    graph.iter(on_opr);
    rewriter.apply_inplace();
    auto new_ovar = graph.endpoint_vars();
    new_ovar.resize(m_load_result.output_var_list.size());

    for (size_t i = 0; i < new_ovar.size(); ++i) {
        out_var_map[m_load_result.output_var_list[i]] = new_ovar[i];
    }
    for (auto&& i : m_load_result.output_var_map) {
        i.second = out_var_map.at(i.second);
    }
    for (auto&& i : m_load_result.output_var_map_id) {
        i.second = out_var_map.at(i.second);
    }
    for (size_t i = 0; i < m_load_result.output_var_list.size(); i++) {
        new_ovar[i].rename(m_load_result.output_var_list[i].node()->name());
    }
    m_load_result.output_var_list = std::move(new_ovar);
}

352 353 354 355 356 357 358 359 360 361 362
void NetworkImplDft::replace_dev_input_pass() {
    mgb::CompNode::Locator locator;
    m_load_config.comp_node_mapper(locator);
    //! CPU is not need use device input
    if (locator.type == mgb::CompNode::DeviceType::CPU) {
        return;
    }
    //! repalce the H2D with VolatileSharedDeviceTensor, and keep the dev tensor
    //! in m_network_io.input, user can directly change the dev tensor
    //! storage through m_network_io.input.lite_tensor->reset() befor forward
    using DeviceTensorMap =
M
Megvii Engine Team 已提交
363
            std::unordered_map<std::string, std::shared_ptr<mgb::DeviceTensorND>>;
364 365 366 367 368 369 370 371
    DeviceTensorMap name2dev_tensor;

    mgb::ThinHashMap<mgb::HostTensorND*, mgb::SymbolVar> host_val2var;

    //! construct host_val2var that maps from host tensor to corresponding var
    auto on_opr = [&](mgb::cg::OperatorNodeBase* opr) {
        if (opr->same_type<mgb::opr::Host2DeviceCopy>()) {
            mgb::HostTensorND* tensor =
M
Megvii Engine Team 已提交
372
                    opr->cast_final<mgb::opr::Host2DeviceCopy>().host_data().get();
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
            host_val2var[tensor] = opr->output(0);
        }
    };
    mgb::cg::DepOprIter dep_iter{on_opr};
    for (auto i : m_load_result.output_var_list) {
        dep_iter.add(i.node()->owner_opr());
    }

    mgb::ThinHashMap<mgb::SymbolVar, mgb::SymbolVar> inp_var_map, out_var_map;

    mgb::SmallVector<std::string> to_clear;
    for (auto&& config_in : m_network_io->inputs) {
        if (!config_in.is_host) {
            auto host_val = m_load_result.tensor_map[config_in.name];
            auto dev_val = TensorHelper::implement(config_in.lite_tensor)
                                   ->cast_final_safe<TensorImplDft>()
                                   .m_dev_tensor;
            auto dev_var = mgb::opr::VolatileSharedDeviceTensor::make(
                    *m_load_result.graph, dev_val, {config_in.name});
            inp_var_map[host_val2var.at(host_val.get())] = dev_var;
            name2dev_tensor[config_in.name] = dev_val;
        }
395 396 397 398
        //! reset lite_tensor in discrete mode
        if (config_in.name == m_user_config->discrete_input_name) {
            config_in.lite_tensor.reset();
        }
399
    }
M
Megvii Engine Team 已提交
400
    auto new_ovar = mgb::cg::replace_vars(m_load_result.output_var_list, inp_var_map);
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
    for (size_t i = 0; i < new_ovar.size(); ++i) {
        out_var_map[m_load_result.output_var_list[i]] = new_ovar[i];
    }
    for (auto&& i : m_load_result.output_var_map) {
        i.second = out_var_map.at(i.second);
    }
    for (auto&& i : m_load_result.output_var_map_id) {
        i.second = out_var_map.at(i.second);
    }
    for (size_t i = 0; i < m_load_result.output_var_list.size(); i++) {
        new_ovar[i].rename(m_load_result.output_var_list[i].node()->name());
    }
    m_load_result.output_var_list = std::move(new_ovar);
}

void NetworkImplDft::cross_compnode_model_detect() {
    mgb::ThinHashSet<LiteDeviceType> nr_used_device_type;
    auto on_opr = [&](mgb::cg::OperatorNodeBase* opr) {
        for (auto j : opr->output()) {
            if (j->comp_node() != mgb::CompNode::default_cpu()) {
                nr_used_device_type.insert(
                        get_device_from_locator(j->comp_node().locator()));
            }
        }
    };
    mgb::cg::DepOprIter dep_iter{on_opr};
    for (auto i : m_load_result.output_var_list) {
        dep_iter.add(i.node()->owner_opr());
    }
M
Megvii Engine Team 已提交
430
    m_nr_device_type = nr_used_device_type.size();
431 432
}

433
void NetworkImplDft::layout_transform_optimization() {
434
    if (m_set_layout_transform) {
435 436
        mgb::ThinHashMap<mgb::SymbolVar, mgb::SymbolVar> out_var_map;
        auto output_var_array = mgb::gopt::layout_transform(
437
                m_load_result.output_var_list, m_layout_transform_target);
438
        m_load_result.update_output_var_list(output_var_array);
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    } else if (m_user_config->auto_optimize_inference) {
        //! set model weight preprocess
        m_load_config.comp_graph->options().graph_opt.weight_preprocess = true;
        LITE_LOG(
                "weight_preprocess is enabled, this maybe use more memory when "
                "infernece.");
        //! get the current format and data type of the model
        bool is_model_nchw = true;
        //! is any convolution is int8
        bool is_model_int8 = false;
        //! is all convolution is float32
        bool is_model_float32 = true;
        float conv_cnt = 0;
        float dimshuffle_cnt = 0;

        auto detect_int8_model = [&](const VarNode* input) {
            if (input->dtype().enumv() == megdnn::DTypeEnum::QuantizedS8 ||
                input->dtype().enumv() == megdnn::DTypeEnum::Quantized8Asymm) {
                is_model_int8 = true;
                is_model_float32 = false;
            } else if (input->dtype().enumv() == megdnn::DTypeEnum::Float32) {
                is_model_float32 = (is_model_float32 && true);
            } else {
                is_model_float32 = false;
            }
        };

        cg::DepOprIter dep([&](cg::OperatorNodeBase* opr) {
            if (auto conv = opr->try_cast_final<opr::ConvolutionForward>()) {
                if (conv->param().format != megdnn::param::ConvBias::Format::NCHW) {
                    is_model_nchw = false;
                }
                conv_cnt++;
                detect_int8_model(conv->input(0));
            } else if (auto conv_bias = opr->try_cast_final<opr::ConvBias>()) {
                if (conv_bias->param().format !=
                    megdnn::param::ConvBias::Format::NCHW) {
                    is_model_nchw = false;
                }
                conv_cnt++;
                detect_int8_model(conv->input(0));
            } else if (auto dimshuffle = opr->try_cast_final<opr::Dimshuffle>()) {
                LITE_MARK_USED_VAR(dimshuffle);
                dimshuffle_cnt++;
            }
        });
        for (auto&& i : m_load_result.output_var_list)
            dep.add(i);

        float radio_dimshuffle_conv = 0;
        if (conv_cnt > 0) {
            radio_dimshuffle_conv = dimshuffle_cnt / conv_cnt;
        }
        //! format optimize can only applied on nchw model,
        //! shufflenet like model will hurt the performance when using nchw88 or nchw44
        //! format, here just heuristically decide the gate radio of
        //! dimshuffle and convolution
        if (!is_model_nchw || radio_dimshuffle_conv > 0.15f) {
            return;
        }

        //! determine the layout by the device information
        //! TODO: shufflenet like model use nchw88 or nchw44 will hurt the
        //! performance
        if (m_user_config->device_type == LITE_CPU) {
#if defined(MGB_ENABLE_CPUINFO_CHECK) && MGB_ENABLE_CPUINFO
            cpuinfo_initialize();
            //! if all convolution and matmul data type is float32
            if (is_model_float32) {
                //! if device is x86
                //! if x86 support avx, use format nchw88
                if (cpuinfo_has_x86_avx()) {
                    m_load_config.comp_graph->options().graph_opt.enable_nchw88();
                    LITE_LOG("Configure model inference with nchw88 format.");
                } else if (cpuinfo_has_x86_sse2() && !cpuinfo_has_x86_sse3()) {
                    //! if x86 only support sse2, use format nchw44
                    m_load_config.comp_graph->options().graph_opt.enable_nchw44();
                    LITE_LOG("Configure model inference with nchw44 format.");
                } else if (cpuinfo_has_arm_neon()) {
                    //! if device is arm, use format nchw44
                    m_load_config.comp_graph->options().graph_opt.enable_nchw44();
                    LITE_LOG("Configure model inference with nchw44 format.");
                }
            } else if (is_model_int8) {
                //! if date type of convolution  is int8
                //! if device is arm and support dot, use nchw44-dot format
                if (cpuinfo_has_arm_neon() && cpuinfo_has_arm_neon_dot()) {
                    m_load_config.comp_graph->options().graph_opt.enable_nchw44_dot();
                    LITE_LOG("Configure model inference with nchw44-dot format.");
                } else if (cpuinfo_has_arm_neon()) {
                    //! if device is arm and do not support dot, use nchw44 format
                    m_load_config.comp_graph->options().graph_opt.enable_nchw44();
                    LITE_LOG("Configure model inference with nchw44 format.");
                }
            }
#endif
        }
536 537 538
    }
}

539 540 541 542
void NetworkImplDft::load_model(
        std::shared_ptr<void> model_mem, size_t size,
        std::unordered_map<std::string, LiteAny> separate_config_map) {
    if (!m_loader) {
M
Megvii Engine Team 已提交
543 544
        m_input_file =
                mgb::serialization::InputFile::make_mem_proxy(model_mem, size, false);
545
        m_format = mgb::serialization::GraphLoader::identify_graph_dump_format(
M
Megvii Engine Team 已提交
546
                *m_input_file);
547
        if (!m_format.valid()) {
548 549 550
            LITE_THROW("invalid model format");
        }
        m_loader = mgb::serialization::GraphLoader::make(
551
                std::move(m_input_file), m_format.val());
552 553 554 555 556 557 558
    }

    //! applay the user configration to mge model
    application_config();

    //! config some flag get from json config file
    if (separate_config_map.find("device_id") != separate_config_map.end()) {
559
        set_device_id(separate_config_map["device_id"].safe_cast<int>());
560
    }
M
Megvii Engine Team 已提交
561
    if (separate_config_map.find("number_threads") != separate_config_map.end() &&
562
        separate_config_map["number_threads"].safe_cast<uint32_t>() > 1) {
563
        set_cpu_threads_number(
564
                separate_config_map["number_threads"].safe_cast<uint32_t>());
565
    }
M
Megvii Engine Team 已提交
566
    if (separate_config_map.find("enable_inplace_model") != separate_config_map.end() &&
567
        separate_config_map["enable_inplace_model"].safe_cast<bool>()) {
568 569 570
        set_cpu_inplace_mode();
    }
    if (separate_config_map.find("use_tensorrt") != separate_config_map.end() &&
571
        separate_config_map["use_tensorrt"].safe_cast<bool>()) {
572 573 574
        use_tensorrt();
    }

575
    m_load_result = m_loader->load(m_load_config, true);
576 577
    configure_after_loaded();
}
578

579
void NetworkImplDft::configure_after_loaded() {
580 581
    modify_exection_policy();

582
    layout_transform_optimization();
583

584
    //! find how many compnode the model has, this should call before update_io
585 586 587 588 589 590 591 592 593 594 595
    cross_compnode_model_detect();

    //! update the IO of the network
    update_io();

    //! replace the IO when there is device input or output
    compile_graph();
}

void NetworkImplDft::compile_graph() {
    replace_dev_input_pass();
596
    if (!m_user_config->discrete_input_name.empty()) {
597
        replace_src_discrete_input_opr_pass();
598
    }
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
    make_output_spec();
    m_execute_func = m_load_result.graph_compile(m_output_spec);
}

void NetworkImplDft::start() const {
    if (m_start_callback) {
        std::unordered_map<std::string, std::pair<IO, std::shared_ptr<Tensor>>>
                input_io_map;
        for (auto&& io_inner : m_network_io->inputs) {
            input_io_map[io_inner.name] = {
                    IO{io_inner.name, io_inner.is_host, io_inner.io_type,
                       io_inner.config_layout},
                    io_inner.lite_tensor};
        }
        m_start_callback(input_io_map);
    }
}

void NetworkImplDft::forward() {
    start();
619 620 621 622
    if (m_load_config.comp_graph &&
        m_user_config->options.comp_node_seq_record_level == 2) {
        m_load_config.comp_graph.reset();
    }
623 624 625 626 627 628 629 630 631 632 633 634 635
    LITE_ASSERT(m_execute_func, "forward must be called after network loaded.");
    m_execute_func->execute();
}

void NetworkImplDft::wait() {
    if (!m_async) {
        m_execute_func->wait();
    }
    finish();
}

void NetworkImplDft::finish() const {
    if (m_async) {
M
Megvii Engine Team 已提交
636
        LITE_ASSERT(m_async_callback, "The callback func must set when async mode.");
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
        m_async_callback();
    }
    if (m_finish_callback) {
        std::unordered_map<std::string, std::pair<IO, std::shared_ptr<Tensor>>>
                output_io_map;
        for (auto&& io_inner : m_network_io->outputs) {
            output_io_map[io_inner.name] = {
                    IO{io_inner.name, io_inner.is_host, io_inner.io_type,
                       io_inner.config_layout},
                    io_inner.lite_tensor};
        }
        m_finish_callback(output_io_map);
    }
    output_plugin_result();
}

void NetworkImplDft::set_io(const NetworkIO& network_io) {
    for (auto&& in : network_io.inputs) {
        m_network_io->inputs.emplace_back(in);
    }
    for (auto&& out : network_io.outputs) {
        m_network_io->outputs.emplace_back(out);
    }
}

662
void NetworkImplDft::try_infer_tensor_layout(std::shared_ptr<Tensor> tensor, Var var) {
663 664
    if (var.node()->capable_shape_infer()) {
        auto&& static_infer_mgr = m_load_config.comp_graph->static_infer_manager();
665 666 667 668 669 670
        auto shape = static_infer_mgr.infer_shape_fallible(var.node());
        if (!shape) {
            LITE_WARN(
                    "Lite infer output shape failed, maybe the model is "
                    "dynamic "
                    "shape.\n");
671 672 673 674
            LITE_ASSERT(
                    !m_user_config->options.force_output_use_user_specified_memory,
                    "force_output_use_user_specified_memory can't be used when output "
                    "shape can't be derived.");
675 676
            return;
        }
677
        Layout layout = to_lite_layout(TensorLayout{*shape, var.dtype()});
678 679 680 681
        tensor->set_layout(layout);
    }
}

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
void NetworkImplDft::update_io() {
    update_input();
    update_output();
}

void NetworkImplDft::update_input() {
    auto device_type = m_user_config->device_type;
    auto device_id = m_compnode_locator.device;
    auto stream_id = m_compnode_locator.stream;
    //! if cpu all input and output are host
    if (device_type == LiteDeviceType::LITE_CPU) {
        for (auto&& in : m_network_io->inputs) {
            in.is_host = true;
        }
    }
    //! if cross compnode model, modify the device input if it is not valid
    if (m_nr_device_type > 1) {
        for (auto&& in_tensor_iter : m_load_result.tensor_map) {
            for (auto&& config_in : m_network_io->inputs) {
                //! if tensor is set to device input
M
Megvii Engine Team 已提交
702
                if (in_tensor_iter.first == config_in.name && !config_in.is_host) {
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
                    //! if the origin compnode of the tensor is not the device,
                    //! set the input to host
                    if (get_device_from_locator(
                                in_tensor_iter.second->comp_node().locator()) ==
                        LiteDeviceType::LITE_CPU) {
                        config_in.is_host = true;
                        LITE_WARN(
                                "The input tensor %s of the cross device model "
                                "should not from device.",
                                config_in.name.c_str());
                    }
                }
            }
        }
    }
    for (auto&& in_tensor_iter : m_load_result.tensor_map) {
        bool found = false;
        for (auto&& config_in : m_network_io->inputs) {
            if (in_tensor_iter.first == config_in.name) {
                found = true;
                if (config_in.is_host) {
                    config_in.lite_tensor = std::make_shared<Tensor>(
                            device_id, stream_id, device_type, true);
                    TensorHelper::implement(config_in.lite_tensor)
                            ->cast_final_safe<TensorImplDft>()
                            .m_host_tensor = in_tensor_iter.second;
                    config_in.lite_tensor->update_from_implement();
                } else {
M
Megvii Engine Team 已提交
731 732
                    config_in.lite_tensor =
                            std::make_shared<Tensor>(device_id, stream_id, device_type);
733 734 735
                    config_in.lite_tensor->set_layout(
                            to_lite_layout(in_tensor_iter.second->layout()));
                }
736 737 738 739
                TensorHelper::implement(config_in.lite_tensor)
                        ->cast_final_safe<TensorImplDft>()
                        .m_record_reset =
                        m_user_config->options.comp_node_seq_record_level > 0;
740
                if (config_in.config_layout.ndim &&
M
Megvii Engine Team 已提交
741
                    !(config_in.config_layout == config_in.lite_tensor->get_layout())) {
742 743 744 745 746 747 748
                    config_in.lite_tensor->set_layout(config_in.config_layout);
                }
            }
        }
        if (!found) {
            IOInner io_in;
            io_in.name = in_tensor_iter.first;
M
Megvii Engine Team 已提交
749 750
            io_in.lite_tensor =
                    std::make_shared<Tensor>(device_id, stream_id, device_type, true);
751 752 753
            TensorHelper::implement(io_in.lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_host_tensor = in_tensor_iter.second;
754 755 756 757
            TensorHelper::implement(io_in.lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_record_reset =
                    m_user_config->options.comp_node_seq_record_level > 0;
758 759 760 761
            io_in.lite_tensor->update_from_implement();
            m_network_io->inputs.push_back(io_in);
        }
    }
762 763 764 765 766

    if (!m_user_config->discrete_input_name.empty()) {
        update_input_lite_tensors();
    }

767
    //! delete the IO that is not the network
M
Megvii Engine Team 已提交
768
    for (auto it = m_network_io->inputs.begin(); it != m_network_io->inputs.end();) {
769
        if (it->lite_tensor == nullptr) {
M
Megvii Engine Team 已提交
770
            LITE_LOG("%s is not the network input, ignore it.", it->name.c_str());
771 772 773 774 775 776 777
            it = m_network_io->inputs.erase(it);
        } else {
            it++;
        }
    }
}

778
//! initialization lite_tensors when input is composed of discrete multiple tensors
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
void NetworkImplDft::update_input_lite_tensors() {
    auto device_type = m_user_config->device_type;
    auto device_id = m_compnode_locator.device;
    auto stream_id = m_compnode_locator.stream;

    for (auto&& in_tensor_iter : m_load_result.tensor_map) {
        if (in_tensor_iter.first != m_user_config->discrete_input_name) {
            continue;
        }
        for (auto&& config_in : m_network_io->inputs) {
            if (in_tensor_iter.first == config_in.name) {
                size_t bs = in_tensor_iter.second->shape(0);
                auto shape = in_tensor_iter.second->shape();
                if (config_in.config_layout.ndim) {
                    bs = config_in.config_layout.shapes[0];
794 795 796
                    for (size_t i = 0; i < config_in.config_layout.ndim; ++i) {
                        shape.shape[i] = config_in.config_layout.shapes[i];
                    }
797
                }
798
                shape.shape[0] = 1;
799
                for (size_t i = 0; i < bs; ++i) {
800 801 802 803
                    HostTensorND tensor(
                            in_tensor_iter.second->comp_node(), shape,
                            in_tensor_iter.second->dtype(),
                            in_tensor_iter.second->format());
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
                    if (config_in.is_host) {
                        config_in.lite_tensors.push_back(std::make_shared<Tensor>(
                                device_id, stream_id, device_type, true));
                        TensorHelper::implement(config_in.lite_tensors[i])
                                ->cast_final_safe<TensorImplDft>()
                                .m_host_tensor = std::make_shared<HostTensorND>(tensor);
                        config_in.lite_tensors[i]->update_from_implement();
                    } else {
                        config_in.lite_tensors.push_back(std::make_shared<Tensor>(
                                device_id, stream_id, device_type));
                        config_in.lite_tensors[i]->set_layout(
                                to_lite_layout(tensor.layout()));
                    }
                    TensorHelper::implement(config_in.lite_tensors[i])
                            ->cast_final_safe<TensorImplDft>()
                            .m_record_reset =
                            m_user_config->options.comp_node_seq_record_level > 0;
                }
            }
        }
    }
}

827 828 829 830 831 832 833 834 835 836 837 838
void NetworkImplDft::update_output() {
    auto device_type = m_user_config->device_type;
    auto device_id = m_compnode_locator.device;
    auto stream_id = m_compnode_locator.stream;
    if (device_type == LiteDeviceType::LITE_CPU) {
        for (auto&& out : m_network_io->outputs) {
            out.is_host = true;
        }
    }
    //! delete the output that is not the network
    for (auto out_it = m_network_io->outputs.begin();
         out_it != m_network_io->outputs.end();) {
M
Megvii Engine Team 已提交
839 840
        if (std::find_if(
                    m_load_result.output_var_list.begin(),
841
                    m_load_result.output_var_list.end(), [out_it](const SymbolVar var) {
M
Megvii Engine Team 已提交
842 843 844
                        return var.node()->name() == out_it->name;
                    }) == m_load_result.output_var_list.end()) {
            LITE_LOG("%s is not the network output, ignore it.", out_it->name.c_str());
845 846 847 848 849 850 851
            out_it = m_network_io->outputs.erase(out_it);
        } else {
            out_it++;
        }
    }
    //! user config the output tensor, so only compute the config output
    if (m_compute_configured_output_only) {
M
Megvii Engine Team 已提交
852 853 854
        LITE_ASSERT(
                m_network_io->outputs.size() > 0,
                "compute configured output only with no configure output.");
855 856 857 858 859 860 861
        for (auto out_it = m_network_io->outputs.begin();
             out_it != m_network_io->outputs.end(); out_it++) {
            //! use pinned memory to copy form device
            if (out_it->is_host) {
                out_it->lite_tensor = std::make_shared<Tensor>(
                        device_id, stream_id, device_type, true);
            } else {
M
Megvii Engine Team 已提交
862 863
                out_it->lite_tensor =
                        std::make_shared<Tensor>(device_id, stream_id, device_type);
864
            }
865
            SymbolVar var;
866 867 868 869 870 871 872
            for (auto&& out_var : m_load_result.output_var_list) {
                if (out_var.node()->name() == out_it->name) {
                    var = out_var;
                    break;
                }
            }
            try_infer_tensor_layout(out_it->lite_tensor, var);
873
            output_tensor_copy_optimize(var, out_it->lite_tensor);
874 875 876 877
            TensorHelper::implement(out_it->lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_record_reset =
                    m_user_config->options.comp_node_seq_record_level > 0;
878 879 880 881
        }
        //! user not set, use default output
    } else {
        for (auto&& out : m_load_result.output_var_list) {
882
            std::shared_ptr<Tensor> lite_tensor = nullptr;
M
Megvii Engine Team 已提交
883 884 885
            auto it = std::find_if(
                    m_network_io->outputs.begin(), m_network_io->outputs.end(),
                    [&out](const IOInner io) { return io.name == out.node()->name(); });
886 887 888 889 890
            if (it != m_network_io->outputs.end()) {
                if (it->is_host) {
                    it->lite_tensor = std::make_shared<Tensor>(
                            device_id, stream_id, device_type, true);
                } else {
M
Megvii Engine Team 已提交
891 892
                    it->lite_tensor =
                            std::make_shared<Tensor>(device_id, stream_id, device_type);
893
                }
894
                try_infer_tensor_layout(it->lite_tensor, out);
895
                lite_tensor = it->lite_tensor;
896 897 898 899 900 901
            } else {
                IOInner output;
                output.name = out.node()->name();
                output.lite_tensor = std::make_shared<Tensor>(
                        device_id, stream_id, device_type, true);
                m_network_io->outputs.push_back({output});
902
                try_infer_tensor_layout(output.lite_tensor, out);
903
                lite_tensor = output.lite_tensor;
904
            }
905
            output_tensor_copy_optimize(out, lite_tensor);
906 907 908 909
            TensorHelper::implement(lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_record_reset =
                    m_user_config->options.comp_node_seq_record_level > 0;
910 911 912 913
        }
    }
}

914 915 916 917 918 919 920 921
void NetworkImplDft::output_tensor_copy_optimize(
        Var var, std::shared_ptr<Tensor> tensor) {
    LITE_ASSERT(
            !(m_user_config->options.force_output_use_user_specified_memory &&
              m_user_config->options.force_output_dynamic_alloc),
            "Can't set force_output_use_user_specified_memory and "
            "force_output_dynamic_alloc at the same time.");
    if (m_user_config->options.force_output_use_user_specified_memory) {
922
        bool in_record = m_user_config->options.comp_node_seq_record_level > 0;
923 924
        TensorHelper::implement(tensor)
                ->cast_final_safe<TensorImplDft>()
925
                .set_reset_callback([var, in_record](TensorImplDft* dft_tensor) {
926 927 928 929
                    dft_tensor->device_share_host_memory();
                    auto dv = dft_tensor->dev_tensor().get();
                    dv->comp_node(var.node()->comp_node(), true);
                    var.node()->init_mem_plan(dv);
930 931 932 933 934 935
                    if (in_record) {
                        auto&& device_tensor = var.node()->mutable_dev_tensor();
                        device_tensor.only_reset_raw_storage(dv->storage());
                    } else {
                        var.node()->reset_dev_tensor_from_tensor(*dv);
                    }
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
                });
    }
    if (m_user_config->options.force_output_dynamic_alloc) {
        TensorHelper::implement(tensor)
                ->cast_final_safe<TensorImplDft>()
                .set_get_memory_callback([var](TensorImplDft* dft_tensor) {
                    if (dft_tensor->is_host()) {
                        auto host_tensor = dft_tensor->m_host_tensor;
                        *host_tensor =
                                HostTensorND::make_proxy(var.node()->dev_tensor());
                    } else {
                        auto dev_tensor = dft_tensor->m_dev_tensor;
                        *dev_tensor = var.node()->dev_tensor();
                    }
                });
    }
}

M
Megvii Engine Team 已提交
954 955 956
std::shared_ptr<Tensor> NetworkImplDft::get_io_tensor(
        std::string io_name, LiteTensorPhase phase) {
    if (phase == LiteTensorPhase::LITE_INPUT || phase == LiteTensorPhase::LITE_IO) {
957 958
        for (auto&& config_in : m_network_io->inputs) {
            if (io_name == config_in.name) {
959 960 961 962 963 964 965 966 967
                if (config_in.lite_tensor) {
                    return config_in.lite_tensor;
                } else {
                    LITE_THROW(mgb::ssprintf(
                            "%s input tensor is in discrete mode, you can use "
                            "get_discrete_tensors to get this input.",
                            io_name.c_str()));
                    return nullptr;
                }
968 969 970
            }
        }
    }
M
Megvii Engine Team 已提交
971
    if (phase == LiteTensorPhase::LITE_OUTPUT || phase == LiteTensorPhase::LITE_IO) {
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
        for (auto&& config_out : m_network_io->outputs) {
            if (io_name == config_out.name) {
                config_out.lite_tensor->update_from_implement();
                return config_out.lite_tensor;
            }
        }
    }
    LITE_THROW(mgb::ssprintf(
            "tensor name must be %s input tensor name or the registered "
            "output tensor name if NetworkIO is set, if NetworkIO is not set, "
            "the output tensor is all the network output tensor, or the output "
            "tensor is only the registered tensor.",
            io_name.c_str()));
    return nullptr;
}

988
std::vector<std::shared_ptr<Tensor>> NetworkImplDft::get_discrete_tensors(
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
        std::string io_name, LiteTensorPhase phase) {
    if (phase == LiteTensorPhase::LITE_INPUT) {
        for (auto&& config_in : m_network_io->inputs) {
            if (io_name == config_in.name &&
                config_in.name == m_user_config->discrete_input_name) {
                return config_in.lite_tensors;
            }
        }
    }
    LITE_THROW(mgb::ssprintf(
            "tensor name must be %s input tensor name.", io_name.c_str()));
    return {};
}

1003 1004 1005 1006
std::shared_ptr<Tensor> NetworkImplDft::get_input_tensor(size_t index) {
    return get_io_tensor(get_input_name(index));
}

1007
std::vector<std::shared_ptr<Tensor>> NetworkImplDft::get_input_tensors(size_t index) {
1008
    return get_discrete_tensors(get_input_name(index));
1009 1010
}

1011 1012 1013 1014 1015
std::shared_ptr<Tensor> NetworkImplDft::get_output_tensor(size_t index) {
    return get_io_tensor(get_output_name(index));
}

//! set opr algorithm selection strategy in the network
M
Megvii Engine Team 已提交
1016 1017 1018
void NetworkImplDft::set_network_algo_policy(
        LiteAlgoSelectStrategy strategy, uint32_t shared_batch_size,
        bool binary_equal_between_batch) {
1019 1020
    using S = megdnn::param::ExecutionPolicy::Strategy;
    auto dst_strategy = static_cast<S>(0);
M
Megvii Engine Team 已提交
1021
    if (static_cast<uint32_t>(strategy) & LiteAlgoSelectStrategy::LITE_ALGO_HEURISTIC) {
1022 1023
        dst_strategy = dst_strategy | S::HEURISTIC;
    }
M
Megvii Engine Team 已提交
1024
    if (static_cast<uint32_t>(strategy) & LiteAlgoSelectStrategy::LITE_ALGO_PROFILE) {
1025 1026 1027 1028 1029 1030
        dst_strategy = dst_strategy | S::PROFILE;
    }
    if (static_cast<uint32_t>(strategy) &
        LiteAlgoSelectStrategy::LITE_ALGO_REPRODUCIBLE) {
        dst_strategy = dst_strategy | S::REPRODUCIBLE;
    }
M
Megvii Engine Team 已提交
1031
    if (static_cast<uint32_t>(strategy) & LiteAlgoSelectStrategy::LITE_ALGO_OPTIMIZED) {
1032 1033
        dst_strategy = dst_strategy | S::OPTIMIZED;
    }
1034 1035
    if (static_cast<uint32_t>(dst_strategy) != 0)
        m_execution_policy = dst_strategy;
1036

M
Megvii Engine Team 已提交
1037
    auto&& fast_run_config = m_load_config.comp_graph->options().fast_run_config;
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
    fast_run_config.binary_equal_between_batch = binary_equal_between_batch;
    fast_run_config.shared_batch_size = shared_batch_size;

    if (m_execute_func) {
        LITE_WARN(
                "set_network_algo_policy maybe cause error after loaded "
                "network!!!!");
        modify_exection_policy();
    }
}

void NetworkImplDft::modify_exection_policy() {
1050 1051
    auto& vars = m_load_result.output_var_list;
    if (static_cast<uint32_t>(m_execution_policy) != 0) {
1052
        mgb::gopt::modify_opr_algo_strategy_inplace(vars, m_execution_policy);
1053
    }
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
}

//! set opr algorithm selection strategy in the network
void NetworkImplDft::set_network_algo_workspace_limit(size_t workspace_limit) {
    mgb::SymbolVarArray vars;
    for (auto i : m_output_spec) {
        vars.push_back(i.first);
    }
    mgb::gopt::set_opr_algo_workspace_limit_inplace(vars, workspace_limit);
}

//! get the input tensor name in the order of graph
std::vector<const char*> NetworkImplDft::get_all_output_name() const {
    std::vector<const char*> output_names;
    for (auto& output : m_network_io->outputs) {
        output_names.push_back(output.name.c_str());
    }
    return output_names;
}

//! get the input tensor name in the order of graph
std::vector<const char*> NetworkImplDft::get_all_input_name() const {
    std::vector<const char*> input_names;
    for (auto& input : m_load_result.tensor_map) {
        input_names.push_back(input.first.c_str());
    }
    return input_names;
}

//! get the output tensor name in the order of graph
const char* NetworkImplDft::get_output_name(size_t index) const {
    LITE_ASSERT(
            index < m_load_result.output_var_list.size(),
            "The output tensor index is large than the total outputs number.");
    return m_load_result.output_var_list[index].node()->name().c_str();
}

//! get the input tensor name in the order of graph
const char* NetworkImplDft::get_input_name(size_t index) const {
    LITE_ASSERT(
            index < m_load_result.tensor_map.size(),
            "The input tensor index is large than the total inputs number.");
    size_t i = 0;
    for (auto& input : m_load_result.tensor_map) {
        if (i == index) {
            return input.first.c_str();
        }
        i++;
    }
    LITE_THROW(ssprintf("no input tensor of index %zu.", index));
}

//! Plugin part
void NetworkImplDft::enable_profile_performance(std::string profile_json_file) {
#if MGB_ENABLE_JSON
M
Megvii Engine Team 已提交
1109
    m_profiler = std::make_unique<mgb::GraphProfiler>(m_load_config.comp_graph.get());
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
    m_profiler_output_file = profile_json_file;
#else
    LITE_MARK_USED_VAR(profile_json_file);
    LITE_THROW("JSON is disable at compile time.");
#endif
}

void NetworkImplDft::enable_io_txt_dump(std::string io_txt_out_file) {
    auto iodump = std::make_unique<mgb::TextOprIODump>(
            m_load_config.comp_graph.get(), io_txt_out_file.c_str());
    iodump->print_addr(false);
    m_iodump = std::move(iodump);
}

void NetworkImplDft::enable_io_bin_dump(std::string io_bin_out_dir) {
    m_iodump = std::make_unique<mgb::BinaryOprIODump>(
            m_load_config.comp_graph.get(), io_bin_out_dir.c_str());
}

void inline NetworkImplDft::output_plugin_result() const {
#if MGB_ENABLE_JSON
    if (m_profiler && m_execute_func) {
        m_profiler->to_json_full(m_execute_func.get())
                ->writeto_fpath(m_profiler_output_file);
    }
#endif
}
1137 1138 1139 1140 1141 1142 1143

void NetworkImplDft::get_static_memory_alloc_info(const std::string& log_dir) const {
#ifndef __IN_TEE_ENV__
#if MGB_ENABLE_JSON
    m_execute_func->get_static_memory_alloc_info(log_dir);
    return;
#endif
1144
#endif
1145 1146
    LITE_MARK_USED_VAR(log_dir);
}
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
void NetworkImplDft::enable_global_layout_transform() {
    m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::UNSPEC;

    switch (m_user_config->device_type) {
        case LiteDeviceType::LITE_CPU:
            m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::CPU;
            break;
        case LiteDeviceType::LITE_CUDA:
            m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::CUDA;
            break;
        default:
            m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::UNSPEC;
            LITE_WARN(
                    "lite compnode type: enum value: %d. is unspecial for layout "
                    "transform",
                    (int)(m_user_config->device_type));
    }
    m_set_layout_transform = true;
}

void NetworkImplDft::dump_layout_transform_model(std::string optimized_model_path) {
    if (m_set_layout_transform) {
        auto out_file = mgb::serialization::OutputFile::make_fs(
                optimized_model_path.c_str(), 'w');
        using DumpConfig = mgb::serialization::GraphDumper::DumpConfig;
        DumpConfig config{1, false, false};
        auto dumper = mgb::serialization::GraphDumper::make(
                std::move(out_file), m_format.val());
        dumper->dump(m_load_result.output_var_list, config);
    } else {
        LITE_THROW(
                ssprintf("dump layout transform model should call "
                         "enable_global_layout_transform before"));
    }
}
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

NetworkIO lite::get_model_io_info_dft(
        const std::string& model_path, const Config& config) {
    FILE* fin = fopen(model_path.c_str(), "rb");
    LITE_ASSERT(fin, "failed to open %s: %s", model_path.c_str(), strerror(errno));
    fseek(fin, 0, SEEK_END);
    size_t size = ftell(fin);
    fseek(fin, 0, SEEK_SET);
    void* ptr = malloc(size);
    std::shared_ptr<void> buf{ptr, ::free};
    auto nr = fread(buf.get(), 1, size, fin);
    LITE_ASSERT(nr == size);
    fclose(fin);
    return get_model_io_info_dft(ptr, size, config);
}

NetworkIO lite::get_model_io_info_dft(
        const void* model_mem, size_t size, const Config& config) {
    std::shared_ptr<void> model{const_cast<void*>(model_mem), [](void*) {}};
    auto input_file = mgb::serialization::InputFile::make_mem_proxy(model, size, false);
    auto format =
            mgb::serialization::GraphLoader::identify_graph_dump_format(*input_file);
    if (!format.valid()) {
        LITE_THROW("invalid model format");
    }
    auto loader =
            mgb::serialization::GraphLoader::make(std::move(input_file), format.val());

    mgb::serialization::GraphLoadConfig load_config;
    load_config.comp_graph = mgb::ComputingGraph::make();
    if (config.has_compression) {
        load_config.tensor_value_loader = decompressed_tensor_value_loader;
    }
    auto compnode_locator = to_compnode_locator(config.device_type);
    load_config.comp_node_mapper = [=](mgb::CompNode::Locator& loc) {
        if (loc.type == mgb::CompNode::DeviceType::UNSPEC) {
            loc.type = compnode_locator.type;
        }
        loc.device = compnode_locator.device;
    };
    auto load_result = loader->load(load_config, true);
    NetworkIO IOs;
    for (auto&& in_tensor_iter : load_result.tensor_map) {
        IO in_io;
        in_io.name = in_tensor_iter.first;
        in_io.config_layout = to_lite_layout(in_tensor_iter.second->layout());
        IOs.inputs.push_back(in_io);
    }
    auto infer_shape = [=](mgb::cg::SymbolVar var) -> const megdnn::TensorShape* {
        auto&& static_infer_mgr = load_config.comp_graph->static_infer_manager();
        using InferType = mgb::cg::static_infer::InferType;
        if (static_infer_mgr.get_infer_type(var.node()).shape &
            (InferType::CONST | InferType::RT_STATIC)) {
            return static_infer_mgr.infer_shape_fallible(var.node());
        } else {
            return nullptr;
        }
    };
    for (auto&& out : load_result.output_var_list) {
        IO out_io;
        out_io.name = out.node()->name();
        if (auto shape = infer_shape(out)) {
            out_io.config_layout = to_lite_layout(TensorLayout{*shape, out.dtype()});
        } else {
            out_io.config_layout = to_lite_layout(TensorLayout{{}, out.dtype()});
        }
        IOs.outputs.push_back(out_io);
    }
    return IOs;
}
1253
#endif
1254
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}