network_impl.cpp 45.0 KB
Newer Older
1 2 3 4 5 6
#include "lite_build_config.h"

#if LITE_BUILD_WITH_MGE
#include "common.h"
#include "lite/network.h"
#include "memory_allocator.h"
M
Megvii Engine Team 已提交
7
#include "network_impl.h"
8
#include "parse_info/parse_info_base.h"
M
Megvii Engine Team 已提交
9
#include "parse_model/model_parser.h"
10 11 12 13 14 15 16

#include "megbrain/common.h"
#include "megbrain/comp_node.h"
#include "megbrain/comp_node_env.h"
#include "megbrain/graph.h"
#include "megbrain/graph/cg.h"
#include "megbrain/opr/io.h"
17
#include "megbrain/opr/tensor_manip.h"
18 19 20 21 22 23
#include "megbrain/tensor.h"

#if MGB_OPENCL
#include "megcore_opencl.h"
#endif

24 25 26 27
#if defined(MGB_ENABLE_CPUINFO_CHECK) && MGB_ENABLE_CPUINFO
#include "cpuinfo.h"
#endif

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include <fstream>
#include <memory>
#include <set>

using namespace lite;
using namespace mgb;

LITE_DYN_TYPE_OBJ_FINAL_IMPL(NetworkImplDft);

void NetworkImplDft::set_config(const Config& config) {
    *m_user_config = config;
    m_compnode_locator = to_compnode_locator(m_user_config->device_type);
    m_compnode_locator.device = config.device_id;
}

void NetworkImplDft::shared_weight_with(const NetworkImplBase* src_network) {
    application_config();
    const auto& src_impl = src_network->cast_final_safe<NetworkImplDft>();
M
Megvii Engine Team 已提交
46
    LITE_ASSERT(src_impl.m_loader, "Clone network must after the network is loaded.");
47 48
    m_load_result = src_impl.m_loader->load(m_load_config, true);

49
    configure_after_loaded();
50 51 52 53 54
}

void NetworkImplDft::application_config() {
    auto device_type = m_user_config->device_type;
    m_compnode_locator.type = to_compnode_locator(device_type).type;
55 56 57 58
    //! when the device id is not configured, configure it
    if (m_compnode_locator.device == -1) {
        m_compnode_locator.device = m_user_config->device_id;
    }
59 60
    if (m_nr_threads > 1 && device_type == LiteDeviceType::LITE_CPU) {
        m_compnode_locator.type = mgb::CompNode::DeviceType::MULTITHREAD;
61 62 63
        if (m_compnode_locator.device == -1) {
            m_compnode_locator.device = m_user_config->device_id;
        }
64 65 66 67 68 69 70 71 72 73 74 75 76
    }
    //! model options
#define ConfigOption(mge_name, lite_name) \
    options.mge_name = m_user_config->options.lite_name;

    auto&& options = m_load_config.comp_graph->options();
    ConfigOption(graph_opt.weight_preprocess, weight_preprocess);
    ConfigOption(graph_opt.fuse_preprocess, fuse_preprocess);
    ConfigOption(fake_next_exec, fake_next_exec);
    ConfigOption(var_sanity_check_first_run, var_sanity_check_first_run);
    m_load_config.const_var_shape = m_user_config->options.const_shape;
    ConfigOption(force_dynamic_alloc, force_dynamic_alloc);
    ConfigOption(force_output_dynamic_alloc, force_output_dynamic_alloc);
77 78 79
    ConfigOption(
            force_output_use_user_specified_memory,
            force_output_use_user_specified_memory);
80
    ConfigOption(no_profiling_on_shape_change, no_profiling_on_shape_change);
M
Megvii Engine Team 已提交
81 82 83 84 85
    LITE_ASSERT(
            m_user_config->options.jit_level == 0 ||
                    (m_user_config->options.jit_level > 0 &&
                     device_type == LiteDeviceType::LITE_CUDA),
            "jit only support in cuda device.");
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    ConfigOption(graph_opt.jit, jit_level);
    ConfigOption(comp_node_seq_record_level, comp_node_seq_record_level);
    ConfigOption(graph_opt_level, graph_opt_level);
    ConfigOption(async_exec_level, async_exec_level);

#undef ConfigOption
#define ConfigOptionLayoutTransform(name) \
    if (m_user_config->options.name) {    \
        options.graph_opt.name();         \
    }
    ConfigOptionLayoutTransform(enable_nchw44);
    ConfigOptionLayoutTransform(enable_nchw44_dot);
    ConfigOptionLayoutTransform(enable_nchw88);
    ConfigOptionLayoutTransform(enable_nhwcd4);
    ConfigOptionLayoutTransform(enable_nchw4);
    ConfigOptionLayoutTransform(enable_nchw32);
    ConfigOptionLayoutTransform(enable_nchw64);
#undef ConfigOptionLayoutTransform
    if (m_user_config->has_compression) {
        m_load_config.tensor_value_loader = decompressed_tensor_value_loader;
    }

108 109
    //! if device is LITE_NONE, the compnode information is stored in model or
    //! xpu in MegEngine
110
    if (device_type != LiteDeviceType::LITE_DEVICE_DEFAULT) {
111 112 113 114 115 116 117 118 119 120 121 122 123
        m_load_config.comp_node_mapper = [this](mgb::CompNode::Locator& loc) {
            if (loc.type == mgb::CompNode::DeviceType::UNSPEC) {
                loc.type = m_compnode_locator.type;
            }
            loc.device = m_compnode_locator.device;
            //! if user set the thread number and the compnode is multithread
            if (loc.type == mgb::CompNode::DeviceType::MULTITHREAD &&
                m_nr_threads != 1) {
                loc.stream = m_nr_threads;
            } else {
                loc.stream = m_compnode_locator.stream;
            }
        };
124 125 126
    }
}

M
Megvii Engine Team 已提交
127
void NetworkImplDft::set_memory_allocator(std::shared_ptr<Allocator> user_allocator) {
128 129 130 131 132 133
    auto allocator = std::make_shared<UserStaticMemAlloc>(user_allocator);
    LITE_ASSERT(m_load_config.comp_graph);
    m_load_config.comp_graph->set_device_memory_allocator(allocator);
}

//! share the runtime memory with other network, the weights is not shared
M
Megvii Engine Team 已提交
134
void NetworkImplDft::share_runtime_memory_with(Network::NetworkImplBase* network_impl) {
135 136
    LITE_ASSERT(network_impl);
    LITE_ASSERT(m_load_config.comp_graph);
M
Megvii Engine Team 已提交
137 138
    m_load_config.comp_graph->share_device_memory_with(*(
            network_impl->cast_final_safe<NetworkImplDft>().m_load_config.comp_graph));
139 140 141
}

void NetworkImplDft::set_cpu_inplace_mode() {
M
Megvii Engine Team 已提交
142 143 144
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU,
            "cpu inplace mode is only avaliable in CPU.");
145 146 147
    m_is_cpu_inplace_mode = true;
    if (m_compnode_locator.type == mgb::CompNode::DeviceType::CPU) {
        m_compnode_locator.device = mgb::CompNode::Locator::DEVICE_CPU_DEFAULT;
148
        m_user_config->device_id = mgb::CompNode::Locator::DEVICE_CPU_DEFAULT;
149 150 151 152
    } else {
        LITE_ASSERT(
                m_compnode_locator.type == CompNode::DeviceType::MULTITHREAD,
                "cpu inplace mode is only avaliable in CPU.");
M
Megvii Engine Team 已提交
153
        m_compnode_locator.device = mgb::CompNode::Locator::DEVICE_MULTITHREAD_DEFAULT;
154
        m_user_config->device_id = mgb::CompNode::Locator::DEVICE_MULTITHREAD_DEFAULT;
155 156 157 158
    }
}

void NetworkImplDft::set_cpu_threads_number(size_t nr_threads) {
M
Megvii Engine Team 已提交
159 160 161
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU,
            "multi threads mode is only avaliable in CPU.");
162 163 164
    if (nr_threads > 1) {
        m_nr_threads = nr_threads;
        m_compnode_locator.type = mgb::CompNode::DeviceType::MULTITHREAD;
165 166 167 168 169 170
        if (m_is_cpu_inplace_mode) {
            m_compnode_locator.device =
                    mgb::CompNode::Locator::DEVICE_MULTITHREAD_DEFAULT;
            m_user_config->device_id =
                    mgb::CompNode::Locator::DEVICE_MULTITHREAD_DEFAULT;
        }
171 172 173 174 175 176
        m_compnode_locator.nr_threads = nr_threads;
    }
}

void NetworkImplDft::set_runtime_thread_affinity(
        const ThreadAffinityCallback& thread_affinity_callback) {
M
Megvii Engine Team 已提交
177 178 179
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU,
            "multi threads mode is only avaliable in CPU.");
180 181 182 183 184 185 186 187
    mgb::CompNode::Locator loc;
    m_load_config.comp_node_mapper(loc);
    auto cn = mgb::CompNode::load(loc);
    if (m_nr_threads > 1) {
        mgb::CompNodeEnv::from_comp_node(cn).cpu_env().set_affinity(
                thread_affinity_callback);
    } else {
        mgb::CompNodeEnv::from_comp_node(cn).cpu_env().dispatch(
M
Megvii Engine Team 已提交
188
                [thread_affinity_callback](void) { thread_affinity_callback(0); });
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    }
}

void NetworkImplDft::set_device_id(int device_id) {
    m_compnode_locator.device = device_id;
    m_user_config->device_id = device_id;
}

void NetworkImplDft::set_stream_id(int stream_id) {
    m_compnode_locator.stream = stream_id;
}

void NetworkImplDft::use_tensorrt() {
    auto&& options = m_load_config.comp_graph->options();
    options.graph_opt.tensorrt = true;
}

//! set the callback in async model
void NetworkImplDft::set_async_callback(const AsyncCallback& callback) {
M
Megvii Engine Team 已提交
208 209 210 211 212
    LITE_ASSERT(!m_is_cpu_inplace_mode, "cpu inplace mode not support async mode");
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU ||
                    m_user_config->device_type == LiteDeviceType::LITE_CUDA,
            "Now only cpu and cuda>10.0 support async mode");
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    m_async = true;
    m_async_callback = std::move(callback);
}

void NetworkImplDft::make_output_spec() {
    m_output_spec.clear();
    for (auto&& out : m_network_io->outputs) {
        if (m_load_result.output_var_map.count(out.name)) {
            auto&& load_out = m_load_result.output_var_map[out.name];
            auto cb = [&out, this](const mgb::DeviceTensorND& dv) mutable {
                mgb::CompNode comp_node = dv.comp_node();
                if (out.io_type == LiteIOType::LITE_IO_SHAPE) {
                    auto mgb_layout = dv.layout();
                    out.lite_tensor->set_layout(to_lite_layout(mgb_layout));
                } else {
                    TensorHelper::implement(out.lite_tensor)
                            ->cast_final_safe<TensorImplDft>()
                            .copy_from_mge_tensor(dv);
                    out.lite_tensor->update_from_implement();
                }
                if (m_async) {
                    out.have_sync = true;
                    bool need_exec_cb = true;
                    for (auto&& j : m_network_io->outputs) {
                        if (!j.have_sync) {
                            need_exec_cb = false;
                        }
                    }
                    if (need_exec_cb) {
                        for (auto&& j : m_network_io->outputs) {
                            j.have_sync = false;
                        }
                        comp_node.add_callback([this]() { finish(); });
                    }
                }
            };
249 250 251 252 253 254 255
            //! if write to user-specified memory, the CallbackCaller must be nullptr.
            if (m_user_config->options.force_output_use_user_specified_memory ||
                m_user_config->options.force_output_dynamic_alloc) {
                m_output_spec.emplace_back(load_out, nullptr);
            } else {
                m_output_spec.emplace_back(load_out, std::move(cb));
            }
256
        } else {
M
Megvii Engine Team 已提交
257
            LITE_THROW(ssprintf("no output named : %s in the mode", out.name.c_str()));
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        }
    }
}

void NetworkImplDft::replace_dev_input_pass() {
    mgb::CompNode::Locator locator;
    m_load_config.comp_node_mapper(locator);
    //! CPU is not need use device input
    if (locator.type == mgb::CompNode::DeviceType::CPU) {
        return;
    }
    //! repalce the H2D with VolatileSharedDeviceTensor, and keep the dev tensor
    //! in m_network_io.input, user can directly change the dev tensor
    //! storage through m_network_io.input.lite_tensor->reset() befor forward
    using DeviceTensorMap =
M
Megvii Engine Team 已提交
273
            std::unordered_map<std::string, std::shared_ptr<mgb::DeviceTensorND>>;
274 275 276 277 278 279 280 281
    DeviceTensorMap name2dev_tensor;

    mgb::ThinHashMap<mgb::HostTensorND*, mgb::SymbolVar> host_val2var;

    //! construct host_val2var that maps from host tensor to corresponding var
    auto on_opr = [&](mgb::cg::OperatorNodeBase* opr) {
        if (opr->same_type<mgb::opr::Host2DeviceCopy>()) {
            mgb::HostTensorND* tensor =
M
Megvii Engine Team 已提交
282
                    opr->cast_final<mgb::opr::Host2DeviceCopy>().host_data().get();
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
            host_val2var[tensor] = opr->output(0);
        }
    };
    mgb::cg::DepOprIter dep_iter{on_opr};
    for (auto i : m_load_result.output_var_list) {
        dep_iter.add(i.node()->owner_opr());
    }

    mgb::ThinHashMap<mgb::SymbolVar, mgb::SymbolVar> inp_var_map, out_var_map;

    mgb::SmallVector<std::string> to_clear;
    for (auto&& config_in : m_network_io->inputs) {
        if (!config_in.is_host) {
            auto host_val = m_load_result.tensor_map[config_in.name];
            auto dev_val = TensorHelper::implement(config_in.lite_tensor)
                                   ->cast_final_safe<TensorImplDft>()
                                   .m_dev_tensor;
            auto dev_var = mgb::opr::VolatileSharedDeviceTensor::make(
                    *m_load_result.graph, dev_val, {config_in.name});
            inp_var_map[host_val2var.at(host_val.get())] = dev_var;
            name2dev_tensor[config_in.name] = dev_val;
        }
    }
M
Megvii Engine Team 已提交
306
    auto new_ovar = mgb::cg::replace_vars(m_load_result.output_var_list, inp_var_map);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
    for (size_t i = 0; i < new_ovar.size(); ++i) {
        out_var_map[m_load_result.output_var_list[i]] = new_ovar[i];
    }
    for (auto&& i : m_load_result.output_var_map) {
        i.second = out_var_map.at(i.second);
    }
    for (auto&& i : m_load_result.output_var_map_id) {
        i.second = out_var_map.at(i.second);
    }
    for (size_t i = 0; i < m_load_result.output_var_list.size(); i++) {
        new_ovar[i].rename(m_load_result.output_var_list[i].node()->name());
    }
    m_load_result.output_var_list = std::move(new_ovar);
}

void NetworkImplDft::cross_compnode_model_detect() {
    mgb::ThinHashSet<LiteDeviceType> nr_used_device_type;
    auto on_opr = [&](mgb::cg::OperatorNodeBase* opr) {
        for (auto j : opr->output()) {
            if (j->comp_node() != mgb::CompNode::default_cpu()) {
                nr_used_device_type.insert(
                        get_device_from_locator(j->comp_node().locator()));
            }
        }
    };
    mgb::cg::DepOprIter dep_iter{on_opr};
    for (auto i : m_load_result.output_var_list) {
        dep_iter.add(i.node()->owner_opr());
    }
M
Megvii Engine Team 已提交
336
    m_nr_device_type = nr_used_device_type.size();
337 338
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
void NetworkImplDft::adapt_option_valid() {
    auto&& options = m_load_config.comp_graph->options();
    if (m_user_config->options.force_output_use_user_specified_memory) {
        for (auto&& out : m_load_result.output_var_list) {
            auto opr = out.node()->owner_opr();
            //! all the dest operator inherit from ReadonlyFwdHelper can't
            //! support force_output_use_user_specified_memory options
            if (opr->try_cast_final<mgb::opr::Reshape>() ||
                opr->try_cast_final<mgb::opr::Broadcast>() ||
                opr->try_cast_final<mgb::opr::Subtensor>() ||
                opr->try_cast_final<mgb::opr::AxisAddRemove>() ||
                opr->try_cast_final<mgb::opr::Dimshuffle>()) {
                m_user_config->options.force_output_use_user_specified_memory = false;
                options.force_output_use_user_specified_memory = false;
                LITE_WARN(
                        "detect the unsupported dest operator %s when config "
                        "force_output_use_user_specified_memory, set "
                        "force_output_use_user_specified_memory to false\n",
                        opr->cname());
                break;
            }
        }
    }
}

364
void NetworkImplDft::layout_transform_optimization() {
365
    if (m_set_layout_transform) {
366 367
        mgb::ThinHashMap<mgb::SymbolVar, mgb::SymbolVar> out_var_map;
        auto output_var_array = mgb::gopt::layout_transform(
368
                m_load_result.output_var_list, m_layout_transform_target);
369 370 371 372 373 374 375 376 377 378 379 380 381
        // replace symvar in output_var_list
        for (size_t idx = 0; idx < output_var_array.size(); ++idx) {
            out_var_map[m_load_result.output_var_list[idx]] = output_var_array[idx];
            m_load_result.output_var_list[idx] = output_var_array[idx];
        }
        // replace symvar in output_var_map_id
        for (auto&& item : m_load_result.output_var_map_id) {
            item.second = out_var_map[item.second];
        }
        // replace symvar in output_var_map
        for (auto&& item : m_load_result.output_var_map) {
            item.second = out_var_map[item.second];
        }
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    } else if (m_user_config->auto_optimize_inference) {
        //! set model weight preprocess
        m_load_config.comp_graph->options().graph_opt.weight_preprocess = true;
        LITE_LOG(
                "weight_preprocess is enabled, this maybe use more memory when "
                "infernece.");
        //! get the current format and data type of the model
        bool is_model_nchw = true;
        //! is any convolution is int8
        bool is_model_int8 = false;
        //! is all convolution is float32
        bool is_model_float32 = true;
        float conv_cnt = 0;
        float dimshuffle_cnt = 0;

        auto detect_int8_model = [&](const VarNode* input) {
            if (input->dtype().enumv() == megdnn::DTypeEnum::QuantizedS8 ||
                input->dtype().enumv() == megdnn::DTypeEnum::Quantized8Asymm) {
                is_model_int8 = true;
                is_model_float32 = false;
            } else if (input->dtype().enumv() == megdnn::DTypeEnum::Float32) {
                is_model_float32 = (is_model_float32 && true);
            } else {
                is_model_float32 = false;
            }
        };

        cg::DepOprIter dep([&](cg::OperatorNodeBase* opr) {
            if (auto conv = opr->try_cast_final<opr::ConvolutionForward>()) {
                if (conv->param().format != megdnn::param::ConvBias::Format::NCHW) {
                    is_model_nchw = false;
                }
                conv_cnt++;
                detect_int8_model(conv->input(0));
            } else if (auto conv_bias = opr->try_cast_final<opr::ConvBias>()) {
                if (conv_bias->param().format !=
                    megdnn::param::ConvBias::Format::NCHW) {
                    is_model_nchw = false;
                }
                conv_cnt++;
                detect_int8_model(conv->input(0));
            } else if (auto dimshuffle = opr->try_cast_final<opr::Dimshuffle>()) {
                LITE_MARK_USED_VAR(dimshuffle);
                dimshuffle_cnt++;
            }
        });
        for (auto&& i : m_load_result.output_var_list)
            dep.add(i);

        float radio_dimshuffle_conv = 0;
        if (conv_cnt > 0) {
            radio_dimshuffle_conv = dimshuffle_cnt / conv_cnt;
        }
        //! format optimize can only applied on nchw model,
        //! shufflenet like model will hurt the performance when using nchw88 or nchw44
        //! format, here just heuristically decide the gate radio of
        //! dimshuffle and convolution
        if (!is_model_nchw || radio_dimshuffle_conv > 0.15f) {
            return;
        }

        //! determine the layout by the device information
        //! TODO: shufflenet like model use nchw88 or nchw44 will hurt the
        //! performance
        if (m_user_config->device_type == LITE_CPU) {
#if defined(MGB_ENABLE_CPUINFO_CHECK) && MGB_ENABLE_CPUINFO
            cpuinfo_initialize();
            //! if all convolution and matmul data type is float32
            if (is_model_float32) {
                //! if device is x86
                //! if x86 support avx, use format nchw88
                if (cpuinfo_has_x86_avx()) {
                    m_load_config.comp_graph->options().graph_opt.enable_nchw88();
                    LITE_LOG("Configure model inference with nchw88 format.");
                } else if (cpuinfo_has_x86_sse2() && !cpuinfo_has_x86_sse3()) {
                    //! if x86 only support sse2, use format nchw44
                    m_load_config.comp_graph->options().graph_opt.enable_nchw44();
                    LITE_LOG("Configure model inference with nchw44 format.");
                } else if (cpuinfo_has_arm_neon()) {
                    //! if device is arm, use format nchw44
                    m_load_config.comp_graph->options().graph_opt.enable_nchw44();
                    LITE_LOG("Configure model inference with nchw44 format.");
                }
            } else if (is_model_int8) {
                //! if date type of convolution  is int8
                //! if device is arm and support dot, use nchw44-dot format
                if (cpuinfo_has_arm_neon() && cpuinfo_has_arm_neon_dot()) {
                    m_load_config.comp_graph->options().graph_opt.enable_nchw44_dot();
                    LITE_LOG("Configure model inference with nchw44-dot format.");
                } else if (cpuinfo_has_arm_neon()) {
                    //! if device is arm and do not support dot, use nchw44 format
                    m_load_config.comp_graph->options().graph_opt.enable_nchw44();
                    LITE_LOG("Configure model inference with nchw44 format.");
                }
            }
#endif
        }
479 480 481
    }
}

482 483 484 485
void NetworkImplDft::load_model(
        std::shared_ptr<void> model_mem, size_t size,
        std::unordered_map<std::string, LiteAny> separate_config_map) {
    if (!m_loader) {
M
Megvii Engine Team 已提交
486 487
        m_input_file =
                mgb::serialization::InputFile::make_mem_proxy(model_mem, size, false);
488
        m_format = mgb::serialization::GraphLoader::identify_graph_dump_format(
M
Megvii Engine Team 已提交
489
                *m_input_file);
490
        if (!m_format.valid()) {
491 492 493
            LITE_THROW("invalid model format");
        }
        m_loader = mgb::serialization::GraphLoader::make(
494
                std::move(m_input_file), m_format.val());
495 496 497 498 499 500 501
    }

    //! applay the user configration to mge model
    application_config();

    //! config some flag get from json config file
    if (separate_config_map.find("device_id") != separate_config_map.end()) {
502
        set_device_id(separate_config_map["device_id"].safe_cast<int>());
503
    }
M
Megvii Engine Team 已提交
504
    if (separate_config_map.find("number_threads") != separate_config_map.end() &&
505
        separate_config_map["number_threads"].safe_cast<uint32_t>() > 1) {
506
        set_cpu_threads_number(
507
                separate_config_map["number_threads"].safe_cast<uint32_t>());
508
    }
M
Megvii Engine Team 已提交
509
    if (separate_config_map.find("enable_inplace_model") != separate_config_map.end() &&
510
        separate_config_map["enable_inplace_model"].safe_cast<bool>()) {
511 512 513
        set_cpu_inplace_mode();
    }
    if (separate_config_map.find("use_tensorrt") != separate_config_map.end() &&
514
        separate_config_map["use_tensorrt"].safe_cast<bool>()) {
515 516 517
        use_tensorrt();
    }

518
    m_load_result = m_loader->load(m_load_config, true);
519 520
    configure_after_loaded();
}
521

522
void NetworkImplDft::configure_after_loaded() {
523 524
    modify_exection_policy();

525
    layout_transform_optimization();
526

527 528
    //! some optimization option maybe invalid in some case, so here just
    //! auto determine whether some options will apply.
529 530
    adapt_option_valid();

531
    //! find how many compnode the model has, this should call before update_io
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
    cross_compnode_model_detect();

    //! update the IO of the network
    update_io();

    //! replace the IO when there is device input or output
    compile_graph();
}

void NetworkImplDft::compile_graph() {
    replace_dev_input_pass();
    make_output_spec();
    m_execute_func = m_load_result.graph_compile(m_output_spec);
}

void NetworkImplDft::start() const {
    if (m_start_callback) {
        std::unordered_map<std::string, std::pair<IO, std::shared_ptr<Tensor>>>
                input_io_map;
        for (auto&& io_inner : m_network_io->inputs) {
            input_io_map[io_inner.name] = {
                    IO{io_inner.name, io_inner.is_host, io_inner.io_type,
                       io_inner.config_layout},
                    io_inner.lite_tensor};
        }
        m_start_callback(input_io_map);
    }
}

void NetworkImplDft::forward() {
    start();
563 564 565 566
    if (m_load_config.comp_graph &&
        m_user_config->options.comp_node_seq_record_level == 2) {
        m_load_config.comp_graph.reset();
    }
567 568 569 570 571 572 573 574 575 576 577 578 579
    LITE_ASSERT(m_execute_func, "forward must be called after network loaded.");
    m_execute_func->execute();
}

void NetworkImplDft::wait() {
    if (!m_async) {
        m_execute_func->wait();
    }
    finish();
}

void NetworkImplDft::finish() const {
    if (m_async) {
M
Megvii Engine Team 已提交
580
        LITE_ASSERT(m_async_callback, "The callback func must set when async mode.");
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
        m_async_callback();
    }
    if (m_finish_callback) {
        std::unordered_map<std::string, std::pair<IO, std::shared_ptr<Tensor>>>
                output_io_map;
        for (auto&& io_inner : m_network_io->outputs) {
            output_io_map[io_inner.name] = {
                    IO{io_inner.name, io_inner.is_host, io_inner.io_type,
                       io_inner.config_layout},
                    io_inner.lite_tensor};
        }
        m_finish_callback(output_io_map);
    }
    output_plugin_result();
}

void NetworkImplDft::set_io(const NetworkIO& network_io) {
    for (auto&& in : network_io.inputs) {
        m_network_io->inputs.emplace_back(in);
    }
    for (auto&& out : network_io.outputs) {
        m_network_io->outputs.emplace_back(out);
    }
}

606
void NetworkImplDft::try_infer_tensor_layout(std::shared_ptr<Tensor> tensor, Var var) {
607 608
    if (var.node()->capable_shape_infer()) {
        auto&& static_infer_mgr = m_load_config.comp_graph->static_infer_manager();
609 610 611 612 613 614
        auto shape = static_infer_mgr.infer_shape_fallible(var.node());
        if (!shape) {
            LITE_WARN(
                    "Lite infer output shape failed, maybe the model is "
                    "dynamic "
                    "shape.\n");
615 616 617 618
            LITE_ASSERT(
                    !m_user_config->options.force_output_use_user_specified_memory,
                    "force_output_use_user_specified_memory can't be used when output "
                    "shape can't be derived.");
619 620
            return;
        }
621
        Layout layout = to_lite_layout(TensorLayout{*shape, var.dtype()});
622 623 624 625
        tensor->set_layout(layout);
    }
}

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
void NetworkImplDft::update_io() {
    update_input();
    update_output();
}

void NetworkImplDft::update_input() {
    auto device_type = m_user_config->device_type;
    auto device_id = m_compnode_locator.device;
    auto stream_id = m_compnode_locator.stream;
    //! if cpu all input and output are host
    if (device_type == LiteDeviceType::LITE_CPU) {
        for (auto&& in : m_network_io->inputs) {
            in.is_host = true;
        }
    }
    //! if cross compnode model, modify the device input if it is not valid
    if (m_nr_device_type > 1) {
        for (auto&& in_tensor_iter : m_load_result.tensor_map) {
            for (auto&& config_in : m_network_io->inputs) {
                //! if tensor is set to device input
M
Megvii Engine Team 已提交
646
                if (in_tensor_iter.first == config_in.name && !config_in.is_host) {
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
                    //! if the origin compnode of the tensor is not the device,
                    //! set the input to host
                    if (get_device_from_locator(
                                in_tensor_iter.second->comp_node().locator()) ==
                        LiteDeviceType::LITE_CPU) {
                        config_in.is_host = true;
                        LITE_WARN(
                                "The input tensor %s of the cross device model "
                                "should not from device.",
                                config_in.name.c_str());
                    }
                }
            }
        }
    }
    for (auto&& in_tensor_iter : m_load_result.tensor_map) {
        bool found = false;
        for (auto&& config_in : m_network_io->inputs) {
            if (in_tensor_iter.first == config_in.name) {
                found = true;
                if (config_in.is_host) {
                    config_in.lite_tensor = std::make_shared<Tensor>(
                            device_id, stream_id, device_type, true);
                    TensorHelper::implement(config_in.lite_tensor)
                            ->cast_final_safe<TensorImplDft>()
                            .m_host_tensor = in_tensor_iter.second;
                    config_in.lite_tensor->update_from_implement();
                } else {
M
Megvii Engine Team 已提交
675 676
                    config_in.lite_tensor =
                            std::make_shared<Tensor>(device_id, stream_id, device_type);
677 678 679
                    config_in.lite_tensor->set_layout(
                            to_lite_layout(in_tensor_iter.second->layout()));
                }
680 681 682 683
                TensorHelper::implement(config_in.lite_tensor)
                        ->cast_final_safe<TensorImplDft>()
                        .m_record_reset =
                        m_user_config->options.comp_node_seq_record_level > 0;
684
                if (config_in.config_layout.ndim &&
M
Megvii Engine Team 已提交
685
                    !(config_in.config_layout == config_in.lite_tensor->get_layout())) {
686 687 688 689 690 691 692
                    config_in.lite_tensor->set_layout(config_in.config_layout);
                }
            }
        }
        if (!found) {
            IOInner io_in;
            io_in.name = in_tensor_iter.first;
M
Megvii Engine Team 已提交
693 694
            io_in.lite_tensor =
                    std::make_shared<Tensor>(device_id, stream_id, device_type, true);
695 696 697
            TensorHelper::implement(io_in.lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_host_tensor = in_tensor_iter.second;
698 699 700 701
            TensorHelper::implement(io_in.lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_record_reset =
                    m_user_config->options.comp_node_seq_record_level > 0;
702 703 704 705 706
            io_in.lite_tensor->update_from_implement();
            m_network_io->inputs.push_back(io_in);
        }
    }
    //! delete the IO that is not the network
M
Megvii Engine Team 已提交
707
    for (auto it = m_network_io->inputs.begin(); it != m_network_io->inputs.end();) {
708
        if (it->lite_tensor == nullptr) {
M
Megvii Engine Team 已提交
709
            LITE_LOG("%s is not the network input, ignore it.", it->name.c_str());
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
            it = m_network_io->inputs.erase(it);
        } else {
            it++;
        }
    }
}

void NetworkImplDft::update_output() {
    auto device_type = m_user_config->device_type;
    auto device_id = m_compnode_locator.device;
    auto stream_id = m_compnode_locator.stream;
    if (device_type == LiteDeviceType::LITE_CPU) {
        for (auto&& out : m_network_io->outputs) {
            out.is_host = true;
        }
    }
    //! delete the output that is not the network
    for (auto out_it = m_network_io->outputs.begin();
         out_it != m_network_io->outputs.end();) {
M
Megvii Engine Team 已提交
729 730
        if (std::find_if(
                    m_load_result.output_var_list.begin(),
731
                    m_load_result.output_var_list.end(), [out_it](const SymbolVar var) {
M
Megvii Engine Team 已提交
732 733 734
                        return var.node()->name() == out_it->name;
                    }) == m_load_result.output_var_list.end()) {
            LITE_LOG("%s is not the network output, ignore it.", out_it->name.c_str());
735 736 737 738 739 740 741
            out_it = m_network_io->outputs.erase(out_it);
        } else {
            out_it++;
        }
    }
    //! user config the output tensor, so only compute the config output
    if (m_compute_configured_output_only) {
M
Megvii Engine Team 已提交
742 743 744
        LITE_ASSERT(
                m_network_io->outputs.size() > 0,
                "compute configured output only with no configure output.");
745 746 747 748 749 750 751
        for (auto out_it = m_network_io->outputs.begin();
             out_it != m_network_io->outputs.end(); out_it++) {
            //! use pinned memory to copy form device
            if (out_it->is_host) {
                out_it->lite_tensor = std::make_shared<Tensor>(
                        device_id, stream_id, device_type, true);
            } else {
M
Megvii Engine Team 已提交
752 753
                out_it->lite_tensor =
                        std::make_shared<Tensor>(device_id, stream_id, device_type);
754
            }
755
            SymbolVar var;
756 757 758 759 760 761 762
            for (auto&& out_var : m_load_result.output_var_list) {
                if (out_var.node()->name() == out_it->name) {
                    var = out_var;
                    break;
                }
            }
            try_infer_tensor_layout(out_it->lite_tensor, var);
763
            output_tensor_copy_optimize(var, out_it->lite_tensor);
764 765 766 767
            TensorHelper::implement(out_it->lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_record_reset =
                    m_user_config->options.comp_node_seq_record_level > 0;
768 769 770 771
        }
        //! user not set, use default output
    } else {
        for (auto&& out : m_load_result.output_var_list) {
772
            std::shared_ptr<Tensor> lite_tensor = nullptr;
M
Megvii Engine Team 已提交
773 774 775
            auto it = std::find_if(
                    m_network_io->outputs.begin(), m_network_io->outputs.end(),
                    [&out](const IOInner io) { return io.name == out.node()->name(); });
776 777 778 779 780
            if (it != m_network_io->outputs.end()) {
                if (it->is_host) {
                    it->lite_tensor = std::make_shared<Tensor>(
                            device_id, stream_id, device_type, true);
                } else {
M
Megvii Engine Team 已提交
781 782
                    it->lite_tensor =
                            std::make_shared<Tensor>(device_id, stream_id, device_type);
783
                }
784
                try_infer_tensor_layout(it->lite_tensor, out);
785
                lite_tensor = it->lite_tensor;
786 787 788 789 790 791
            } else {
                IOInner output;
                output.name = out.node()->name();
                output.lite_tensor = std::make_shared<Tensor>(
                        device_id, stream_id, device_type, true);
                m_network_io->outputs.push_back({output});
792
                try_infer_tensor_layout(output.lite_tensor, out);
793
                lite_tensor = output.lite_tensor;
794
            }
795
            output_tensor_copy_optimize(out, lite_tensor);
796 797 798 799
            TensorHelper::implement(lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_record_reset =
                    m_user_config->options.comp_node_seq_record_level > 0;
800 801 802 803
        }
    }
}

804 805 806 807 808 809 810 811
void NetworkImplDft::output_tensor_copy_optimize(
        Var var, std::shared_ptr<Tensor> tensor) {
    LITE_ASSERT(
            !(m_user_config->options.force_output_use_user_specified_memory &&
              m_user_config->options.force_output_dynamic_alloc),
            "Can't set force_output_use_user_specified_memory and "
            "force_output_dynamic_alloc at the same time.");
    if (m_user_config->options.force_output_use_user_specified_memory) {
812
        bool in_record = m_user_config->options.comp_node_seq_record_level > 0;
813 814
        TensorHelper::implement(tensor)
                ->cast_final_safe<TensorImplDft>()
815
                .set_reset_callback([var, in_record](TensorImplDft* dft_tensor) {
816 817 818 819
                    dft_tensor->device_share_host_memory();
                    auto dv = dft_tensor->dev_tensor().get();
                    dv->comp_node(var.node()->comp_node(), true);
                    var.node()->init_mem_plan(dv);
820 821 822 823 824 825
                    if (in_record) {
                        auto&& device_tensor = var.node()->mutable_dev_tensor();
                        device_tensor.only_reset_raw_storage(dv->storage());
                    } else {
                        var.node()->reset_dev_tensor_from_tensor(*dv);
                    }
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
                });
    }
    if (m_user_config->options.force_output_dynamic_alloc) {
        TensorHelper::implement(tensor)
                ->cast_final_safe<TensorImplDft>()
                .set_get_memory_callback([var](TensorImplDft* dft_tensor) {
                    if (dft_tensor->is_host()) {
                        auto host_tensor = dft_tensor->m_host_tensor;
                        *host_tensor =
                                HostTensorND::make_proxy(var.node()->dev_tensor());
                    } else {
                        auto dev_tensor = dft_tensor->m_dev_tensor;
                        *dev_tensor = var.node()->dev_tensor();
                    }
                });
    }
}

M
Megvii Engine Team 已提交
844 845 846
std::shared_ptr<Tensor> NetworkImplDft::get_io_tensor(
        std::string io_name, LiteTensorPhase phase) {
    if (phase == LiteTensorPhase::LITE_INPUT || phase == LiteTensorPhase::LITE_IO) {
847 848 849 850 851 852
        for (auto&& config_in : m_network_io->inputs) {
            if (io_name == config_in.name) {
                return config_in.lite_tensor;
            }
        }
    }
M
Megvii Engine Team 已提交
853
    if (phase == LiteTensorPhase::LITE_OUTPUT || phase == LiteTensorPhase::LITE_IO) {
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
        for (auto&& config_out : m_network_io->outputs) {
            if (io_name == config_out.name) {
                config_out.lite_tensor->update_from_implement();
                return config_out.lite_tensor;
            }
        }
    }
    LITE_THROW(mgb::ssprintf(
            "tensor name must be %s input tensor name or the registered "
            "output tensor name if NetworkIO is set, if NetworkIO is not set, "
            "the output tensor is all the network output tensor, or the output "
            "tensor is only the registered tensor.",
            io_name.c_str()));
    return nullptr;
}

std::shared_ptr<Tensor> NetworkImplDft::get_input_tensor(size_t index) {
    return get_io_tensor(get_input_name(index));
}

std::shared_ptr<Tensor> NetworkImplDft::get_output_tensor(size_t index) {
    return get_io_tensor(get_output_name(index));
}

//! set opr algorithm selection strategy in the network
M
Megvii Engine Team 已提交
879 880 881
void NetworkImplDft::set_network_algo_policy(
        LiteAlgoSelectStrategy strategy, uint32_t shared_batch_size,
        bool binary_equal_between_batch) {
882 883
    using S = megdnn::param::ExecutionPolicy::Strategy;
    auto dst_strategy = static_cast<S>(0);
M
Megvii Engine Team 已提交
884
    if (static_cast<uint32_t>(strategy) & LiteAlgoSelectStrategy::LITE_ALGO_HEURISTIC) {
885 886
        dst_strategy = dst_strategy | S::HEURISTIC;
    }
M
Megvii Engine Team 已提交
887
    if (static_cast<uint32_t>(strategy) & LiteAlgoSelectStrategy::LITE_ALGO_PROFILE) {
888 889 890 891 892 893
        dst_strategy = dst_strategy | S::PROFILE;
    }
    if (static_cast<uint32_t>(strategy) &
        LiteAlgoSelectStrategy::LITE_ALGO_REPRODUCIBLE) {
        dst_strategy = dst_strategy | S::REPRODUCIBLE;
    }
M
Megvii Engine Team 已提交
894
    if (static_cast<uint32_t>(strategy) & LiteAlgoSelectStrategy::LITE_ALGO_OPTIMIZED) {
895 896
        dst_strategy = dst_strategy | S::OPTIMIZED;
    }
897 898
    if (static_cast<uint32_t>(dst_strategy) != 0)
        m_execution_policy = dst_strategy;
899

M
Megvii Engine Team 已提交
900
    auto&& fast_run_config = m_load_config.comp_graph->options().fast_run_config;
901 902 903 904 905 906 907 908 909 910 911 912
    fast_run_config.binary_equal_between_batch = binary_equal_between_batch;
    fast_run_config.shared_batch_size = shared_batch_size;

    if (m_execute_func) {
        LITE_WARN(
                "set_network_algo_policy maybe cause error after loaded "
                "network!!!!");
        modify_exection_policy();
    }
}

void NetworkImplDft::modify_exection_policy() {
913 914
    auto& vars = m_load_result.output_var_list;
    if (static_cast<uint32_t>(m_execution_policy) != 0) {
915
        mgb::gopt::modify_opr_algo_strategy_inplace(vars, m_execution_policy);
916
    }
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
}

//! set opr algorithm selection strategy in the network
void NetworkImplDft::set_network_algo_workspace_limit(size_t workspace_limit) {
    mgb::SymbolVarArray vars;
    for (auto i : m_output_spec) {
        vars.push_back(i.first);
    }
    mgb::gopt::set_opr_algo_workspace_limit_inplace(vars, workspace_limit);
}

//! get the input tensor name in the order of graph
std::vector<const char*> NetworkImplDft::get_all_output_name() const {
    std::vector<const char*> output_names;
    for (auto& output : m_network_io->outputs) {
        output_names.push_back(output.name.c_str());
    }
    return output_names;
}

//! get the input tensor name in the order of graph
std::vector<const char*> NetworkImplDft::get_all_input_name() const {
    std::vector<const char*> input_names;
    for (auto& input : m_load_result.tensor_map) {
        input_names.push_back(input.first.c_str());
    }
    return input_names;
}

//! get the output tensor name in the order of graph
const char* NetworkImplDft::get_output_name(size_t index) const {
    LITE_ASSERT(
            index < m_load_result.output_var_list.size(),
            "The output tensor index is large than the total outputs number.");
    return m_load_result.output_var_list[index].node()->name().c_str();
}

//! get the input tensor name in the order of graph
const char* NetworkImplDft::get_input_name(size_t index) const {
    LITE_ASSERT(
            index < m_load_result.tensor_map.size(),
            "The input tensor index is large than the total inputs number.");
    size_t i = 0;
    for (auto& input : m_load_result.tensor_map) {
        if (i == index) {
            return input.first.c_str();
        }
        i++;
    }
    LITE_THROW(ssprintf("no input tensor of index %zu.", index));
}

//! Plugin part
void NetworkImplDft::enable_profile_performance(std::string profile_json_file) {
#if MGB_ENABLE_JSON
M
Megvii Engine Team 已提交
972
    m_profiler = std::make_unique<mgb::GraphProfiler>(m_load_config.comp_graph.get());
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
    m_profiler_output_file = profile_json_file;
#else
    LITE_MARK_USED_VAR(profile_json_file);
    LITE_THROW("JSON is disable at compile time.");
#endif
}

void NetworkImplDft::enable_io_txt_dump(std::string io_txt_out_file) {
    auto iodump = std::make_unique<mgb::TextOprIODump>(
            m_load_config.comp_graph.get(), io_txt_out_file.c_str());
    iodump->print_addr(false);
    m_iodump = std::move(iodump);
}

void NetworkImplDft::enable_io_bin_dump(std::string io_bin_out_dir) {
    m_iodump = std::make_unique<mgb::BinaryOprIODump>(
            m_load_config.comp_graph.get(), io_bin_out_dir.c_str());
}

void inline NetworkImplDft::output_plugin_result() const {
#if MGB_ENABLE_JSON
    if (m_profiler && m_execute_func) {
        m_profiler->to_json_full(m_execute_func.get())
                ->writeto_fpath(m_profiler_output_file);
    }
#endif
}
1000 1001 1002 1003 1004 1005 1006

void NetworkImplDft::get_static_memory_alloc_info(const std::string& log_dir) const {
#ifndef __IN_TEE_ENV__
#if MGB_ENABLE_JSON
    m_execute_func->get_static_memory_alloc_info(log_dir);
    return;
#endif
1007
#endif
1008 1009
    LITE_MARK_USED_VAR(log_dir);
}
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
void NetworkImplDft::enable_global_layout_transform() {
    m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::UNSPEC;

    switch (m_user_config->device_type) {
        case LiteDeviceType::LITE_CPU:
            m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::CPU;
            break;
        case LiteDeviceType::LITE_CUDA:
            m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::CUDA;
            break;
        default:
            m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::UNSPEC;
            LITE_WARN(
                    "lite compnode type: enum value: %d. is unspecial for layout "
                    "transform",
                    (int)(m_user_config->device_type));
    }
    m_set_layout_transform = true;
}

void NetworkImplDft::dump_layout_transform_model(std::string optimized_model_path) {
    if (m_set_layout_transform) {
        auto out_file = mgb::serialization::OutputFile::make_fs(
                optimized_model_path.c_str(), 'w');
        using DumpConfig = mgb::serialization::GraphDumper::DumpConfig;
        DumpConfig config{1, false, false};
        auto dumper = mgb::serialization::GraphDumper::make(
                std::move(out_file), m_format.val());
        dumper->dump(m_load_result.output_var_list, config);
    } else {
        LITE_THROW(
                ssprintf("dump layout transform model should call "
                         "enable_global_layout_transform before"));
    }
}
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

NetworkIO lite::get_model_io_info_dft(
        const std::string& model_path, const Config& config) {
    FILE* fin = fopen(model_path.c_str(), "rb");
    LITE_ASSERT(fin, "failed to open %s: %s", model_path.c_str(), strerror(errno));
    fseek(fin, 0, SEEK_END);
    size_t size = ftell(fin);
    fseek(fin, 0, SEEK_SET);
    void* ptr = malloc(size);
    std::shared_ptr<void> buf{ptr, ::free};
    auto nr = fread(buf.get(), 1, size, fin);
    LITE_ASSERT(nr == size);
    fclose(fin);
    return get_model_io_info_dft(ptr, size, config);
}

NetworkIO lite::get_model_io_info_dft(
        const void* model_mem, size_t size, const Config& config) {
    std::shared_ptr<void> model{const_cast<void*>(model_mem), [](void*) {}};
    auto input_file = mgb::serialization::InputFile::make_mem_proxy(model, size, false);
    auto format =
            mgb::serialization::GraphLoader::identify_graph_dump_format(*input_file);
    if (!format.valid()) {
        LITE_THROW("invalid model format");
    }
    auto loader =
            mgb::serialization::GraphLoader::make(std::move(input_file), format.val());

    mgb::serialization::GraphLoadConfig load_config;
    load_config.comp_graph = mgb::ComputingGraph::make();
    if (config.has_compression) {
        load_config.tensor_value_loader = decompressed_tensor_value_loader;
    }
    auto compnode_locator = to_compnode_locator(config.device_type);
    load_config.comp_node_mapper = [=](mgb::CompNode::Locator& loc) {
        if (loc.type == mgb::CompNode::DeviceType::UNSPEC) {
            loc.type = compnode_locator.type;
        }
        loc.device = compnode_locator.device;
    };
    auto load_result = loader->load(load_config, true);
    NetworkIO IOs;
    for (auto&& in_tensor_iter : load_result.tensor_map) {
        IO in_io;
        in_io.name = in_tensor_iter.first;
        in_io.config_layout = to_lite_layout(in_tensor_iter.second->layout());
        IOs.inputs.push_back(in_io);
    }
    auto infer_shape = [=](mgb::cg::SymbolVar var) -> const megdnn::TensorShape* {
        auto&& static_infer_mgr = load_config.comp_graph->static_infer_manager();
        using InferType = mgb::cg::static_infer::InferType;
        if (static_infer_mgr.get_infer_type(var.node()).shape &
            (InferType::CONST | InferType::RT_STATIC)) {
            return static_infer_mgr.infer_shape_fallible(var.node());
        } else {
            return nullptr;
        }
    };
    for (auto&& out : load_result.output_var_list) {
        IO out_io;
        out_io.name = out.node()->name();
        if (auto shape = infer_shape(out)) {
            out_io.config_layout = to_lite_layout(TensorLayout{*shape, out.dtype()});
        } else {
            out_io.config_layout = to_lite_layout(TensorLayout{{}, out.dtype()});
        }
        IOs.outputs.push_back(out_io);
    }
    return IOs;
}
1116
#endif
1117
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}