network_impl.cpp 40.5 KB
Newer Older
1 2 3 4 5 6
#include "lite_build_config.h"

#if LITE_BUILD_WITH_MGE
#include "common.h"
#include "lite/network.h"
#include "memory_allocator.h"
M
Megvii Engine Team 已提交
7
#include "network_impl.h"
8
#include "parse_info/parse_info_base.h"
M
Megvii Engine Team 已提交
9
#include "parse_model/model_parser.h"
10 11 12 13 14 15 16

#include "megbrain/common.h"
#include "megbrain/comp_node.h"
#include "megbrain/comp_node_env.h"
#include "megbrain/graph.h"
#include "megbrain/graph/cg.h"
#include "megbrain/opr/io.h"
17
#include "megbrain/opr/tensor_manip.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#include "megbrain/tensor.h"

#if MGB_OPENCL
#include "megcore_opencl.h"
#endif

#include <fstream>
#include <memory>
#include <set>

using namespace lite;
using namespace mgb;

LITE_DYN_TYPE_OBJ_FINAL_IMPL(NetworkImplDft);

void NetworkImplDft::set_config(const Config& config) {
    *m_user_config = config;
    m_compnode_locator = to_compnode_locator(m_user_config->device_type);
    m_compnode_locator.device = config.device_id;
}

void NetworkImplDft::shared_weight_with(const NetworkImplBase* src_network) {
    application_config();
    const auto& src_impl = src_network->cast_final_safe<NetworkImplDft>();
M
Megvii Engine Team 已提交
42
    LITE_ASSERT(src_impl.m_loader, "Clone network must after the network is loaded.");
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    m_load_result = src_impl.m_loader->load(m_load_config, true);

    //! flag weather the mode is cross compnode model
    cross_compnode_model_detect();

    //! update the IO of the network
    update_io();

    //! replace the IO when there is device input or output
    compile_graph();
}

void NetworkImplDft::application_config() {
    auto device_type = m_user_config->device_type;
    m_compnode_locator.type = to_compnode_locator(device_type).type;
58 59 60 61
    //! when the device id is not configured, configure it
    if (m_compnode_locator.device == -1) {
        m_compnode_locator.device = m_user_config->device_id;
    }
62 63
    if (m_nr_threads > 1 && device_type == LiteDeviceType::LITE_CPU) {
        m_compnode_locator.type = mgb::CompNode::DeviceType::MULTITHREAD;
64 65 66
        if (m_compnode_locator.device == -1) {
            m_compnode_locator.device = m_user_config->device_id;
        }
67 68 69 70 71 72 73 74 75 76 77 78 79
    }
    //! model options
#define ConfigOption(mge_name, lite_name) \
    options.mge_name = m_user_config->options.lite_name;

    auto&& options = m_load_config.comp_graph->options();
    ConfigOption(graph_opt.weight_preprocess, weight_preprocess);
    ConfigOption(graph_opt.fuse_preprocess, fuse_preprocess);
    ConfigOption(fake_next_exec, fake_next_exec);
    ConfigOption(var_sanity_check_first_run, var_sanity_check_first_run);
    m_load_config.const_var_shape = m_user_config->options.const_shape;
    ConfigOption(force_dynamic_alloc, force_dynamic_alloc);
    ConfigOption(force_output_dynamic_alloc, force_output_dynamic_alloc);
80 81 82
    ConfigOption(
            force_output_use_user_specified_memory,
            force_output_use_user_specified_memory);
83
    ConfigOption(no_profiling_on_shape_change, no_profiling_on_shape_change);
M
Megvii Engine Team 已提交
84 85 86 87 88
    LITE_ASSERT(
            m_user_config->options.jit_level == 0 ||
                    (m_user_config->options.jit_level > 0 &&
                     device_type == LiteDeviceType::LITE_CUDA),
            "jit only support in cuda device.");
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    ConfigOption(graph_opt.jit, jit_level);
    ConfigOption(comp_node_seq_record_level, comp_node_seq_record_level);
    ConfigOption(graph_opt_level, graph_opt_level);
    ConfigOption(async_exec_level, async_exec_level);

#undef ConfigOption
#define ConfigOptionLayoutTransform(name) \
    if (m_user_config->options.name) {    \
        options.graph_opt.name();         \
    }
    ConfigOptionLayoutTransform(enable_nchw44);
    ConfigOptionLayoutTransform(enable_nchw44_dot);
    ConfigOptionLayoutTransform(enable_nchw88);
    ConfigOptionLayoutTransform(enable_nhwcd4);
    ConfigOptionLayoutTransform(enable_nchw4);
    ConfigOptionLayoutTransform(enable_nchw32);
    ConfigOptionLayoutTransform(enable_nchw64);
#undef ConfigOptionLayoutTransform
    if (m_user_config->has_compression) {
        m_load_config.tensor_value_loader = decompressed_tensor_value_loader;
    }

111 112
    //! if device is LITE_NONE, the compnode information is stored in model or
    //! xpu in MegEngine
113
    if (device_type != LiteDeviceType::LITE_DEVICE_DEFAULT) {
114 115 116 117 118 119 120 121 122 123 124 125 126
        m_load_config.comp_node_mapper = [this](mgb::CompNode::Locator& loc) {
            if (loc.type == mgb::CompNode::DeviceType::UNSPEC) {
                loc.type = m_compnode_locator.type;
            }
            loc.device = m_compnode_locator.device;
            //! if user set the thread number and the compnode is multithread
            if (loc.type == mgb::CompNode::DeviceType::MULTITHREAD &&
                m_nr_threads != 1) {
                loc.stream = m_nr_threads;
            } else {
                loc.stream = m_compnode_locator.stream;
            }
        };
127 128 129
    }
}

M
Megvii Engine Team 已提交
130
void NetworkImplDft::set_memory_allocator(std::shared_ptr<Allocator> user_allocator) {
131 132 133 134 135 136
    auto allocator = std::make_shared<UserStaticMemAlloc>(user_allocator);
    LITE_ASSERT(m_load_config.comp_graph);
    m_load_config.comp_graph->set_device_memory_allocator(allocator);
}

//! share the runtime memory with other network, the weights is not shared
M
Megvii Engine Team 已提交
137
void NetworkImplDft::share_runtime_memory_with(Network::NetworkImplBase* network_impl) {
138 139
    LITE_ASSERT(network_impl);
    LITE_ASSERT(m_load_config.comp_graph);
M
Megvii Engine Team 已提交
140 141
    m_load_config.comp_graph->share_device_memory_with(*(
            network_impl->cast_final_safe<NetworkImplDft>().m_load_config.comp_graph));
142 143 144
}

void NetworkImplDft::set_cpu_inplace_mode() {
M
Megvii Engine Team 已提交
145 146 147
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU,
            "cpu inplace mode is only avaliable in CPU.");
148 149 150
    m_is_cpu_inplace_mode = true;
    if (m_compnode_locator.type == mgb::CompNode::DeviceType::CPU) {
        m_compnode_locator.device = mgb::CompNode::Locator::DEVICE_CPU_DEFAULT;
151
        m_user_config->device_id = mgb::CompNode::Locator::DEVICE_CPU_DEFAULT;
152 153 154 155
    } else {
        LITE_ASSERT(
                m_compnode_locator.type == CompNode::DeviceType::MULTITHREAD,
                "cpu inplace mode is only avaliable in CPU.");
M
Megvii Engine Team 已提交
156
        m_compnode_locator.device = mgb::CompNode::Locator::DEVICE_MULTITHREAD_DEFAULT;
157
        m_user_config->device_id = mgb::CompNode::Locator::DEVICE_MULTITHREAD_DEFAULT;
158 159 160 161
    }
}

void NetworkImplDft::set_cpu_threads_number(size_t nr_threads) {
M
Megvii Engine Team 已提交
162 163 164
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU,
            "multi threads mode is only avaliable in CPU.");
165 166 167
    if (nr_threads > 1) {
        m_nr_threads = nr_threads;
        m_compnode_locator.type = mgb::CompNode::DeviceType::MULTITHREAD;
168 169 170 171 172 173
        if (m_is_cpu_inplace_mode) {
            m_compnode_locator.device =
                    mgb::CompNode::Locator::DEVICE_MULTITHREAD_DEFAULT;
            m_user_config->device_id =
                    mgb::CompNode::Locator::DEVICE_MULTITHREAD_DEFAULT;
        }
174 175 176 177 178 179
        m_compnode_locator.nr_threads = nr_threads;
    }
}

void NetworkImplDft::set_runtime_thread_affinity(
        const ThreadAffinityCallback& thread_affinity_callback) {
M
Megvii Engine Team 已提交
180 181 182
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU,
            "multi threads mode is only avaliable in CPU.");
183 184 185 186 187 188 189 190
    mgb::CompNode::Locator loc;
    m_load_config.comp_node_mapper(loc);
    auto cn = mgb::CompNode::load(loc);
    if (m_nr_threads > 1) {
        mgb::CompNodeEnv::from_comp_node(cn).cpu_env().set_affinity(
                thread_affinity_callback);
    } else {
        mgb::CompNodeEnv::from_comp_node(cn).cpu_env().dispatch(
M
Megvii Engine Team 已提交
191
                [thread_affinity_callback](void) { thread_affinity_callback(0); });
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    }
}

void NetworkImplDft::set_device_id(int device_id) {
    m_compnode_locator.device = device_id;
    m_user_config->device_id = device_id;
}

void NetworkImplDft::set_stream_id(int stream_id) {
    m_compnode_locator.stream = stream_id;
}

void NetworkImplDft::use_tensorrt() {
    auto&& options = m_load_config.comp_graph->options();
    options.graph_opt.tensorrt = true;
}

//! set the callback in async model
void NetworkImplDft::set_async_callback(const AsyncCallback& callback) {
M
Megvii Engine Team 已提交
211 212 213 214 215
    LITE_ASSERT(!m_is_cpu_inplace_mode, "cpu inplace mode not support async mode");
    LITE_ASSERT(
            m_user_config->device_type == LiteDeviceType::LITE_CPU ||
                    m_user_config->device_type == LiteDeviceType::LITE_CUDA,
            "Now only cpu and cuda>10.0 support async mode");
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    m_async = true;
    m_async_callback = std::move(callback);
}

void NetworkImplDft::make_output_spec() {
    m_output_spec.clear();
    for (auto&& out : m_network_io->outputs) {
        if (m_load_result.output_var_map.count(out.name)) {
            auto&& load_out = m_load_result.output_var_map[out.name];
            auto cb = [&out, this](const mgb::DeviceTensorND& dv) mutable {
                mgb::CompNode comp_node = dv.comp_node();
                if (out.io_type == LiteIOType::LITE_IO_SHAPE) {
                    auto mgb_layout = dv.layout();
                    out.lite_tensor->set_layout(to_lite_layout(mgb_layout));
                } else {
                    TensorHelper::implement(out.lite_tensor)
                            ->cast_final_safe<TensorImplDft>()
                            .copy_from_mge_tensor(dv);
                    out.lite_tensor->update_from_implement();
                }
                if (m_async) {
                    out.have_sync = true;
                    bool need_exec_cb = true;
                    for (auto&& j : m_network_io->outputs) {
                        if (!j.have_sync) {
                            need_exec_cb = false;
                        }
                    }
                    if (need_exec_cb) {
                        for (auto&& j : m_network_io->outputs) {
                            j.have_sync = false;
                        }
                        comp_node.add_callback([this]() { finish(); });
                    }
                }
            };
252 253 254 255 256 257 258
            //! if write to user-specified memory, the CallbackCaller must be nullptr.
            if (m_user_config->options.force_output_use_user_specified_memory ||
                m_user_config->options.force_output_dynamic_alloc) {
                m_output_spec.emplace_back(load_out, nullptr);
            } else {
                m_output_spec.emplace_back(load_out, std::move(cb));
            }
259
        } else {
M
Megvii Engine Team 已提交
260
            LITE_THROW(ssprintf("no output named : %s in the mode", out.name.c_str()));
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
        }
    }
}

void NetworkImplDft::replace_dev_input_pass() {
    mgb::CompNode::Locator locator;
    m_load_config.comp_node_mapper(locator);
    //! CPU is not need use device input
    if (locator.type == mgb::CompNode::DeviceType::CPU) {
        return;
    }
    //! repalce the H2D with VolatileSharedDeviceTensor, and keep the dev tensor
    //! in m_network_io.input, user can directly change the dev tensor
    //! storage through m_network_io.input.lite_tensor->reset() befor forward
    using DeviceTensorMap =
M
Megvii Engine Team 已提交
276
            std::unordered_map<std::string, std::shared_ptr<mgb::DeviceTensorND>>;
277 278 279 280 281 282 283 284
    DeviceTensorMap name2dev_tensor;

    mgb::ThinHashMap<mgb::HostTensorND*, mgb::SymbolVar> host_val2var;

    //! construct host_val2var that maps from host tensor to corresponding var
    auto on_opr = [&](mgb::cg::OperatorNodeBase* opr) {
        if (opr->same_type<mgb::opr::Host2DeviceCopy>()) {
            mgb::HostTensorND* tensor =
M
Megvii Engine Team 已提交
285
                    opr->cast_final<mgb::opr::Host2DeviceCopy>().host_data().get();
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
            host_val2var[tensor] = opr->output(0);
        }
    };
    mgb::cg::DepOprIter dep_iter{on_opr};
    for (auto i : m_load_result.output_var_list) {
        dep_iter.add(i.node()->owner_opr());
    }

    mgb::ThinHashMap<mgb::SymbolVar, mgb::SymbolVar> inp_var_map, out_var_map;

    mgb::SmallVector<std::string> to_clear;
    for (auto&& config_in : m_network_io->inputs) {
        if (!config_in.is_host) {
            auto host_val = m_load_result.tensor_map[config_in.name];
            auto dev_val = TensorHelper::implement(config_in.lite_tensor)
                                   ->cast_final_safe<TensorImplDft>()
                                   .m_dev_tensor;
            auto dev_var = mgb::opr::VolatileSharedDeviceTensor::make(
                    *m_load_result.graph, dev_val, {config_in.name});
            inp_var_map[host_val2var.at(host_val.get())] = dev_var;
            name2dev_tensor[config_in.name] = dev_val;
        }
    }
M
Megvii Engine Team 已提交
309
    auto new_ovar = mgb::cg::replace_vars(m_load_result.output_var_list, inp_var_map);
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    for (size_t i = 0; i < new_ovar.size(); ++i) {
        out_var_map[m_load_result.output_var_list[i]] = new_ovar[i];
    }
    for (auto&& i : m_load_result.output_var_map) {
        i.second = out_var_map.at(i.second);
    }
    for (auto&& i : m_load_result.output_var_map_id) {
        i.second = out_var_map.at(i.second);
    }
    for (size_t i = 0; i < m_load_result.output_var_list.size(); i++) {
        new_ovar[i].rename(m_load_result.output_var_list[i].node()->name());
    }
    m_load_result.output_var_list = std::move(new_ovar);
}

void NetworkImplDft::cross_compnode_model_detect() {
    mgb::ThinHashSet<LiteDeviceType> nr_used_device_type;
    auto on_opr = [&](mgb::cg::OperatorNodeBase* opr) {
        for (auto j : opr->output()) {
            if (j->comp_node() != mgb::CompNode::default_cpu()) {
                nr_used_device_type.insert(
                        get_device_from_locator(j->comp_node().locator()));
            }
        }
    };
    mgb::cg::DepOprIter dep_iter{on_opr};
    for (auto i : m_load_result.output_var_list) {
        dep_iter.add(i.node()->owner_opr());
    }
M
Megvii Engine Team 已提交
339
    m_nr_device_type = nr_used_device_type.size();
340 341
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
void NetworkImplDft::adapt_option_valid() {
    auto&& options = m_load_config.comp_graph->options();
    if (m_user_config->options.force_output_use_user_specified_memory) {
        for (auto&& out : m_load_result.output_var_list) {
            auto opr = out.node()->owner_opr();
            //! all the dest operator inherit from ReadonlyFwdHelper can't
            //! support force_output_use_user_specified_memory options
            if (opr->try_cast_final<mgb::opr::Reshape>() ||
                opr->try_cast_final<mgb::opr::Broadcast>() ||
                opr->try_cast_final<mgb::opr::Subtensor>() ||
                opr->try_cast_final<mgb::opr::AxisAddRemove>() ||
                opr->try_cast_final<mgb::opr::Dimshuffle>()) {
                m_user_config->options.force_output_use_user_specified_memory = false;
                options.force_output_use_user_specified_memory = false;
                LITE_WARN(
                        "detect the unsupported dest operator %s when config "
                        "force_output_use_user_specified_memory, set "
                        "force_output_use_user_specified_memory to false\n",
                        opr->cname());
                break;
            }
        }
    }
}

367 368
void NetworkImplDft::global_layout_transform() {
    if (m_set_layout_transform) {
369 370
        mgb::ThinHashMap<mgb::SymbolVar, mgb::SymbolVar> out_var_map;
        auto output_var_array = mgb::gopt::layout_transform(
371
                m_load_result.output_var_list, m_layout_transform_target);
372 373 374 375 376 377 378 379 380 381 382 383 384
        // replace symvar in output_var_list
        for (size_t idx = 0; idx < output_var_array.size(); ++idx) {
            out_var_map[m_load_result.output_var_list[idx]] = output_var_array[idx];
            m_load_result.output_var_list[idx] = output_var_array[idx];
        }
        // replace symvar in output_var_map_id
        for (auto&& item : m_load_result.output_var_map_id) {
            item.second = out_var_map[item.second];
        }
        // replace symvar in output_var_map
        for (auto&& item : m_load_result.output_var_map) {
            item.second = out_var_map[item.second];
        }
385 386 387
    }
}

388 389 390 391
void NetworkImplDft::load_model(
        std::shared_ptr<void> model_mem, size_t size,
        std::unordered_map<std::string, LiteAny> separate_config_map) {
    if (!m_loader) {
M
Megvii Engine Team 已提交
392 393
        m_input_file =
                mgb::serialization::InputFile::make_mem_proxy(model_mem, size, false);
394
        m_format = mgb::serialization::GraphLoader::identify_graph_dump_format(
M
Megvii Engine Team 已提交
395
                *m_input_file);
396
        if (!m_format.valid()) {
397 398 399
            LITE_THROW("invalid model format");
        }
        m_loader = mgb::serialization::GraphLoader::make(
400
                std::move(m_input_file), m_format.val());
401 402 403 404 405 406 407
    }

    //! applay the user configration to mge model
    application_config();

    //! config some flag get from json config file
    if (separate_config_map.find("device_id") != separate_config_map.end()) {
408
        set_device_id(separate_config_map["device_id"].safe_cast<int>());
409
    }
M
Megvii Engine Team 已提交
410
    if (separate_config_map.find("number_threads") != separate_config_map.end() &&
411
        separate_config_map["number_threads"].safe_cast<uint32_t>() > 1) {
412
        set_cpu_threads_number(
413
                separate_config_map["number_threads"].safe_cast<uint32_t>());
414
    }
M
Megvii Engine Team 已提交
415
    if (separate_config_map.find("enable_inplace_model") != separate_config_map.end() &&
416
        separate_config_map["enable_inplace_model"].safe_cast<bool>()) {
417 418 419
        set_cpu_inplace_mode();
    }
    if (separate_config_map.find("use_tensorrt") != separate_config_map.end() &&
420
        separate_config_map["use_tensorrt"].safe_cast<bool>()) {
421 422 423
        use_tensorrt();
    }

424
    m_load_result = m_loader->load(m_load_config, true);
425

426 427
    modify_exection_policy();

428
    global_layout_transform();
429

430 431
    //! some optimization option maybe invalid in some case, so here just
    //! auto determine whether some options will apply.
432 433
    adapt_option_valid();

434
    //! find how many compnode the model has, this should call before update_io
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
    cross_compnode_model_detect();

    //! update the IO of the network
    update_io();

    //! replace the IO when there is device input or output
    compile_graph();
}

void NetworkImplDft::compile_graph() {
    replace_dev_input_pass();
    make_output_spec();
    m_execute_func = m_load_result.graph_compile(m_output_spec);
}

void NetworkImplDft::start() const {
    if (m_start_callback) {
        std::unordered_map<std::string, std::pair<IO, std::shared_ptr<Tensor>>>
                input_io_map;
        for (auto&& io_inner : m_network_io->inputs) {
            input_io_map[io_inner.name] = {
                    IO{io_inner.name, io_inner.is_host, io_inner.io_type,
                       io_inner.config_layout},
                    io_inner.lite_tensor};
        }
        m_start_callback(input_io_map);
    }
}

void NetworkImplDft::forward() {
    start();
466 467 468 469
    if (m_load_config.comp_graph &&
        m_user_config->options.comp_node_seq_record_level == 2) {
        m_load_config.comp_graph.reset();
    }
470 471 472 473 474 475 476 477 478 479 480 481 482
    LITE_ASSERT(m_execute_func, "forward must be called after network loaded.");
    m_execute_func->execute();
}

void NetworkImplDft::wait() {
    if (!m_async) {
        m_execute_func->wait();
    }
    finish();
}

void NetworkImplDft::finish() const {
    if (m_async) {
M
Megvii Engine Team 已提交
483
        LITE_ASSERT(m_async_callback, "The callback func must set when async mode.");
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
        m_async_callback();
    }
    if (m_finish_callback) {
        std::unordered_map<std::string, std::pair<IO, std::shared_ptr<Tensor>>>
                output_io_map;
        for (auto&& io_inner : m_network_io->outputs) {
            output_io_map[io_inner.name] = {
                    IO{io_inner.name, io_inner.is_host, io_inner.io_type,
                       io_inner.config_layout},
                    io_inner.lite_tensor};
        }
        m_finish_callback(output_io_map);
    }
    output_plugin_result();
}

void NetworkImplDft::set_io(const NetworkIO& network_io) {
    for (auto&& in : network_io.inputs) {
        m_network_io->inputs.emplace_back(in);
    }
    for (auto&& out : network_io.outputs) {
        m_network_io->outputs.emplace_back(out);
    }
}

509
void NetworkImplDft::try_infer_tensor_layout(std::shared_ptr<Tensor> tensor, Var var) {
510 511
    if (var.node()->capable_shape_infer()) {
        auto&& static_infer_mgr = m_load_config.comp_graph->static_infer_manager();
512 513 514 515 516 517
        auto shape = static_infer_mgr.infer_shape_fallible(var.node());
        if (!shape) {
            LITE_WARN(
                    "Lite infer output shape failed, maybe the model is "
                    "dynamic "
                    "shape.\n");
518 519 520 521
            LITE_ASSERT(
                    !m_user_config->options.force_output_use_user_specified_memory,
                    "force_output_use_user_specified_memory can't be used when output "
                    "shape can't be derived.");
522 523
            return;
        }
524
        Layout layout = to_lite_layout(TensorLayout{*shape, var.dtype()});
525 526 527 528
        tensor->set_layout(layout);
    }
}

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
void NetworkImplDft::update_io() {
    update_input();
    update_output();
}

void NetworkImplDft::update_input() {
    auto device_type = m_user_config->device_type;
    auto device_id = m_compnode_locator.device;
    auto stream_id = m_compnode_locator.stream;
    //! if cpu all input and output are host
    if (device_type == LiteDeviceType::LITE_CPU) {
        for (auto&& in : m_network_io->inputs) {
            in.is_host = true;
        }
    }
    //! if cross compnode model, modify the device input if it is not valid
    if (m_nr_device_type > 1) {
        for (auto&& in_tensor_iter : m_load_result.tensor_map) {
            for (auto&& config_in : m_network_io->inputs) {
                //! if tensor is set to device input
M
Megvii Engine Team 已提交
549
                if (in_tensor_iter.first == config_in.name && !config_in.is_host) {
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
                    //! if the origin compnode of the tensor is not the device,
                    //! set the input to host
                    if (get_device_from_locator(
                                in_tensor_iter.second->comp_node().locator()) ==
                        LiteDeviceType::LITE_CPU) {
                        config_in.is_host = true;
                        LITE_WARN(
                                "The input tensor %s of the cross device model "
                                "should not from device.",
                                config_in.name.c_str());
                    }
                }
            }
        }
    }
    for (auto&& in_tensor_iter : m_load_result.tensor_map) {
        bool found = false;
        for (auto&& config_in : m_network_io->inputs) {
            if (in_tensor_iter.first == config_in.name) {
                found = true;
                if (config_in.is_host) {
                    config_in.lite_tensor = std::make_shared<Tensor>(
                            device_id, stream_id, device_type, true);
                    TensorHelper::implement(config_in.lite_tensor)
                            ->cast_final_safe<TensorImplDft>()
                            .m_host_tensor = in_tensor_iter.second;
                    config_in.lite_tensor->update_from_implement();
                } else {
M
Megvii Engine Team 已提交
578 579
                    config_in.lite_tensor =
                            std::make_shared<Tensor>(device_id, stream_id, device_type);
580 581 582
                    config_in.lite_tensor->set_layout(
                            to_lite_layout(in_tensor_iter.second->layout()));
                }
583 584 585 586
                TensorHelper::implement(config_in.lite_tensor)
                        ->cast_final_safe<TensorImplDft>()
                        .m_record_reset =
                        m_user_config->options.comp_node_seq_record_level > 0;
587
                if (config_in.config_layout.ndim &&
M
Megvii Engine Team 已提交
588
                    !(config_in.config_layout == config_in.lite_tensor->get_layout())) {
589 590 591 592 593 594 595
                    config_in.lite_tensor->set_layout(config_in.config_layout);
                }
            }
        }
        if (!found) {
            IOInner io_in;
            io_in.name = in_tensor_iter.first;
M
Megvii Engine Team 已提交
596 597
            io_in.lite_tensor =
                    std::make_shared<Tensor>(device_id, stream_id, device_type, true);
598 599 600
            TensorHelper::implement(io_in.lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_host_tensor = in_tensor_iter.second;
601 602 603 604
            TensorHelper::implement(io_in.lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_record_reset =
                    m_user_config->options.comp_node_seq_record_level > 0;
605 606 607 608 609
            io_in.lite_tensor->update_from_implement();
            m_network_io->inputs.push_back(io_in);
        }
    }
    //! delete the IO that is not the network
M
Megvii Engine Team 已提交
610
    for (auto it = m_network_io->inputs.begin(); it != m_network_io->inputs.end();) {
611
        if (it->lite_tensor == nullptr) {
M
Megvii Engine Team 已提交
612
            LITE_LOG("%s is not the network input, ignore it.", it->name.c_str());
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
            it = m_network_io->inputs.erase(it);
        } else {
            it++;
        }
    }
}

void NetworkImplDft::update_output() {
    auto device_type = m_user_config->device_type;
    auto device_id = m_compnode_locator.device;
    auto stream_id = m_compnode_locator.stream;
    if (device_type == LiteDeviceType::LITE_CPU) {
        for (auto&& out : m_network_io->outputs) {
            out.is_host = true;
        }
    }
    //! delete the output that is not the network
    for (auto out_it = m_network_io->outputs.begin();
         out_it != m_network_io->outputs.end();) {
M
Megvii Engine Team 已提交
632 633
        if (std::find_if(
                    m_load_result.output_var_list.begin(),
634
                    m_load_result.output_var_list.end(), [out_it](const SymbolVar var) {
M
Megvii Engine Team 已提交
635 636 637
                        return var.node()->name() == out_it->name;
                    }) == m_load_result.output_var_list.end()) {
            LITE_LOG("%s is not the network output, ignore it.", out_it->name.c_str());
638 639 640 641 642 643 644
            out_it = m_network_io->outputs.erase(out_it);
        } else {
            out_it++;
        }
    }
    //! user config the output tensor, so only compute the config output
    if (m_compute_configured_output_only) {
M
Megvii Engine Team 已提交
645 646 647
        LITE_ASSERT(
                m_network_io->outputs.size() > 0,
                "compute configured output only with no configure output.");
648 649 650 651 652 653 654
        for (auto out_it = m_network_io->outputs.begin();
             out_it != m_network_io->outputs.end(); out_it++) {
            //! use pinned memory to copy form device
            if (out_it->is_host) {
                out_it->lite_tensor = std::make_shared<Tensor>(
                        device_id, stream_id, device_type, true);
            } else {
M
Megvii Engine Team 已提交
655 656
                out_it->lite_tensor =
                        std::make_shared<Tensor>(device_id, stream_id, device_type);
657
            }
658
            SymbolVar var;
659 660 661 662 663 664 665
            for (auto&& out_var : m_load_result.output_var_list) {
                if (out_var.node()->name() == out_it->name) {
                    var = out_var;
                    break;
                }
            }
            try_infer_tensor_layout(out_it->lite_tensor, var);
666
            output_tensor_copy_optimize(var, out_it->lite_tensor);
667 668 669 670
            TensorHelper::implement(out_it->lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_record_reset =
                    m_user_config->options.comp_node_seq_record_level > 0;
671 672 673 674
        }
        //! user not set, use default output
    } else {
        for (auto&& out : m_load_result.output_var_list) {
675
            std::shared_ptr<Tensor> lite_tensor = nullptr;
M
Megvii Engine Team 已提交
676 677 678
            auto it = std::find_if(
                    m_network_io->outputs.begin(), m_network_io->outputs.end(),
                    [&out](const IOInner io) { return io.name == out.node()->name(); });
679 680 681 682 683
            if (it != m_network_io->outputs.end()) {
                if (it->is_host) {
                    it->lite_tensor = std::make_shared<Tensor>(
                            device_id, stream_id, device_type, true);
                } else {
M
Megvii Engine Team 已提交
684 685
                    it->lite_tensor =
                            std::make_shared<Tensor>(device_id, stream_id, device_type);
686
                }
687
                try_infer_tensor_layout(it->lite_tensor, out);
688
                lite_tensor = it->lite_tensor;
689 690 691 692 693 694
            } else {
                IOInner output;
                output.name = out.node()->name();
                output.lite_tensor = std::make_shared<Tensor>(
                        device_id, stream_id, device_type, true);
                m_network_io->outputs.push_back({output});
695
                try_infer_tensor_layout(output.lite_tensor, out);
696
                lite_tensor = output.lite_tensor;
697
            }
698
            output_tensor_copy_optimize(out, lite_tensor);
699 700 701 702
            TensorHelper::implement(lite_tensor)
                    ->cast_final_safe<TensorImplDft>()
                    .m_record_reset =
                    m_user_config->options.comp_node_seq_record_level > 0;
703 704 705 706
        }
    }
}

707 708 709 710 711 712 713 714
void NetworkImplDft::output_tensor_copy_optimize(
        Var var, std::shared_ptr<Tensor> tensor) {
    LITE_ASSERT(
            !(m_user_config->options.force_output_use_user_specified_memory &&
              m_user_config->options.force_output_dynamic_alloc),
            "Can't set force_output_use_user_specified_memory and "
            "force_output_dynamic_alloc at the same time.");
    if (m_user_config->options.force_output_use_user_specified_memory) {
715
        bool in_record = m_user_config->options.comp_node_seq_record_level > 0;
716 717
        TensorHelper::implement(tensor)
                ->cast_final_safe<TensorImplDft>()
718
                .set_reset_callback([var, in_record](TensorImplDft* dft_tensor) {
719 720 721 722
                    dft_tensor->device_share_host_memory();
                    auto dv = dft_tensor->dev_tensor().get();
                    dv->comp_node(var.node()->comp_node(), true);
                    var.node()->init_mem_plan(dv);
723 724 725 726 727 728
                    if (in_record) {
                        auto&& device_tensor = var.node()->mutable_dev_tensor();
                        device_tensor.only_reset_raw_storage(dv->storage());
                    } else {
                        var.node()->reset_dev_tensor_from_tensor(*dv);
                    }
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
                });
    }
    if (m_user_config->options.force_output_dynamic_alloc) {
        TensorHelper::implement(tensor)
                ->cast_final_safe<TensorImplDft>()
                .set_get_memory_callback([var](TensorImplDft* dft_tensor) {
                    if (dft_tensor->is_host()) {
                        auto host_tensor = dft_tensor->m_host_tensor;
                        *host_tensor =
                                HostTensorND::make_proxy(var.node()->dev_tensor());
                    } else {
                        auto dev_tensor = dft_tensor->m_dev_tensor;
                        *dev_tensor = var.node()->dev_tensor();
                    }
                });
    }
}

M
Megvii Engine Team 已提交
747 748 749
std::shared_ptr<Tensor> NetworkImplDft::get_io_tensor(
        std::string io_name, LiteTensorPhase phase) {
    if (phase == LiteTensorPhase::LITE_INPUT || phase == LiteTensorPhase::LITE_IO) {
750 751 752 753 754 755
        for (auto&& config_in : m_network_io->inputs) {
            if (io_name == config_in.name) {
                return config_in.lite_tensor;
            }
        }
    }
M
Megvii Engine Team 已提交
756
    if (phase == LiteTensorPhase::LITE_OUTPUT || phase == LiteTensorPhase::LITE_IO) {
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
        for (auto&& config_out : m_network_io->outputs) {
            if (io_name == config_out.name) {
                config_out.lite_tensor->update_from_implement();
                return config_out.lite_tensor;
            }
        }
    }
    LITE_THROW(mgb::ssprintf(
            "tensor name must be %s input tensor name or the registered "
            "output tensor name if NetworkIO is set, if NetworkIO is not set, "
            "the output tensor is all the network output tensor, or the output "
            "tensor is only the registered tensor.",
            io_name.c_str()));
    return nullptr;
}

std::shared_ptr<Tensor> NetworkImplDft::get_input_tensor(size_t index) {
    return get_io_tensor(get_input_name(index));
}

std::shared_ptr<Tensor> NetworkImplDft::get_output_tensor(size_t index) {
    return get_io_tensor(get_output_name(index));
}

//! set opr algorithm selection strategy in the network
M
Megvii Engine Team 已提交
782 783 784
void NetworkImplDft::set_network_algo_policy(
        LiteAlgoSelectStrategy strategy, uint32_t shared_batch_size,
        bool binary_equal_between_batch) {
785 786
    using S = megdnn::param::ExecutionPolicy::Strategy;
    auto dst_strategy = static_cast<S>(0);
M
Megvii Engine Team 已提交
787
    if (static_cast<uint32_t>(strategy) & LiteAlgoSelectStrategy::LITE_ALGO_HEURISTIC) {
788 789
        dst_strategy = dst_strategy | S::HEURISTIC;
    }
M
Megvii Engine Team 已提交
790
    if (static_cast<uint32_t>(strategy) & LiteAlgoSelectStrategy::LITE_ALGO_PROFILE) {
791 792 793 794 795 796
        dst_strategy = dst_strategy | S::PROFILE;
    }
    if (static_cast<uint32_t>(strategy) &
        LiteAlgoSelectStrategy::LITE_ALGO_REPRODUCIBLE) {
        dst_strategy = dst_strategy | S::REPRODUCIBLE;
    }
M
Megvii Engine Team 已提交
797
    if (static_cast<uint32_t>(strategy) & LiteAlgoSelectStrategy::LITE_ALGO_OPTIMIZED) {
798 799
        dst_strategy = dst_strategy | S::OPTIMIZED;
    }
800 801
    if (static_cast<uint32_t>(dst_strategy) != 0)
        m_execution_policy = dst_strategy;
802

M
Megvii Engine Team 已提交
803
    auto&& fast_run_config = m_load_config.comp_graph->options().fast_run_config;
804 805 806 807 808 809 810 811 812 813 814 815
    fast_run_config.binary_equal_between_batch = binary_equal_between_batch;
    fast_run_config.shared_batch_size = shared_batch_size;

    if (m_execute_func) {
        LITE_WARN(
                "set_network_algo_policy maybe cause error after loaded "
                "network!!!!");
        modify_exection_policy();
    }
}

void NetworkImplDft::modify_exection_policy() {
816 817
    auto& vars = m_load_result.output_var_list;
    if (static_cast<uint32_t>(m_execution_policy) != 0) {
818
        mgb::gopt::modify_opr_algo_strategy_inplace(vars, m_execution_policy);
819
    }
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
}

//! set opr algorithm selection strategy in the network
void NetworkImplDft::set_network_algo_workspace_limit(size_t workspace_limit) {
    mgb::SymbolVarArray vars;
    for (auto i : m_output_spec) {
        vars.push_back(i.first);
    }
    mgb::gopt::set_opr_algo_workspace_limit_inplace(vars, workspace_limit);
}

//! get the input tensor name in the order of graph
std::vector<const char*> NetworkImplDft::get_all_output_name() const {
    std::vector<const char*> output_names;
    for (auto& output : m_network_io->outputs) {
        output_names.push_back(output.name.c_str());
    }
    return output_names;
}

//! get the input tensor name in the order of graph
std::vector<const char*> NetworkImplDft::get_all_input_name() const {
    std::vector<const char*> input_names;
    for (auto& input : m_load_result.tensor_map) {
        input_names.push_back(input.first.c_str());
    }
    return input_names;
}

//! get the output tensor name in the order of graph
const char* NetworkImplDft::get_output_name(size_t index) const {
    LITE_ASSERT(
            index < m_load_result.output_var_list.size(),
            "The output tensor index is large than the total outputs number.");
    return m_load_result.output_var_list[index].node()->name().c_str();
}

//! get the input tensor name in the order of graph
const char* NetworkImplDft::get_input_name(size_t index) const {
    LITE_ASSERT(
            index < m_load_result.tensor_map.size(),
            "The input tensor index is large than the total inputs number.");
    size_t i = 0;
    for (auto& input : m_load_result.tensor_map) {
        if (i == index) {
            return input.first.c_str();
        }
        i++;
    }
    LITE_THROW(ssprintf("no input tensor of index %zu.", index));
}

//! Plugin part
void NetworkImplDft::enable_profile_performance(std::string profile_json_file) {
#if MGB_ENABLE_JSON
M
Megvii Engine Team 已提交
875
    m_profiler = std::make_unique<mgb::GraphProfiler>(m_load_config.comp_graph.get());
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
    m_profiler_output_file = profile_json_file;
#else
    LITE_MARK_USED_VAR(profile_json_file);
    LITE_THROW("JSON is disable at compile time.");
#endif
}

void NetworkImplDft::enable_io_txt_dump(std::string io_txt_out_file) {
    auto iodump = std::make_unique<mgb::TextOprIODump>(
            m_load_config.comp_graph.get(), io_txt_out_file.c_str());
    iodump->print_addr(false);
    m_iodump = std::move(iodump);
}

void NetworkImplDft::enable_io_bin_dump(std::string io_bin_out_dir) {
    m_iodump = std::make_unique<mgb::BinaryOprIODump>(
            m_load_config.comp_graph.get(), io_bin_out_dir.c_str());
}

void inline NetworkImplDft::output_plugin_result() const {
#if MGB_ENABLE_JSON
    if (m_profiler && m_execute_func) {
        m_profiler->to_json_full(m_execute_func.get())
                ->writeto_fpath(m_profiler_output_file);
    }
#endif
}
903 904 905 906 907 908 909

void NetworkImplDft::get_static_memory_alloc_info(const std::string& log_dir) const {
#ifndef __IN_TEE_ENV__
#if MGB_ENABLE_JSON
    m_execute_func->get_static_memory_alloc_info(log_dir);
    return;
#endif
910
#endif
911 912
    LITE_MARK_USED_VAR(log_dir);
}
913

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
void NetworkImplDft::enable_global_layout_transform() {
    m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::UNSPEC;

    switch (m_user_config->device_type) {
        case LiteDeviceType::LITE_CPU:
            m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::CPU;
            break;
        case LiteDeviceType::LITE_CUDA:
            m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::CUDA;
            break;
        default:
            m_layout_transform_target = mgb::gopt::GraphTuningOptions::Target::UNSPEC;
            LITE_WARN(
                    "lite compnode type: enum value: %d. is unspecial for layout "
                    "transform",
                    (int)(m_user_config->device_type));
    }
    m_set_layout_transform = true;
}

void NetworkImplDft::dump_layout_transform_model(std::string optimized_model_path) {
    if (m_set_layout_transform) {
        auto out_file = mgb::serialization::OutputFile::make_fs(
                optimized_model_path.c_str(), 'w');
        using DumpConfig = mgb::serialization::GraphDumper::DumpConfig;
        DumpConfig config{1, false, false};
        auto dumper = mgb::serialization::GraphDumper::make(
                std::move(out_file), m_format.val());
        dumper->dump(m_load_result.output_var_list, config);
    } else {
        LITE_THROW(
                ssprintf("dump layout transform model should call "
                         "enable_global_layout_transform before"));
    }
}
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

NetworkIO lite::get_model_io_info_dft(
        const std::string& model_path, const Config& config) {
    FILE* fin = fopen(model_path.c_str(), "rb");
    LITE_ASSERT(fin, "failed to open %s: %s", model_path.c_str(), strerror(errno));
    fseek(fin, 0, SEEK_END);
    size_t size = ftell(fin);
    fseek(fin, 0, SEEK_SET);
    void* ptr = malloc(size);
    std::shared_ptr<void> buf{ptr, ::free};
    auto nr = fread(buf.get(), 1, size, fin);
    LITE_ASSERT(nr == size);
    fclose(fin);
    return get_model_io_info_dft(ptr, size, config);
}

NetworkIO lite::get_model_io_info_dft(
        const void* model_mem, size_t size, const Config& config) {
    std::shared_ptr<void> model{const_cast<void*>(model_mem), [](void*) {}};
    auto input_file = mgb::serialization::InputFile::make_mem_proxy(model, size, false);
    auto format =
            mgb::serialization::GraphLoader::identify_graph_dump_format(*input_file);
    if (!format.valid()) {
        LITE_THROW("invalid model format");
    }
    auto loader =
            mgb::serialization::GraphLoader::make(std::move(input_file), format.val());

    mgb::serialization::GraphLoadConfig load_config;
    load_config.comp_graph = mgb::ComputingGraph::make();
    if (config.has_compression) {
        load_config.tensor_value_loader = decompressed_tensor_value_loader;
    }
    auto compnode_locator = to_compnode_locator(config.device_type);
    load_config.comp_node_mapper = [=](mgb::CompNode::Locator& loc) {
        if (loc.type == mgb::CompNode::DeviceType::UNSPEC) {
            loc.type = compnode_locator.type;
        }
        loc.device = compnode_locator.device;
    };
    auto load_result = loader->load(load_config, true);
    NetworkIO IOs;
    for (auto&& in_tensor_iter : load_result.tensor_map) {
        IO in_io;
        in_io.name = in_tensor_iter.first;
        in_io.config_layout = to_lite_layout(in_tensor_iter.second->layout());
        IOs.inputs.push_back(in_io);
    }
    auto infer_shape = [=](mgb::cg::SymbolVar var) -> const megdnn::TensorShape* {
        auto&& static_infer_mgr = load_config.comp_graph->static_infer_manager();
        using InferType = mgb::cg::static_infer::InferType;
        if (static_infer_mgr.get_infer_type(var.node()).shape &
            (InferType::CONST | InferType::RT_STATIC)) {
            return static_infer_mgr.infer_shape_fallible(var.node());
        } else {
            return nullptr;
        }
    };
    for (auto&& out : load_result.output_var_list) {
        IO out_io;
        out_io.name = out.node()->name();
        if (auto shape = infer_shape(out)) {
            out_io.config_layout = to_lite_layout(TensorLayout{*shape, out.dtype()});
        } else {
            out_io.config_layout = to_lite_layout(TensorLayout{{}, out.dtype()});
        }
        IOs.outputs.push_back(out_io);
    }
    return IOs;
}
1019
#endif
1020
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}