test_batchnorm.py 13.9 KB
Newer Older
1 2 3 4 5 6 7 8
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9
import multiprocessing as mp
10
import platform
11

12 13 14 15
import numpy as np
import pytest

import megengine as mge
16
import megengine.distributed as dist
17
from megengine.core import tensor
18
from megengine.module import BatchNorm1d, BatchNorm2d, SyncBatchNorm
19 20 21
from megengine.test import assertTensorClose


22 23 24
@pytest.mark.skipif(
    platform.system() == "Darwin", reason="do not imp GPU mode at macos now"
)
25 26 27 28 29 30 31 32 33
@pytest.mark.isolated_distributed
def test_syncbn():
    nr_chan = 8
    data_shape = (3, nr_chan, 4, 16)
    momentum = 0.9
    eps = 1e-5
    running_mean = np.zeros((1, nr_chan, 1, 1), dtype=np.float32)
    running_var = np.ones((1, nr_chan, 1, 1), dtype=np.float32)
    steps = 4
34
    nr_ranks = 2
35 36

    def worker(rank, data, yv_expect, running_mean, running_var):
37
        if mge.get_device_count("gpu") < nr_ranks:
38
            return
39
        dist.init_process_group("localhost", 2333, nr_ranks, rank, rank)
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
        bn = SyncBatchNorm(nr_chan, momentum=momentum, eps=eps)
        data_tensor = tensor()
        for i in range(steps):
            data_tensor.set_value(data[i])
            yv = bn(data_tensor)

        assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6)
        assertTensorClose(running_mean, bn.running_mean.numpy(), max_err=5e-6)
        assertTensorClose(running_var, bn.running_var.numpy(), max_err=5e-6)

    xv = []
    for i in range(steps):
        xv.append(np.random.normal(loc=2.3, size=data_shape).astype(np.float32))
        xv_transposed = np.transpose(xv[i], [0, 2, 3, 1]).reshape(
            (data_shape[0] * data_shape[2] * data_shape[3], nr_chan)
        )

        mean = np.mean(xv_transposed, axis=0).reshape(1, nr_chan, 1, 1)

        var_biased = np.var(xv_transposed, axis=0).reshape((1, nr_chan, 1, 1))
        sd = np.sqrt(var_biased + eps)

        var_unbiased = np.var(xv_transposed, axis=0, ddof=1).reshape((1, nr_chan, 1, 1))
        running_mean = running_mean * momentum + mean * (1 - momentum)
        running_var = running_var * momentum + var_unbiased * (1 - momentum)

        yv_expect = (xv[i] - mean) / sd

    data = []
69
    for i in range(nr_ranks):
70 71
        data.append([])
        for j in range(steps):
72
            data[i].append(xv[j][:, :, :, i * 8 : i * 8 + 8])
73 74

    procs = []
75
    for rank in range(nr_ranks):
76 77 78 79 80
        p = mp.Process(
            target=worker,
            args=(
                rank,
                data[rank],
81
                yv_expect[:, :, :, rank * 8 : rank * 8 + 8],
82 83 84 85 86 87 88 89
                running_mean,
                running_var,
            ),
        )
        p.start()
        procs.append(p)

    for p in procs:
90
        p.join(10)
91 92 93
        assert p.exitcode == 0


94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
def test_batchnorm():
    nr_chan = 8
    data_shape = (3, nr_chan, 4)
    momentum = 0.9
    bn = BatchNorm1d(nr_chan, momentum=momentum)
    running_mean = np.zeros((1, nr_chan, 1), dtype=np.float32)
    running_var = np.ones((1, nr_chan, 1), dtype=np.float32)
    data = tensor()
    for i in range(3):
        xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32)
        mean = np.mean(np.mean(xv, axis=0, keepdims=True), axis=2, keepdims=True)
        xv_transposed = np.transpose(xv, [0, 2, 1]).reshape(
            (data_shape[0] * data_shape[2], nr_chan)
        )

        var_biased = np.var(xv_transposed, axis=0).reshape((1, nr_chan, 1))
        sd = np.sqrt(var_biased + bn.eps)

        var_unbiased = np.var(xv_transposed, axis=0, ddof=1).reshape((1, nr_chan, 1))
        running_mean = running_mean * momentum + mean * (1 - momentum)
        running_var = running_var * momentum + var_unbiased * (1 - momentum)

        data.set_value(xv)
        yv = bn(data)
        yv_expect = (xv - mean) / sd

        assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6)
        assertTensorClose(
            running_mean.reshape(-1), bn.running_mean.numpy().reshape(-1), max_err=5e-6
        )
        assertTensorClose(
            running_var.reshape(-1), bn.running_var.numpy().reshape(-1), max_err=5e-6
        )

    # test set 'training' flag to False
    mean_backup = bn.running_mean.numpy()
    var_backup = bn.running_var.numpy()
    bn.training = False
    xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32)
    data.set_value(xv)
    yv1 = bn(data)
    yv2 = bn(data)
    assertTensorClose(yv1.numpy(), yv2.numpy(), max_err=0)
    assertTensorClose(mean_backup, bn.running_mean.numpy(), max_err=0)
    assertTensorClose(var_backup, bn.running_var.numpy(), max_err=0)
    yv_expect = (xv - running_mean) / np.sqrt(running_var + bn.eps)
    assertTensorClose(yv_expect, yv1.numpy(), max_err=5e-6)


143 144 145
@pytest.mark.skipif(
    platform.system() == "Darwin", reason="do not imp GPU mode at macos now"
)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
def test_syncbn1d():
    nr_chan = 8
    data_shape = (3, nr_chan, 4)
    momentum = 0.9
    bn = SyncBatchNorm(nr_chan, momentum=momentum)
    running_mean = np.zeros((1, nr_chan, 1), dtype=np.float32)
    running_var = np.ones((1, nr_chan, 1), dtype=np.float32)
    data = tensor()
    for i in range(3):
        xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32)
        mean = np.mean(np.mean(xv, axis=0, keepdims=True), axis=2, keepdims=True)
        xv_transposed = np.transpose(xv, [0, 2, 1]).reshape(
            (data_shape[0] * data_shape[2], nr_chan)
        )

        var_biased = np.var(xv_transposed, axis=0).reshape((1, nr_chan, 1))
        sd = np.sqrt(var_biased + bn.eps)

        var_unbiased = np.var(xv_transposed, axis=0, ddof=1).reshape((1, nr_chan, 1))
        running_mean = running_mean * momentum + mean * (1 - momentum)
        running_var = running_var * momentum + var_unbiased * (1 - momentum)

        data.set_value(xv)
        yv = bn(data)
        yv_expect = (xv - mean) / sd

        assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6)
        assertTensorClose(
            running_mean.reshape(-1), bn.running_mean.numpy().reshape(-1), max_err=5e-6
        )
        assertTensorClose(
            running_var.reshape(-1), bn.running_var.numpy().reshape(-1), max_err=5e-6
        )

    # test set 'training' flag to False
    mean_backup = bn.running_mean.numpy()
    var_backup = bn.running_var.numpy()
    bn.training = False
    xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32)
    data.set_value(xv)
    yv1 = bn(data)
    yv2 = bn(data)
    assertTensorClose(yv1.numpy(), yv2.numpy(), max_err=0)
    assertTensorClose(mean_backup, bn.running_mean.numpy(), max_err=0)
    assertTensorClose(var_backup, bn.running_var.numpy(), max_err=0)
    yv_expect = (xv - running_mean) / np.sqrt(running_var + bn.eps)
    assertTensorClose(yv_expect, yv1.numpy(), max_err=5e-6)


195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
def test_batchnorm2d():
    nr_chan = 8
    data_shape = (3, nr_chan, 16, 16)
    momentum = 0.9
    bn = BatchNorm2d(nr_chan, momentum=momentum)
    running_mean = np.zeros((1, nr_chan, 1, 1), dtype=np.float32)
    running_var = np.ones((1, nr_chan, 1, 1), dtype=np.float32)
    data = tensor()
    for i in range(3):
        xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32)
        xv_transposed = np.transpose(xv, [0, 2, 3, 1]).reshape(
            (data_shape[0] * data_shape[2] * data_shape[3], nr_chan)
        )

        mean = np.mean(xv_transposed, axis=0).reshape(1, nr_chan, 1, 1)

        var_biased = np.var(xv_transposed, axis=0).reshape((1, nr_chan, 1, 1))
        sd = np.sqrt(var_biased + bn.eps)

        var_unbiased = np.var(xv_transposed, axis=0, ddof=1).reshape((1, nr_chan, 1, 1))
        running_mean = running_mean * momentum + mean * (1 - momentum)
        running_var = running_var * momentum + var_unbiased * (1 - momentum)

        data.set_value(xv)
        yv = bn(data)
        yv_expect = (xv - mean) / sd

        assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6)
        assertTensorClose(running_mean, bn.running_mean.numpy(), max_err=5e-6)
        assertTensorClose(running_var, bn.running_var.numpy(), max_err=5e-6)

    # test set 'training' flag to False
    mean_backup = bn.running_mean.numpy()
    var_backup = bn.running_var.numpy()
    bn.training = False
    xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32)
    data.set_value(xv)
    yv1 = bn(data)
    yv2 = bn(data)
    assertTensorClose(yv1.numpy(), yv2.numpy(), max_err=0)
    assertTensorClose(mean_backup, bn.running_mean.numpy(), max_err=0)
    assertTensorClose(var_backup, bn.running_var.numpy(), max_err=0)
    yv_expect = (xv - running_mean) / np.sqrt(running_var + bn.eps)
    assertTensorClose(yv_expect, yv1.numpy(), max_err=5e-6)


241 242 243
@pytest.mark.skipif(
    platform.system() == "Darwin", reason="do not imp GPU mode at macos now"
)
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
def test_syncbn2d():
    nr_chan = 8
    data_shape = (3, nr_chan, 16, 16)
    momentum = 0.9
    bn = SyncBatchNorm(nr_chan, momentum=momentum)
    running_mean = np.zeros((1, nr_chan, 1, 1), dtype=np.float32)
    running_var = np.ones((1, nr_chan, 1, 1), dtype=np.float32)
    data = tensor()
    for i in range(3):
        xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32)
        xv_transposed = np.transpose(xv, [0, 2, 3, 1]).reshape(
            (data_shape[0] * data_shape[2] * data_shape[3], nr_chan)
        )

        mean = np.mean(xv_transposed, axis=0).reshape(1, nr_chan, 1, 1)

        var_biased = np.var(xv_transposed, axis=0).reshape((1, nr_chan, 1, 1))
        sd = np.sqrt(var_biased + bn.eps)

        var_unbiased = np.var(xv_transposed, axis=0, ddof=1).reshape((1, nr_chan, 1, 1))
        running_mean = running_mean * momentum + mean * (1 - momentum)
        running_var = running_var * momentum + var_unbiased * (1 - momentum)

        data.set_value(xv)
        yv = bn(data)
        yv_expect = (xv - mean) / sd

        assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6)
        assertTensorClose(running_mean, bn.running_mean.numpy(), max_err=5e-6)
        assertTensorClose(running_var, bn.running_var.numpy(), max_err=5e-6)

    # test set 'training' flag to False
    mean_backup = bn.running_mean.numpy()
    var_backup = bn.running_var.numpy()
    bn.training = False
    xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32)
    data.set_value(xv)
    yv1 = bn(data)
    yv2 = bn(data)
    assertTensorClose(yv1.numpy(), yv2.numpy(), max_err=0)
    assertTensorClose(mean_backup, bn.running_mean.numpy(), max_err=0)
    assertTensorClose(var_backup, bn.running_var.numpy(), max_err=0)
    yv_expect = (xv - running_mean) / np.sqrt(running_var + bn.eps)
    assertTensorClose(yv_expect, yv1.numpy(), max_err=5e-6)


290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
def test_batchnorm_no_stats():
    nr_chan = 8
    data_shape = (3, nr_chan, 4)
    bn = BatchNorm1d(8, track_running_stats=False)
    data = tensor()
    for i in range(4):
        if i == 2:
            bn.training = False
        xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32)
        mean = np.mean(np.mean(xv, axis=0, keepdims=True), axis=2, keepdims=True)
        var = np.var(
            np.transpose(xv, [0, 2, 1]).reshape(
                (data_shape[0] * data_shape[2], nr_chan)
            ),
            axis=0,
        ).reshape((1, nr_chan, 1))
        sd = np.sqrt(var + bn.eps)

        data.set_value(xv)
        yv = bn(data)
        yv_expect = (xv - mean) / sd

        assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6)


315 316 317
@pytest.mark.skipif(
    platform.system() == "Darwin", reason="do not imp GPU mode at macos now"
)
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
def test_syncbn_no_stats():
    nr_chan = 8
    data_shape = (3, nr_chan, 4)
    bn = SyncBatchNorm(8, track_running_stats=False)
    data = tensor()
    for i in range(4):
        if i == 2:
            bn.training = False
        xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32)
        mean = np.mean(np.mean(xv, axis=0, keepdims=True), axis=2, keepdims=True)
        var = np.var(
            np.transpose(xv, [0, 2, 1]).reshape(
                (data_shape[0] * data_shape[2], nr_chan)
            ),
            axis=0,
        ).reshape((1, nr_chan, 1))
        sd = np.sqrt(var + bn.eps)

        data.set_value(xv)
        yv = bn(data)
        yv_expect = (xv - mean) / sd

        assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6)


343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
def test_batchnorm2d_no_stats():
    nr_chan = 8
    data_shape = (3, nr_chan, 16, 16)
    bn = BatchNorm2d(8, track_running_stats=False)
    data = tensor()
    for i in range(4):
        if i == 2:
            bn.training = False
        xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32)
        xv_transposed = np.transpose(xv, [0, 2, 3, 1]).reshape(
            (data_shape[0] * data_shape[2] * data_shape[3], nr_chan)
        )

        mean = np.mean(xv_transposed, axis=0).reshape(1, nr_chan, 1, 1)
        var = np.var(xv_transposed, axis=0).reshape((1, nr_chan, 1, 1))
        sd = np.sqrt(var + bn.eps)

        data.set_value(xv)
        yv = bn(data)
        yv_expect = (xv - mean) / sd

        assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6)
365 366


367 368 369
@pytest.mark.skipif(
    platform.system() == "Darwin", reason="do not imp GPU mode at macos now"
)
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
def test_syncbn2d_no_stats():
    nr_chan = 8
    data_shape = (3, nr_chan, 16, 16)
    bn = SyncBatchNorm(8, track_running_stats=False)
    data = tensor()
    for i in range(4):
        if i == 2:
            bn.training = False
        xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32)
        xv_transposed = np.transpose(xv, [0, 2, 3, 1]).reshape(
            (data_shape[0] * data_shape[2] * data_shape[3], nr_chan)
        )

        mean = np.mean(xv_transposed, axis=0).reshape(1, nr_chan, 1, 1)
        var = np.var(xv_transposed, axis=0).reshape((1, nr_chan, 1, 1))
        sd = np.sqrt(var + bn.eps)

        data.set_value(xv)
        yv = bn(data)
        yv_expect = (xv - mean) / sd

        assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6)