Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MegEngine 天元
MegEngine
提交
4ace67ff
MegEngine
项目概览
MegEngine 天元
/
MegEngine
接近 2 年 前同步成功
通知
414
Star
4708
Fork
583
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
MegEngine
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
4ace67ff
编写于
6月 24, 2020
作者:
M
Megvii Engine Team
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test(mge/distributed): check gpu num for multi gpu test
GitOrigin-RevId: 78f471868219795eb9325a0632d454cf53bd6226
上级
9d5c5c07
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
19 addition
and
18 deletion
+19
-18
python_module/test/unit/distributed/test_functional.py
python_module/test/unit/distributed/test_functional.py
+11
-11
python_module/test/unit/module/test_batchnorm.py
python_module/test/unit/module/test_batchnorm.py
+8
-7
未找到文件。
python_module/test/unit/distributed/test_functional.py
浏览文件 @
4ace67ff
...
...
@@ -30,7 +30,7 @@ def test_reduce_sum():
world_size
=
2
def
worker
(
rank
,
data
,
backend
,
expect
,
port_queue
):
if
not
mge
.
is_cuda_available
()
:
if
mge
.
get_device_count
(
"gpu"
)
<
world_size
:
return
_init_process_group_wrapper
(
world_size
,
rank
,
rank
,
backend
,
port_queue
)
inp
=
tensor
(
data
)
...
...
@@ -66,7 +66,7 @@ def test_gather():
world_size
=
2
def
worker
(
rank
,
data
,
backend
,
expect
,
port_queue
):
if
not
mge
.
is_cuda_available
()
:
if
mge
.
get_device_count
(
"gpu"
)
<
world_size
:
return
_init_process_group_wrapper
(
world_size
,
rank
,
rank
,
backend
,
port_queue
)
inp
=
tensor
(
data
)
...
...
@@ -102,7 +102,7 @@ def test_broadcast():
world_size
=
2
def
worker
(
rank
,
data
,
backend
,
expect
,
port_queue
):
if
not
mge
.
is_cuda_available
()
:
if
mge
.
get_device_count
(
"gpu"
)
<
world_size
:
return
_init_process_group_wrapper
(
world_size
,
rank
,
rank
,
backend
,
port_queue
)
inp
=
tensor
(
data
)
...
...
@@ -134,7 +134,7 @@ def test_scatter():
world_size
=
2
def
worker
(
rank
,
data
,
backend
,
expect
,
port_queue
):
if
not
mge
.
is_cuda_available
()
:
if
mge
.
get_device_count
(
"gpu"
)
<
world_size
:
return
_init_process_group_wrapper
(
world_size
,
rank
,
rank
,
backend
,
port_queue
)
inp
=
tensor
(
data
)
...
...
@@ -170,7 +170,7 @@ def test_all_to_all():
world_size
=
2
def
worker
(
rank
,
data
,
backend
,
expect
,
port_queue
):
if
not
mge
.
is_cuda_available
()
:
if
mge
.
get_device_count
(
"gpu"
)
<
world_size
:
return
_init_process_group_wrapper
(
world_size
,
rank
,
rank
,
backend
,
port_queue
)
inp
=
tensor
(
data
)
...
...
@@ -204,7 +204,7 @@ def test_all_gather():
world_size
=
2
def
worker
(
rank
,
data
,
backend
,
expect
,
port_queue
):
if
not
mge
.
is_cuda_available
()
:
if
mge
.
get_device_count
(
"gpu"
)
<
world_size
:
return
_init_process_group_wrapper
(
world_size
,
rank
,
rank
,
backend
,
port_queue
)
inp
=
tensor
(
data
)
...
...
@@ -237,7 +237,7 @@ def test_reduce_scatter_sum():
world_size
=
2
def
worker
(
rank
,
data
,
backend
,
expect
,
port_queue
):
if
not
mge
.
is_cuda_available
()
:
if
mge
.
get_device_count
(
"gpu"
)
<
world_size
:
return
_init_process_group_wrapper
(
world_size
,
rank
,
rank
,
backend
,
port_queue
)
inp
=
tensor
(
data
)
...
...
@@ -274,7 +274,7 @@ def test_all_reduce_sum():
world_size
=
2
def
worker
(
rank
,
data
,
backend
,
expect
,
port_queue
):
if
not
mge
.
is_cuda_available
()
:
if
mge
.
get_device_count
(
"gpu"
)
<
world_size
:
return
_init_process_group_wrapper
(
world_size
,
rank
,
rank
,
backend
,
port_queue
)
inp
=
tensor
(
data
)
...
...
@@ -307,7 +307,7 @@ def test_all_reduce_max():
world_size
=
2
def
worker
(
rank
,
data
,
backend
,
expect
,
port_queue
):
if
not
mge
.
is_cuda_available
()
:
if
mge
.
get_device_count
(
"gpu"
)
<
world_size
:
return
_init_process_group_wrapper
(
world_size
,
rank
,
rank
,
backend
,
port_queue
)
inp
=
tensor
(
data
)
...
...
@@ -340,7 +340,7 @@ def test_all_reduce_min():
world_size
=
2
def
worker
(
rank
,
data
,
backend
,
expect
,
port_queue
):
if
not
mge
.
is_cuda_available
()
:
if
mge
.
get_device_count
(
"gpu"
)
<
world_size
:
return
_init_process_group_wrapper
(
world_size
,
rank
,
rank
,
backend
,
port_queue
)
inp
=
tensor
(
data
)
...
...
@@ -373,7 +373,7 @@ def test_bcast_param():
world_size
=
2
def
worker
(
rank
,
data
,
backend
,
expect
,
port_queue
):
if
not
mge
.
is_cuda_available
()
:
if
mge
.
get_device_count
(
"gpu"
)
<
world_size
:
return
_init_process_group_wrapper
(
world_size
,
rank
,
rank
,
backend
,
port_queue
)
inp
=
Parameter
(
data
)
...
...
python_module/test/unit/module/test_batchnorm.py
浏览文件 @
4ace67ff
...
...
@@ -27,11 +27,12 @@ def test_syncbn():
running_mean
=
np
.
zeros
((
1
,
nr_chan
,
1
,
1
),
dtype
=
np
.
float32
)
running_var
=
np
.
ones
((
1
,
nr_chan
,
1
,
1
),
dtype
=
np
.
float32
)
steps
=
4
nr_ranks
=
2
def
worker
(
rank
,
data
,
yv_expect
,
running_mean
,
running_var
):
if
not
mge
.
is_cuda_available
()
:
if
mge
.
get_device_count
(
"gpu"
)
<
nr_ranks
:
return
dist
.
init_process_group
(
"localhost"
,
2333
,
4
,
rank
,
rank
)
dist
.
init_process_group
(
"localhost"
,
2333
,
nr_ranks
,
rank
,
rank
)
bn
=
SyncBatchNorm
(
nr_chan
,
momentum
=
momentum
,
eps
=
eps
)
data_tensor
=
tensor
()
for
i
in
range
(
steps
):
...
...
@@ -61,19 +62,19 @@ def test_syncbn():
yv_expect
=
(
xv
[
i
]
-
mean
)
/
sd
data
=
[]
for
i
in
range
(
4
):
for
i
in
range
(
nr_ranks
):
data
.
append
([])
for
j
in
range
(
steps
):
data
[
i
].
append
(
xv
[
j
][:,
:,
:,
i
*
4
:
i
*
4
+
4
])
data
[
i
].
append
(
xv
[
j
][:,
:,
:,
i
*
8
:
i
*
8
+
8
])
procs
=
[]
for
rank
in
range
(
4
):
for
rank
in
range
(
nr_ranks
):
p
=
mp
.
Process
(
target
=
worker
,
args
=
(
rank
,
data
[
rank
],
yv_expect
[:,
:,
:,
rank
*
4
:
rank
*
4
+
4
],
yv_expect
[:,
:,
:,
rank
*
8
:
rank
*
8
+
8
],
running_mean
,
running_var
,
),
...
...
@@ -82,7 +83,7 @@ def test_syncbn():
procs
.
append
(
p
)
for
p
in
procs
:
p
.
join
()
p
.
join
(
10
)
assert
p
.
exitcode
==
0
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录