mod.rs 101.9 KB
Newer Older
1
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 3 4 5 6 7 8 9 10
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

S
Steven Fackler 已提交
11
pub use self::Variance::*;
12
pub use self::AssociatedItemContainer::*;
S
Steven Fackler 已提交
13 14
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
15
pub use self::fold::TypeFoldable;
S
Steven Fackler 已提交
16

17
use hir::{map as hir_map, FreevarMap, TraitMap};
18
use hir::def::{Def, CtorKind, ExportMap};
19
use hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE};
20
use hir::map::DefPathData;
21
use hir::svh::Svh;
W
Wesley Wiser 已提交
22
use ich::Fingerprint;
23
use ich::StableHashingContext;
24
use middle::const_val::ConstVal;
25
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
26
use middle::privacy::AccessLevels;
27
use middle::resolve_lifetime::ObjectLifetimeDefault;
28
use mir::Mir;
O
Oliver Schneider 已提交
29
use mir::interpret::{Value, PrimVal};
J
John Kåre Alsaker 已提交
30
use mir::GeneratorLayout;
31
use session::CrateDisambiguator;
32 33
use traits;
use ty;
34
use ty::subst::{Subst, Substs};
35
use ty::util::IntTypeExt;
36
use ty::walk::TypeWalker;
A
Ariel Ben-Yehuda 已提交
37 38
use util::common::ErrorReported;
use util::nodemap::{NodeSet, DefIdMap, FxHashMap, FxHashSet};
39

40
use serialize::{self, Encodable, Encoder};
W
Wesley Wiser 已提交
41
use std::cell::RefCell;
42
use std::cmp;
43
use std::fmt;
44
use std::hash::{Hash, Hasher};
A
Ariel Ben-Yehuda 已提交
45
use std::iter::FromIterator;
46
use std::ops::Deref;
47
use rustc_data_structures::sync::Lrc;
48
use std::slice;
49
use std::vec::IntoIter;
50
use std::mem;
J
Jeffrey Seyfried 已提交
51
use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
52
use syntax::attr;
J
Jeffrey Seyfried 已提交
53
use syntax::ext::hygiene::{Mark, SyntaxContext};
54
use syntax::symbol::{Symbol, InternedString};
55
use syntax_pos::{DUMMY_SP, Span};
56
use rustc_const_math::ConstInt;
57

58
use rustc_data_structures::accumulate_vec::IntoIter as AccIntoIter;
59 60
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
                                           HashStable};
O
Oliver Schneider 已提交
61

62
use hir;
63

64
pub use self::sty::{Binder, DebruijnIndex};
J
John Kåre Alsaker 已提交
65
pub use self::sty::{FnSig, GenSig, PolyFnSig, PolyGenSig};
66
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
J
John Kåre Alsaker 已提交
67
pub use self::sty::{ClosureSubsts, GeneratorInterior, TypeAndMut};
68
pub use self::sty::{TraitRef, TypeVariants, PolyTraitRef};
69
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
70
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
71
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
N
Niko Matsakis 已提交
72
pub use self::sty::RegionKind;
73
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid};
74 75
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
N
Niko Matsakis 已提交
76
pub use self::sty::RegionKind::*;
77 78
pub use self::sty::TypeVariants::*;

79 80 81
pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;

82
pub use self::context::{TyCtxt, GlobalArenas, AllArenas, tls, keep_local};
83
pub use self::context::{Lift, TypeckTables};
84

85 86
pub use self::instance::{Instance, InstanceDef};

87
pub use self::trait_def::TraitDef;
88

89 90
pub use self::maps::queries;

91
pub mod adjustment;
92
pub mod binding;
93
pub mod cast;
94
#[macro_use]
95
pub mod codec;
96
pub mod error;
97
mod erase_regions;
98 99
pub mod fast_reject;
pub mod fold;
A
Andrew Cann 已提交
100
pub mod inhabitedness;
101
pub mod item_path;
102
pub mod layout;
103
pub mod _match;
104
pub mod maps;
105 106
pub mod outlives;
pub mod relate;
107
pub mod steal;
108
pub mod subst;
109
pub mod trait_def;
110 111
pub mod walk;
pub mod wf;
112
pub mod util;
113

114 115
mod context;
mod flags;
116
mod instance;
117 118 119
mod structural_impls;
mod sty;

120
// Data types
121

122 123
/// The complete set of all analyses described in this module. This is
/// produced by the driver and fed to trans and later passes.
124 125 126
///
/// NB: These contents are being migrated into queries using the
/// *on-demand* infrastructure.
J
Jeffrey Seyfried 已提交
127
#[derive(Clone)]
128
pub struct CrateAnalysis {
129
    pub access_levels: Lrc<AccessLevels>,
130
    pub name: String,
131
    pub glob_map: Option<hir::GlobMap>,
132 133
}

134 135 136 137 138
#[derive(Clone)]
pub struct Resolutions {
    pub freevars: FreevarMap,
    pub trait_map: TraitMap,
    pub maybe_unused_trait_imports: NodeSet,
139
    pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
N
Niko Matsakis 已提交
140
    pub export_map: ExportMap,
141 142
}

143
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
144
pub enum AssociatedItemContainer {
N
Niko Matsakis 已提交
145 146
    TraitContainer(DefId),
    ImplContainer(DefId),
147 148
}

149
impl AssociatedItemContainer {
150 151 152 153 154 155 156 157 158
    /// Asserts that this is the def-id of an associated item declared
    /// in a trait, and returns the trait def-id.
    pub fn assert_trait(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            _ => bug!("associated item has wrong container type: {:?}", self)
        }
    }

N
Niko Matsakis 已提交
159
    pub fn id(&self) -> DefId {
160 161 162 163 164 165 166
        match *self {
            TraitContainer(id) => id,
            ImplContainer(id) => id,
        }
    }
}

A
Aaron Turon 已提交
167 168 169 170 171 172 173 174 175 176 177
/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

S
scalexm 已提交
178
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
179 180 181 182 183 184 185
pub struct AssociatedItem {
    pub def_id: DefId,
    pub name: Name,
    pub kind: AssociatedKind,
    pub vis: Visibility,
    pub defaultness: hir::Defaultness,
    pub container: AssociatedItemContainer,
186

187 188 189 190
    /// Whether this is a method with an explicit self
    /// as its first argument, allowing method calls.
    pub method_has_self_argument: bool,
}
191

192
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
193 194 195 196 197
pub enum AssociatedKind {
    Const,
    Method,
    Type
}
198

199 200 201 202 203 204
impl AssociatedItem {
    pub fn def(&self) -> Def {
        match self.kind {
            AssociatedKind::Const => Def::AssociatedConst(self.def_id),
            AssociatedKind::Method => Def::Method(self.def_id),
            AssociatedKind::Type => Def::AssociatedTy(self.def_id),
205 206
        }
    }
A
Andrew Cann 已提交
207 208 209 210 211 212 213

    /// Tests whether the associated item admits a non-trivial implementation
    /// for !
    pub fn relevant_for_never<'tcx>(&self) -> bool {
        match self.kind {
            AssociatedKind::Const => true,
            AssociatedKind::Type => true,
A
Andrew Cann 已提交
214
            // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
A
Andrew Cann 已提交
215 216 217
            AssociatedKind::Method => !self.method_has_self_argument,
        }
    }
218 219 220 221 222 223 224 225

    pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
        match self.kind {
            ty::AssociatedKind::Method => {
                // We skip the binder here because the binder would deanonymize all
                // late-bound regions, and we don't want method signatures to show up
                // `as for<'r> fn(&'r MyType)`.  Pretty-printing handles late-bound
                // regions just fine, showing `fn(&MyType)`.
226
                format!("{}", tcx.fn_sig(self.def_id).skip_binder())
227 228 229 230 231 232 233
            }
            ty::AssociatedKind::Type => format!("type {};", self.name.to_string()),
            ty::AssociatedKind::Const => {
                format!("const {}: {:?};", self.name.to_string(), tcx.type_of(self.def_id))
            }
        }
    }
234 235
}

236
#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
237 238 239 240
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
241
    Restricted(DefId),
242
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
243
    Invisible,
244 245
}

246 247
pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;
A
Andrew Cann 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
262 263
}

264 265 266
impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index: index, ..id })
267 268 269
    }
}

270
impl Visibility {
271
    pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt) -> Self {
272 273
        match *visibility {
            hir::Public => Visibility::Public,
274
            hir::Visibility::Crate => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
275
            hir::Visibility::Restricted { ref path, .. } => match path.def {
276 277
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
278
                Def::Err => Visibility::Public,
279
                def => Visibility::Restricted(def.def_id()),
280
            },
281
            hir::Inherited => {
J
Jeffrey Seyfried 已提交
282
                Visibility::Restricted(tcx.hir.get_module_parent(id))
283
            }
284 285
        }
    }
286 287

    /// Returns true if an item with this visibility is accessible from the given block.
A
Andrew Cann 已提交
288
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
289 290 291 292
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
293
            Visibility::Invisible => return false,
294
            // Restricted items are visible in an arbitrary local module.
295
            Visibility::Restricted(other) if other.krate != module.krate => return false,
296 297 298
            Visibility::Restricted(module) => module,
        };

A
Andrew Cann 已提交
299
        tree.is_descendant_of(module, restriction)
300
    }
301 302

    /// Returns true if this visibility is at least as accessible as the given visibility
303
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
304 305
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
306
            Visibility::Invisible => return true,
307 308 309
            Visibility::Restricted(module) => module,
        };

310
        self.is_accessible_from(vis_restriction, tree)
311
    }
312 313 314 315 316 317 318 319 320

    // Returns true if this item is visible anywhere in the local crate.
    pub fn is_visible_locally(self) -> bool {
        match self {
            Visibility::Public => true,
            Visibility::Restricted(def_id) => def_id.is_local(),
            Visibility::Invisible => false,
        }
    }
321 322
}

323
#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)]
324
pub enum Variance {
325 326 327 328
    Covariant,      // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,      // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant,  // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,      // T<A> <: T<B>            -- e.g., unused type parameter
329
}
330

331 332 333 334
/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
335
/// `tcx.variances_of()` to get the variance for a *particular*
336 337 338 339 340
/// item.
pub struct CrateVariancesMap {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics.  If an item has no generics, it will have no
    /// entry.
341
    pub variances: FxHashMap<DefId, Lrc<Vec<ty::Variance>>>,
342 343

    /// An empty vector, useful for cloning.
344
    pub empty_variance: Lrc<Vec<ty::Variance>>,
345 346
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning.  If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    ///
    ///     *mut Vec<i32>
    ///
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    ///
    ///     fn(*const Vec<i32>, *mut Vec<i32)
    ///
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`.  `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`.  The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: ty::Variance) -> ty::Variance {
        match (self, v) {
            // Figure 1, column 1.
            (ty::Covariant, ty::Covariant) => ty::Covariant,
            (ty::Covariant, ty::Contravariant) => ty::Contravariant,
            (ty::Covariant, ty::Invariant) => ty::Invariant,
            (ty::Covariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 2.
            (ty::Contravariant, ty::Covariant) => ty::Contravariant,
            (ty::Contravariant, ty::Contravariant) => ty::Covariant,
            (ty::Contravariant, ty::Invariant) => ty::Invariant,
            (ty::Contravariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 3.
            (ty::Invariant, _) => ty::Invariant,

            // Figure 1, column 4.
            (ty::Bivariant, _) => ty::Bivariant,
        }
    }
}

407 408 409
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
410
pub struct CReaderCacheKey {
411 412 413 414
    pub cnum: CrateNum,
    pub pos: usize,
}

415 416 417 418
// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
419
bitflags! {
420 421 422 423 424 425
    pub struct TypeFlags: u32 {
        const HAS_PARAMS         = 1 << 0;
        const HAS_SELF           = 1 << 1;
        const HAS_TY_INFER       = 1 << 2;
        const HAS_RE_INFER       = 1 << 3;
        const HAS_RE_SKOL        = 1 << 4;
426 427 428 429 430

        /// Does this have any `ReEarlyBound` regions? Used to
        /// determine whether substitition is required, since those
        /// represent regions that are bound in a `ty::Generics` and
        /// hence may be substituted.
431
        const HAS_RE_EARLY_BOUND = 1 << 5;
432 433 434

        /// Does this have any region that "appears free" in the type?
        /// Basically anything but `ReLateBound` and `ReErased`.
435
        const HAS_FREE_REGIONS   = 1 << 6;
436 437

        /// Is an error type reachable?
438 439
        const HAS_TY_ERR         = 1 << 7;
        const HAS_PROJECTION     = 1 << 8;
J
John Kåre Alsaker 已提交
440 441

        // FIXME: Rename this to the actual property since it's used for generators too
442
        const HAS_TY_CLOSURE     = 1 << 9;
443 444 445

        // true if there are "names" of types and regions and so forth
        // that are local to a particular fn
446
        const HAS_LOCAL_NAMES    = 1 << 10;
447

448 449
        // Present if the type belongs in a local type context.
        // Only set for TyInfer other than Fresh.
450
        const KEEP_IN_LOCAL_TCX  = 1 << 11;
451

452 453
        // Is there a projection that does not involve a bound region?
        // Currently we can't normalize projections w/ bound regions.
454
        const HAS_NORMALIZABLE_PROJECTION = 1 << 12;
455

456 457
        const NEEDS_SUBST        = TypeFlags::HAS_PARAMS.bits |
                                   TypeFlags::HAS_SELF.bits |
458
                                   TypeFlags::HAS_RE_EARLY_BOUND.bits;
459 460

        // Flags representing the nominal content of a type,
461 462
        // computed by FlagsComputation. If you add a new nominal
        // flag, it should be added here too.
463 464 465 466
        const NOMINAL_FLAGS     = TypeFlags::HAS_PARAMS.bits |
                                  TypeFlags::HAS_SELF.bits |
                                  TypeFlags::HAS_TY_INFER.bits |
                                  TypeFlags::HAS_RE_INFER.bits |
467
                                  TypeFlags::HAS_RE_SKOL.bits |
468 469
                                  TypeFlags::HAS_RE_EARLY_BOUND.bits |
                                  TypeFlags::HAS_FREE_REGIONS.bits |
470
                                  TypeFlags::HAS_TY_ERR.bits |
471
                                  TypeFlags::HAS_PROJECTION.bits |
472
                                  TypeFlags::HAS_TY_CLOSURE.bits |
473
                                  TypeFlags::HAS_LOCAL_NAMES.bits |
474
                                  TypeFlags::KEEP_IN_LOCAL_TCX.bits;
475
    }
476 477
}

478
pub struct TyS<'tcx> {
479
    pub sty: TypeVariants<'tcx>,
480
    pub flags: TypeFlags,
481 482

    // the maximal depth of any bound regions appearing in this type.
483
    region_depth: u32,
484 485
}

486
impl<'tcx> PartialEq for TyS<'tcx> {
487
    #[inline]
488 489 490 491 492
    fn eq(&self, other: &TyS<'tcx>) -> bool {
        // (self as *const _) == (other as *const _)
        (self as *const TyS<'tcx>) == (other as *const TyS<'tcx>)
    }
}
493
impl<'tcx> Eq for TyS<'tcx> {}
494

A
Alex Crichton 已提交
495 496
impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
N
Nick Cameron 已提交
497
        (self as *const TyS).hash(s)
A
Alex Crichton 已提交
498 499
    }
}
500

G
Guillaume Gomez 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
impl<'tcx> TyS<'tcx> {
    pub fn is_primitive_ty(&self) -> bool {
        match self.sty {
            TypeVariants::TyBool |
                TypeVariants::TyChar |
                TypeVariants::TyInt(_) |
                TypeVariants::TyUint(_) |
                TypeVariants::TyFloat(_) |
                TypeVariants::TyInfer(InferTy::IntVar(_)) |
                TypeVariants::TyInfer(InferTy::FloatVar(_)) |
                TypeVariants::TyInfer(InferTy::FreshIntTy(_)) |
                TypeVariants::TyInfer(InferTy::FreshFloatTy(_)) => true,
            TypeVariants::TyRef(_, x) => x.ty.is_primitive_ty(),
            _ => false,
        }
    }
517 518 519 520 521 522 523 524

    pub fn is_suggestable(&self) -> bool {
        match self.sty {
            TypeVariants::TyAnon(..) |
            TypeVariants::TyFnDef(..) |
            TypeVariants::TyFnPtr(..) |
            TypeVariants::TyDynamic(..) |
            TypeVariants::TyClosure(..) |
525
            TypeVariants::TyInfer(..) |
526 527 528 529
            TypeVariants::TyProjection(..) => false,
            _ => true,
        }
    }
G
Guillaume Gomez 已提交
530 531
}

532
impl<'gcx> HashStable<StableHashingContext<'gcx>> for ty::TyS<'gcx> {
533
    fn hash_stable<W: StableHasherResult>(&self,
534
                                          hcx: &mut StableHashingContext<'gcx>,
535 536 537 538 539 540 541 542 543 544 545 546 547 548
                                          hasher: &mut StableHasher<W>) {
        let ty::TyS {
            ref sty,

            // The other fields just provide fast access to information that is
            // also contained in `sty`, so no need to hash them.
            flags: _,
            region_depth: _,
        } = *self;

        sty.hash_stable(hcx, hasher);
    }
}

549
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
550

551 552
impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}
553

A
Adam Perry 已提交
554
/// A wrapper for slices with the additional invariant
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
/// This means we can use pointer + length for both
/// equality comparisons and hashing.
#[derive(Debug, RustcEncodable)]
pub struct Slice<T>([T]);

impl<T> PartialEq for Slice<T> {
    #[inline]
    fn eq(&self, other: &Slice<T>) -> bool {
        (&self.0 as *const [T]) == (&other.0 as *const [T])
    }
}
impl<T> Eq for Slice<T> {}

impl<T> Hash for Slice<T> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self.as_ptr(), self.len()).hash(s)
    }
}

impl<T> Deref for Slice<T> {
    type Target = [T];
    fn deref(&self) -> &[T] {
        &self.0
    }
}

impl<'a, T> IntoIterator for &'a Slice<T> {
    type Item = &'a T;
    type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
    fn into_iter(self) -> Self::IntoIter {
        self[..].iter()
    }
}

impl<'tcx> serialize::UseSpecializedDecodable for &'tcx Slice<Ty<'tcx>> {}

593 594 595 596 597 598 599 600
impl<T> Slice<T> {
    pub fn empty<'a>() -> &'a Slice<T> {
        unsafe {
            mem::transmute(slice::from_raw_parts(0x1 as *const T, 0))
        }
    }
}

S
Steve Klabnik 已提交
601 602 603
/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
604
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
605
pub struct UpvarId {
606
    pub var_id: hir::HirId,
607
    pub closure_expr_id: LocalDefId,
608 609
}

J
Jorge Aparicio 已提交
610
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
611 612 613 614 615 616
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    ImmBorrow,

    /// Data must be immutable but not aliasable.  This kind of borrow
    /// cannot currently be expressed by the user and is used only in
K
king6cong 已提交
617
    /// implicit closure bindings. It is needed when the closure
618 619
    /// is borrowing or mutating a mutable referent, e.g.:
    ///
620
    ///    let x: &mut isize = ...;
621 622 623 624 625
    ///    let y = || *x += 5;
    ///
    /// If we were to try to translate this closure into a more explicit
    /// form, we'd encounter an error with the code as written:
    ///
626 627
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
628 629 630 631 632 633 634
    ///    let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// This is then illegal because you cannot mutate a `&mut` found
    /// in an aliasable location. To solve, you'd have to translate with
    /// an `&mut` borrow:
    ///
635 636
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
    ///    let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// Now the assignment to `**env.x` is legal, but creating a
    /// mutable pointer to `x` is not because `x` is not mutable. We
    /// could fix this by declaring `x` as `let mut x`. This is ok in
    /// user code, if awkward, but extra weird for closures, since the
    /// borrow is hidden.
    ///
    /// So we introduce a "unique imm" borrow -- the referent is
    /// immutable, but not aliasable. This solves the problem. For
    /// simplicity, we don't give users the way to express this
    /// borrow, it's just used when translating closures.
    UniqueImmBorrow,

    /// Data is mutable and not aliasable.
    MutBorrow
}

656 657
/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
658
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
659
pub enum UpvarCapture<'tcx> {
660 661 662 663 664 665
    /// Upvar is captured by value. This is always true when the
    /// closure is labeled `move`, but can also be true in other cases
    /// depending on inference.
    ByValue,

    /// Upvar is captured by reference.
666
    ByRef(UpvarBorrow<'tcx>),
667 668
}

669
#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
670
pub struct UpvarBorrow<'tcx> {
671 672 673
    /// The kind of borrow: by-ref upvars have access to shared
    /// immutable borrows, which are not part of the normal language
    /// syntax.
674
    pub kind: BorrowKind,
675 676

    /// Region of the resulting reference.
N
Niko Matsakis 已提交
677
    pub region: ty::Region<'tcx>,
678 679
}

680
pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;
681

682 683
#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
684
    pub def: Def,
685 686 687 688
    pub span: Span,
    pub ty: Ty<'tcx>,
}

689
#[derive(Clone, Copy, PartialEq, Eq)]
690
pub enum IntVarValue {
691 692
    IntType(ast::IntTy),
    UintType(ast::UintTy),
693 694
}

695 696 697
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub ast::FloatTy);

698 699
#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct TypeParameterDef {
700
    pub name: Name,
N
Niko Matsakis 已提交
701
    pub def_id: DefId,
702
    pub index: u32,
703 704
    pub has_default: bool,
    pub object_lifetime_default: ObjectLifetimeDefault,
705 706 707 708 709

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `T`, asserts data behind the parameter
    /// `T` won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,
710 711

    pub synthetic: Option<hir::SyntheticTyParamKind>,
712 713
}

714 715
#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct RegionParameterDef {
716
    pub name: Name,
N
Niko Matsakis 已提交
717
    pub def_id: DefId,
718
    pub index: u32,
719 720 721 722 723

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `'a`, asserts data of lifetime `'a`
    /// won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,
724 725
}

726
impl RegionParameterDef {
727 728
    pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
        ty::EarlyBoundRegion {
729
            def_id: self.def_id,
730 731
            index: self.index,
            name: self.name,
732
        }
733
    }
734

735 736 737 738 739 740
    pub fn to_bound_region(&self) -> ty::BoundRegion {
        self.to_early_bound_region_data().to_bound_region()
    }
}

impl ty::EarlyBoundRegion {
741
    pub fn to_bound_region(&self) -> ty::BoundRegion {
742
        ty::BoundRegion::BrNamed(self.def_id, self.name)
743
    }
744 745 746
}

/// Information about the formal type/lifetime parameters associated
747
/// with an item or method. Analogous to hir::Generics.
A
Ariel Ben-Yehuda 已提交
748 749 750 751 752 753 754
///
/// Note that in the presence of a `Self` parameter, the ordering here
/// is different from the ordering in a Substs. Substs are ordered as
///     Self, *Regions, *Other Type Params, (...child generics)
/// while this struct is ordered as
///     regions = Regions
///     types = [Self, *Other Type Params]
755
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
756
pub struct Generics {
757 758 759
    pub parent: Option<DefId>,
    pub parent_regions: u32,
    pub parent_types: u32,
760
    pub regions: Vec<RegionParameterDef>,
761 762
    pub types: Vec<TypeParameterDef>,

763 764
    /// Reverse map to each `TypeParameterDef`'s `index` field
    pub type_param_to_index: FxHashMap<DefId, u32>,
765

766
    pub has_self: bool,
767
    pub has_late_bound_regions: Option<Span>,
768 769
}

770
impl<'a, 'gcx, 'tcx> Generics {
771 772 773 774 775 776 777 778 779 780 781
    pub fn parent_count(&self) -> usize {
        self.parent_regions as usize + self.parent_types as usize
    }

    pub fn own_count(&self) -> usize {
        self.regions.len() + self.types.len()
    }

    pub fn count(&self) -> usize {
        self.parent_count() + self.own_count()
    }
782

783 784 785 786 787 788 789 790 791 792 793
    pub fn region_param(&'tcx self,
                        param: &EarlyBoundRegion,
                        tcx: TyCtxt<'a, 'gcx, 'tcx>)
                        -> &'tcx RegionParameterDef
    {
        if let Some(index) = param.index.checked_sub(self.parent_count() as u32) {
            &self.regions[index as usize - self.has_self as usize]
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .region_param(param, tcx)
        }
794 795
    }

A
Ariel Ben-Yehuda 已提交
796
    /// Returns the `TypeParameterDef` associated with this `ParamTy`.
797 798
    pub fn type_param(&'tcx self,
                      param: &ParamTy,
A
Ariel Ben-Yehuda 已提交
799
                      tcx: TyCtxt<'a, 'gcx, 'tcx>)
A
Ariel Ben-Yehuda 已提交
800
                      -> &TypeParameterDef {
801
        if let Some(idx) = param.idx.checked_sub(self.parent_count() as u32) {
A
Ariel Ben-Yehuda 已提交
802 803
            // non-Self type parameters are always offset by exactly
            // `self.regions.len()`. In the absence of a Self, this is obvious,
804
            // but even in the presence of a `Self` we just have to "compensate"
A
Ariel Ben-Yehuda 已提交
805 806
            // for the regions:
            //
807 808 809 810 811 812 813 814 815 816 817
            // Without a `Self` (or in a nested generics that doesn't have
            // a `Self` in itself, even through it parent does), for example
            // for `fn foo<'a, T1, T2>()`, the situation is:
            //     Substs:
            //         0  1  2
            //         'a T1 T2
            //     generics.types:
            //         0  1
            //         T1 T2
            //
            // And with a `Self`, for example for `trait Foo<'a, 'b, T1, T2>`, the
A
Ariel Ben-Yehuda 已提交
818 819 820 821 822 823 824
            // situation is:
            //     Substs:
            //         0   1  2  3  4
            //       Self 'a 'b  T1 T2
            //     generics.types:
            //         0  1  2
            //       Self T1 T2
825 826 827 828
            //
            // And it can be seen that in both cases, to move from a substs
            // offset to a generics offset you just have to offset by the
            // number of regions.
A
Ariel Ben-Yehuda 已提交
829
            let type_param_offset = self.regions.len();
830 831 832 833

            let has_self = self.has_self && self.parent.is_none();
            let is_separated_self = type_param_offset != 0 && idx == 0 && has_self;

A
Ariel Ben-Yehuda 已提交
834
            if let Some(idx) = (idx as usize).checked_sub(type_param_offset) {
835
                assert!(!is_separated_self, "found a Self after type_param_offset");
A
Ariel Ben-Yehuda 已提交
836
                &self.types[idx]
A
Ariel Ben-Yehuda 已提交
837
            } else {
838
                assert!(is_separated_self, "non-Self param before type_param_offset");
A
Ariel Ben-Yehuda 已提交
839
                &self.types[0]
A
Ariel Ben-Yehuda 已提交
840
            }
841 842 843 844
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .type_param(param, tcx)
        }
845
    }
846 847
}

848
/// Bounds on generics.
849
#[derive(Clone, Default)]
850
pub struct GenericPredicates<'tcx> {
851
    pub parent: Option<DefId>,
852
    pub predicates: Vec<Predicate<'tcx>>,
853 854
}

855 856 857
impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}

858 859
impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
    pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
860
                       -> InstantiatedPredicates<'tcx> {
861 862 863 864 865 866
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_into(tcx, &mut instantiated, substs);
        instantiated
    }
    pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                           -> InstantiatedPredicates<'tcx> {
867
        InstantiatedPredicates {
868 869 870 871 872 873 874 875
            predicates: self.predicates.subst(tcx, substs)
        }
    }

    fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        instantiated: &mut InstantiatedPredicates<'tcx>,
                        substs: &Substs<'tcx>) {
        if let Some(def_id) = self.parent {
876
            tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
877
        }
878
        instantiated.predicates.extend(self.predicates.iter().map(|p| p.subst(tcx, substs)))
879
    }
880

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
    pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                                -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_identity_into(tcx, &mut instantiated);
        instantiated
    }

    fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                 instantiated: &mut InstantiatedPredicates<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
        }
        instantiated.predicates.extend(&self.predicates)
    }

896
    pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
897 898 899
                                  poly_trait_ref: &ty::PolyTraitRef<'tcx>)
                                  -> InstantiatedPredicates<'tcx>
    {
900
        assert_eq!(self.parent, None);
901
        InstantiatedPredicates {
902
            predicates: self.predicates.iter().map(|pred| {
903
                pred.subst_supertrait(tcx, poly_trait_ref)
904
            }).collect()
905 906
        }
    }
907 908
}

909
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
910
pub enum Predicate<'tcx> {
N
Niko Matsakis 已提交
911 912
    /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
913
    /// would be the type parameters.
914
    Trait(PolyTraitPredicate<'tcx>),
915 916

    /// where 'a : 'b
917
    RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),
918 919

    /// where T : 'a
920
    TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),
921

N
Niko Matsakis 已提交
922 923
    /// where <T as TraitRef>::Name == X, approximately.
    /// See `ProjectionPredicate` struct for details.
924
    Projection(PolyProjectionPredicate<'tcx>),
925 926 927 928 929

    /// no syntax: T WF
    WellFormed(Ty<'tcx>),

    /// trait must be object-safe
N
Niko Matsakis 已提交
930
    ObjectSafe(DefId),
931

932 933 934
    /// No direct syntax. May be thought of as `where T : FnFoo<...>`
    /// for some substitutions `...` and T being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
935
    ClosureKind(DefId, ClosureSubsts<'tcx>, ClosureKind),
N
Niko Matsakis 已提交
936 937 938

    /// `T1 <: T2`
    Subtype(PolySubtypePredicate<'tcx>),
939 940 941

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
942 943
}

944 945 946 947 948 949
impl<'tcx> AsRef<Predicate<'tcx>> for Predicate<'tcx> {
    fn as_ref(&self) -> &Predicate<'tcx> {
        self
    }
}

950
impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
951
    /// Performs a substitution suitable for going from a
952 953 954 955
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions.  See
    /// lengthy comment below for details.
956
    pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
                            trait_ref: &ty::PolyTraitRef<'tcx>)
                            -> ty::Predicate<'tcx>
    {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a> : Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
        // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

        let substs = &trait_ref.0.substs;
        match *self {
            Predicate::Trait(ty::Binder(ref data)) =>
                Predicate::Trait(ty::Binder(data.subst(tcx, substs))),
N
Niko Matsakis 已提交
1024 1025
            Predicate::Subtype(ty::Binder(ref data)) =>
                Predicate::Subtype(ty::Binder(data.subst(tcx, substs))),
1026 1027 1028 1029 1030 1031
            Predicate::RegionOutlives(ty::Binder(ref data)) =>
                Predicate::RegionOutlives(ty::Binder(data.subst(tcx, substs))),
            Predicate::TypeOutlives(ty::Binder(ref data)) =>
                Predicate::TypeOutlives(ty::Binder(data.subst(tcx, substs))),
            Predicate::Projection(ty::Binder(ref data)) =>
                Predicate::Projection(ty::Binder(data.subst(tcx, substs))),
1032 1033 1034 1035
            Predicate::WellFormed(data) =>
                Predicate::WellFormed(data.subst(tcx, substs)),
            Predicate::ObjectSafe(trait_def_id) =>
                Predicate::ObjectSafe(trait_def_id),
1036 1037
            Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
                Predicate::ClosureKind(closure_def_id, closure_substs.subst(tcx, substs), kind),
1038 1039
            Predicate::ConstEvaluatable(def_id, const_substs) =>
                Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
1040 1041 1042 1043
        }
    }
}

1044
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1045
pub struct TraitPredicate<'tcx> {
1046
    pub trait_ref: TraitRef<'tcx>
1047 1048 1049 1050
}
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1051
    pub fn def_id(&self) -> DefId {
1052 1053 1054
        self.trait_ref.def_id
    }

1055
    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
1056
        self.trait_ref.input_types()
1057 1058 1059 1060 1061 1062 1063 1064
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
N
Niko Matsakis 已提交
1065
    pub fn def_id(&self) -> DefId {
1066
        // ok to skip binder since trait def-id does not care about regions
1067 1068
        self.0.def_id()
    }
1069 1070
}

1071
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
1072 1073
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
N
Niko Matsakis 已提交
1074 1075 1076
pub type PolyRegionOutlivesPredicate<'tcx> = PolyOutlivesPredicate<ty::Region<'tcx>,
                                                                   ty::Region<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = PolyOutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>>;
1077

1078
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1079 1080 1081 1082 1083 1084 1085
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;

1086 1087 1088 1089 1090 1091 1092 1093 1094
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T : TraitRef<..., Item=Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T : TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
1095 1096
/// equality between arbitrary types. Processing an instance of
/// Form #2 eventually yields one of these `ProjectionPredicate`
1097
/// instances to normalize the LHS.
1098
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
1099 1100 1101 1102 1103 1104 1105
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;

1106
impl<'tcx> PolyProjectionPredicate<'tcx> {
1107 1108 1109 1110 1111 1112 1113
    pub fn to_poly_trait_ref(&self, tcx: TyCtxt) -> PolyTraitRef<'tcx> {
        // Note: unlike with TraitRef::to_poly_trait_ref(),
        // self.0.trait_ref is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
        ty::Binder(self.0.projection_ty.trait_ref(tcx))
1114
    }
1115 1116 1117 1118

    pub fn ty(&self) -> Binder<Ty<'tcx>> {
        Binder(self.skip_binder().ty) // preserves binding levels
    }
1119 1120
}

1121 1122 1123 1124
pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

1125
impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
1126 1127 1128 1129 1130 1131 1132 1133
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
        assert!(!self.has_escaping_regions());
        ty::Binder(self.clone())
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
1134
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
1135 1136 1137
    }
}

1138 1139
pub trait ToPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx>;
1140 1141
}

1142 1143
impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
        // we're about to add a binder, so let's check that we don't
        // accidentally capture anything, or else that might be some
        // weird debruijn accounting.
        assert!(!self.has_escaping_regions());

        ty::Predicate::Trait(ty::Binder(ty::TraitPredicate {
            trait_ref: self.clone()
        }))
    }
}

1155 1156
impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1157
        ty::Predicate::Trait(self.to_poly_trait_predicate())
1158 1159 1160
    }
}

1161
impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
1162
    fn to_predicate(&self) -> Predicate<'tcx> {
1163 1164 1165 1166
        Predicate::RegionOutlives(self.clone())
    }
}

1167 1168
impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1169 1170
        Predicate::TypeOutlives(self.clone())
    }
1171 1172
}

1173 1174
impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
1175 1176 1177 1178
        Predicate::Projection(self.clone())
    }
}

1179
impl<'tcx> Predicate<'tcx> {
1180 1181 1182 1183 1184 1185
    /// Iterates over the types in this predicate. Note that in all
    /// cases this is skipping over a binder, so late-bound regions
    /// with depth 0 are bound by the predicate.
    pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
        let vec: Vec<_> = match *self {
            ty::Predicate::Trait(ref data) => {
1186
                data.skip_binder().input_types().collect()
1187
            }
N
Niko Matsakis 已提交
1188 1189 1190
            ty::Predicate::Subtype(ty::Binder(SubtypePredicate { a, b, a_is_expected: _ })) => {
                vec![a, b]
            }
1191 1192 1193 1194 1195 1196 1197
            ty::Predicate::TypeOutlives(ty::Binder(ref data)) => {
                vec![data.0]
            }
            ty::Predicate::RegionOutlives(..) => {
                vec![]
            }
            ty::Predicate::Projection(ref data) => {
1198
                data.0.projection_ty.substs.types().chain(Some(data.0.ty)).collect()
1199
            }
1200 1201 1202 1203 1204 1205
            ty::Predicate::WellFormed(data) => {
                vec![data]
            }
            ty::Predicate::ObjectSafe(_trait_def_id) => {
                vec![]
            }
1206 1207
            ty::Predicate::ClosureKind(_closure_def_id, closure_substs, _kind) => {
                closure_substs.substs.types().collect()
1208
            }
1209 1210 1211
            ty::Predicate::ConstEvaluatable(_, substs) => {
                substs.types().collect()
            }
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
        };

        // The only reason to collect into a vector here is that I was
        // too lazy to make the full (somewhat complicated) iterator
        // type that would be needed here. But I wanted this fn to
        // return an iterator conceptually, rather than a `Vec`, so as
        // to be closer to `Ty::walk`.
        vec.into_iter()
    }

1222
    pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
1223 1224
        match *self {
            Predicate::Trait(ref t) => {
1225
                Some(t.to_poly_trait_ref())
1226
            }
1227
            Predicate::Projection(..) |
N
Niko Matsakis 已提交
1228
            Predicate::Subtype(..) |
1229
            Predicate::RegionOutlives(..) |
1230 1231
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
1232
            Predicate::ClosureKind(..) |
1233 1234
            Predicate::TypeOutlives(..) |
            Predicate::ConstEvaluatable(..) => {
1235 1236
                None
            }
1237 1238
        }
    }
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

    pub fn to_opt_type_outlives(&self) -> Option<PolyTypeOutlivesPredicate<'tcx>> {
        match *self {
            Predicate::TypeOutlives(data) => {
                Some(data)
            }
            Predicate::Trait(..) |
            Predicate::Projection(..) |
            Predicate::Subtype(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::ConstEvaluatable(..) => {
                None
            }
        }
    }
1257 1258
}

S
Steve Klabnik 已提交
1259 1260
/// Represents the bounds declared on a particular set of type
/// parameters.  Should eventually be generalized into a flag list of
1261 1262 1263 1264 1265
/// where clauses.  You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
S
Steve Klabnik 已提交
1266 1267 1268 1269 1270 1271 1272 1273
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T,U:Bar<T>> { ... }
///
1274
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
J
Jorge Aparicio 已提交
1275
/// `[[], [U:Bar<T>]]`.  Now if there were some particular reference
1276 1277
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
1278
#[derive(Clone)]
1279
pub struct InstantiatedPredicates<'tcx> {
1280
    pub predicates: Vec<Predicate<'tcx>>,
1281 1282
}

1283 1284
impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
1285
        InstantiatedPredicates { predicates: vec![] }
1286 1287
    }

1288 1289
    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
1290
    }
1291 1292
}

N
Niko Matsakis 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
/// contains names that are always visible. But when you enter into
/// some subuniverse, then it may add names that are only visible
/// within that subtree (but it can still name the names of its
/// ancestor universes).
///
/// To make this more concrete, consider this program:
///
/// ```
/// struct Foo { }
/// fn bar<T>(x: T) {
///   let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
/// parameter `T`, introduced on `bar`, is in a subuniverse U1 --
/// i.e., within `bar`, we can name both `T` and `Foo`, but outside of
/// `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a subuniverse U2 of U1, because we can name it
/// inside the fn type but not outside.
///
/// Universes are related to **skolemization** -- which is a way of
/// doing type- and trait-checking around these "forall" binders (also
/// called **universal quantification**). The idea is that when, in
/// the body of `bar`, we refer to `T` as a type, we aren't referring
/// to any type in particular, but rather a kind of "fresh" type that
/// is distinct from all other types we have actually declared. This
/// is called a **skolemized** type, and we use universes to talk
/// about this. In other words, a type name in universe 0 always
/// corresponds to some "ground" type that the user declared, but a
/// type name in a non-zero universe is a skolemized type -- an
/// idealized representative of "types in general" that we use for
/// checking generic functions.
1329
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
N
Niko Matsakis 已提交
1330 1331 1332 1333 1334
pub struct UniverseIndex(u32);

impl UniverseIndex {
    /// The root universe, where things that the user defined are
    /// visible.
1335
    pub const ROOT: UniverseIndex = UniverseIndex(0);
N
Niko Matsakis 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

    /// A "subuniverse" corresponds to being inside a `forall` quantifier.
    /// So, for example, suppose we have this type in universe `U`:
    ///
    /// ```
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
    /// subuniverse of `U` -- in this new universe, we can name the
    /// region `'a`, but that region was not nameable from `U` because
    /// it was not in scope there.
    pub fn subuniverse(self) -> UniverseIndex {
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
        UniverseIndex(self.0.checked_add(1).unwrap())
    }

    pub fn from(v: u32) -> UniverseIndex {
        UniverseIndex(v)
    }

    pub fn as_u32(&self) -> u32 {
        self.0
    }

    pub fn as_usize(&self) -> usize {
        self.0 as usize
N
Niko Matsakis 已提交
1362
    }
1363 1364 1365 1366 1367 1368 1369

    /// Gets the "depth" of this universe in the universe tree. This
    /// is not really useful except for e.g. the `HashStable`
    /// implementation
    pub fn depth(&self) -> u32 {
        self.0
    }
N
Niko Matsakis 已提交
1370 1371
}

1372
/// When type checking, we use the `ParamEnv` to track
1373 1374 1375
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1376
pub struct ParamEnv<'tcx> {
1377 1378
    /// Obligations that the caller must satisfy. This is basically
    /// the set of bounds on the in-scope type parameters, translated
1379
    /// into Obligations, and elaborated and normalized.
1380
    pub caller_bounds: &'tcx Slice<ty::Predicate<'tcx>>,
1381 1382 1383 1384 1385

    /// Typically, this is `Reveal::UserFacing`, but during trans we
    /// want `Reveal::All` -- note that this is always paired with an
    /// empty environment. To get that, use `ParamEnv::reveal()`.
    pub reveal: traits::Reveal,
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396

    /// What is the innermost universe we have created? Starts out as
    /// `UniverseIndex::root()` but grows from there as we enter
    /// universal quantifiers.
    ///
    /// NB: At present, we exclude the universal quantifiers on the
    /// item we are type-checking, and just consider those names as
    /// part of the root universe. So this would only get incremented
    /// when we enter into a higher-ranked (`for<..>`) type or trait
    /// bound.
    pub universe: UniverseIndex,
1397
}
1398

1399
impl<'tcx> ParamEnv<'tcx> {
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
    /// Creates a suitable environment in which to perform trait
    /// queries on the given value. This will either be `self` *or*
    /// the empty environment, depending on whether `value` references
    /// type parameters that are in scope. (If it doesn't, then any
    /// judgements should be completely independent of the context,
    /// and hence we can safely use the empty environment so as to
    /// enable more sharing across functions.)
    ///
    /// NB: This is a mildly dubious thing to do, in that a function
    /// (or other environment) might have wacky where-clauses like
    /// `where Box<u32>: Copy`, which are clearly never
    /// satisfiable. The code will at present ignore these,
    /// effectively, when type-checking the body of said
    /// function. This preserves existing behavior in any
    /// case. --nmatsakis
1415
    pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
1416 1417
        assert!(!value.needs_infer());
        if value.has_param_types() || value.has_self_ty() {
1418
            ParamEnvAnd {
1419
                param_env: self,
1420
                value,
1421 1422
            }
        } else {
1423
            ParamEnvAnd {
1424
                param_env: ParamEnv::empty(self.reveal),
1425
                value,
1426
            }
1427 1428 1429
        }
    }
}
1430

1431
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
1432 1433
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
1434
    pub value: T,
1435 1436
}

1437 1438
impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
1439
        (self.param_env, self.value)
1440
    }
1441 1442
}

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
impl<'gcx, T> HashStable<StableHashingContext<'gcx>> for ParamEnvAnd<'gcx, T>
    where T: HashStable<StableHashingContext<'gcx>>
{
    fn hash_stable<W: StableHasherResult>(&self,
                                          hcx: &mut StableHashingContext<'gcx>,
                                          hasher: &mut StableHasher<W>) {
        let ParamEnvAnd {
            ref param_env,
            ref value
        } = *self;

        param_env.hash_stable(hcx, hasher);
        value.hash_stable(hcx, hasher);
    }
}

1459 1460 1461 1462 1463 1464
#[derive(Copy, Clone, Debug)]
pub struct Destructor {
    /// The def-id of the destructor method
    pub did: DefId,
}

1465
bitflags! {
1466 1467 1468 1469 1470 1471 1472
    pub struct AdtFlags: u32 {
        const NO_ADT_FLAGS        = 0;
        const IS_ENUM             = 1 << 0;
        const IS_PHANTOM_DATA     = 1 << 1;
        const IS_FUNDAMENTAL      = 1 << 2;
        const IS_UNION            = 1 << 3;
        const IS_BOX              = 1 << 4;
1473 1474 1475 1476
        /// Indicates whether this abstract data type will be expanded on in future (new
        /// fields/variants) and as such, whether downstream crates must match exhaustively on the
        /// fields/variants of this data type.
        ///
1477
        /// See RFC 2008 (<https://github.com/rust-lang/rfcs/pull/2008>).
1478
        const IS_NON_EXHAUSTIVE   = 1 << 5;
1479 1480 1481
    }
}

1482
#[derive(Debug)]
1483
pub struct VariantDef {
1484 1485
    /// The variant's DefId. If this is a tuple-like struct,
    /// this is the DefId of the struct's ctor.
1486 1487
    pub did: DefId,
    pub name: Name, // struct's name if this is a struct
1488
    pub discr: VariantDiscr,
1489
    pub fields: Vec<FieldDef>,
1490
    pub ctor_kind: CtorKind,
1491 1492
}

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e. `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(usize),
}

1506
#[derive(Debug)]
1507
pub struct FieldDef {
1508
    pub did: DefId,
1509
    pub name: Name,
1510
    pub vis: Visibility,
1511 1512
}

A
Ariel Ben-Yehuda 已提交
1513 1514 1515 1516
/// The definition of an abstract data type - a struct or enum.
///
/// These are all interned (by intern_adt_def) into the adt_defs
/// table.
1517
pub struct AdtDef {
1518
    pub did: DefId,
1519
    pub variants: Vec<VariantDef>,
1520
    flags: AdtFlags,
1521
    pub repr: ReprOptions,
1522 1523
}

1524 1525
impl PartialEq for AdtDef {
    // AdtDef are always interned and this is part of TyS equality
1526 1527 1528 1529
    #[inline]
    fn eq(&self, other: &Self) -> bool { self as *const _ == other as *const _ }
}

1530
impl Eq for AdtDef {}
1531

1532
impl Hash for AdtDef {
1533 1534
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
1535
        (self as *const AdtDef).hash(s)
1536 1537 1538
    }
}

1539
impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
1540
    fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
1541 1542 1543 1544
        self.did.encode(s)
    }
}

1545
impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}
1546

1547

1548
impl<'gcx> HashStable<StableHashingContext<'gcx>> for AdtDef {
1549
    fn hash_stable<W: StableHasherResult>(&self,
1550
                                          hcx: &mut StableHashingContext<'gcx>,
1551
                                          hasher: &mut StableHasher<W>) {
W
Wesley Wiser 已提交
1552 1553 1554 1555
        thread_local! {
            static CACHE: RefCell<FxHashMap<usize, Fingerprint>> =
                RefCell::new(FxHashMap());
        }
1556

W
Wesley Wiser 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
        let hash: Fingerprint = CACHE.with(|cache| {
            let addr = self as *const AdtDef as usize;
            *cache.borrow_mut().entry(addr).or_insert_with(|| {
                let ty::AdtDef {
                    did,
                    ref variants,
                    ref flags,
                    ref repr,
                } = *self;

                let mut hasher = StableHasher::new();
                did.hash_stable(hcx, &mut hasher);
                variants.hash_stable(hcx, &mut hasher);
                flags.hash_stable(hcx, &mut hasher);
                repr.hash_stable(hcx, &mut hasher);

                hasher.finish()
           })
        });

        hash.hash_stable(hcx, hasher);
1578 1579 1580
    }
}

1581
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
1582
pub enum AdtKind { Struct, Union, Enum }
1583

1584 1585
bitflags! {
    #[derive(RustcEncodable, RustcDecodable, Default)]
1586 1587 1588 1589
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
        const IS_PACKED          = 1 << 1;
        const IS_SIMD            = 1 << 2;
R
Robin Kruppe 已提交
1590
        const IS_TRANSPARENT     = 1 << 3;
1591
        // Internal only for now. If true, don't reorder fields.
R
Robin Kruppe 已提交
1592
        const IS_LINEAR          = 1 << 4;
1593 1594 1595 1596 1597

        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
                                   ReprFlags::IS_PACKED.bits |
                                   ReprFlags::IS_SIMD.bits |
1598
                                   ReprFlags::IS_LINEAR.bits;
1599 1600 1601 1602 1603 1604 1605 1606 1607
    }
}

impl_stable_hash_for!(struct ReprFlags {
    bits
});



1608 1609 1610 1611
/// Represents the repr options provided by the user,
#[derive(Copy, Clone, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
1612
    pub align: u32,
1613
    pub flags: ReprFlags,
1614 1615
}

1616
impl_stable_hash_for!(struct ReprOptions {
1617
    align,
1618
    int,
1619
    flags
1620 1621
});

1622
impl ReprOptions {
1623
    pub fn new(tcx: TyCtxt, did: DefId) -> ReprOptions {
1624 1625
        let mut flags = ReprFlags::empty();
        let mut size = None;
1626
        let mut max_align = 0;
1627 1628
        for attr in tcx.get_attrs(did).iter() {
            for r in attr::find_repr_attrs(tcx.sess.diagnostic(), attr) {
1629
                flags.insert(match r {
1630
                    attr::ReprC => ReprFlags::IS_C,
1631
                    attr::ReprPacked => ReprFlags::IS_PACKED,
R
Robin Kruppe 已提交
1632
                    attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
1633 1634 1635 1636 1637
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    },
1638 1639 1640 1641
                    attr::ReprAlign(align) => {
                        max_align = cmp::max(align, max_align);
                        ReprFlags::empty()
                    },
1642
                });
1643 1644
            }
        }
1645

1646
        // This is here instead of layout because the choice must make it into metadata.
1647 1648 1649
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }
1650
        ReprOptions { int: size, align: max_align, flags: flags }
1651
    }
1652

1653 1654 1655 1656 1657 1658 1659
    #[inline]
    pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
    #[inline]
    pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
    #[inline]
    pub fn packed(&self) -> bool { self.flags.contains(ReprFlags::IS_PACKED) }
    #[inline]
R
Robin Kruppe 已提交
1660 1661
    pub fn transparent(&self) -> bool { self.flags.contains(ReprFlags::IS_TRANSPARENT) }
    #[inline]
1662 1663
    pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }

1664
    pub fn discr_type(&self) -> attr::IntType {
1665
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize))
1666
    }
1667 1668 1669 1670 1671

    /// Returns true if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
1672
        self.c() || self.int.is_some()
1673
    }
1674 1675
}

1676
impl<'a, 'gcx, 'tcx> AdtDef {
1677
    fn new(tcx: TyCtxt,
1678
           did: DefId,
A
Ariel Ben-Yehuda 已提交
1679
           kind: AdtKind,
1680 1681
           variants: Vec<VariantDef>,
           repr: ReprOptions) -> Self {
A
Ariel Ben-Yehuda 已提交
1682
        let mut flags = AdtFlags::NO_ADT_FLAGS;
A
Ariel Ben-Yehuda 已提交
1683
        let attrs = tcx.get_attrs(did);
1684
        if attr::contains_name(&attrs, "fundamental") {
A
Ariel Ben-Yehuda 已提交
1685
            flags = flags | AdtFlags::IS_FUNDAMENTAL;
1686
        }
1687
        if Some(did) == tcx.lang_items().phantom_data() {
A
Ariel Ben-Yehuda 已提交
1688
            flags = flags | AdtFlags::IS_PHANTOM_DATA;
1689
        }
1690
        if Some(did) == tcx.lang_items().owned_box() {
1691 1692
            flags = flags | AdtFlags::IS_BOX;
        }
1693 1694 1695
        if tcx.has_attr(did, "non_exhaustive") {
            flags = flags | AdtFlags::IS_NON_EXHAUSTIVE;
        }
1696 1697 1698 1699
        match kind {
            AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
            AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
            AdtKind::Struct => {}
1700
        }
1701
        AdtDef {
1702 1703 1704 1705
            did,
            variants,
            flags,
            repr,
1706 1707 1708
        }
    }

1709 1710 1711 1712 1713 1714 1715
    #[inline]
    pub fn is_struct(&self) -> bool {
        !self.is_union() && !self.is_enum()
    }

    #[inline]
    pub fn is_union(&self) -> bool {
1716
        self.flags.intersects(AdtFlags::IS_UNION)
1717 1718 1719 1720
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
1721
        self.flags.intersects(AdtFlags::IS_ENUM)
1722 1723
    }

1724 1725 1726 1727 1728
    #[inline]
    pub fn is_non_exhaustive(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_NON_EXHAUSTIVE)
    }

A
Ariel Ben-Yehuda 已提交
1729
    /// Returns the kind of the ADT - Struct or Enum.
1730
    #[inline]
A
Ariel Ben-Yehuda 已提交
1731
    pub fn adt_kind(&self) -> AdtKind {
1732
        if self.is_enum() {
A
Ariel Ben-Yehuda 已提交
1733
            AdtKind::Enum
1734
        } else if self.is_union() {
1735
            AdtKind::Union
1736
        } else {
A
Ariel Ben-Yehuda 已提交
1737
            AdtKind::Struct
1738 1739 1740
        }
    }

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
    pub fn descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "enum",
        }
    }

    pub fn variant_descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "variant",
        }
    }

A
Ariel Ben-Yehuda 已提交
1757 1758
    /// Returns whether this type is #[fundamental] for the purposes
    /// of coherence checking.
1759 1760
    #[inline]
    pub fn is_fundamental(&self) -> bool {
1761
        self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
1762 1763
    }

A
Ariel Ben-Yehuda 已提交
1764
    /// Returns true if this is PhantomData<T>.
1765 1766
    #[inline]
    pub fn is_phantom_data(&self) -> bool {
1767
        self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
1768 1769
    }

1770 1771 1772
    /// Returns true if this is Box<T>.
    #[inline]
    pub fn is_box(&self) -> bool {
1773
        self.flags.intersects(AdtFlags::IS_BOX)
1774 1775
    }

A
Ariel Ben-Yehuda 已提交
1776
    /// Returns whether this type has a destructor.
1777 1778
    pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        self.destructor(tcx).is_some()
1779 1780
    }

1781 1782 1783
    /// Asserts this is a struct or union and returns its unique variant.
    pub fn non_enum_variant(&self) -> &VariantDef {
        assert!(self.is_struct() || self.is_union());
1784
        &self.variants[0]
1785 1786 1787
    }

    #[inline]
1788
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
1789
        tcx.predicates_of(self.did)
1790
    }
1791

A
Ariel Ben-Yehuda 已提交
1792 1793
    /// Returns an iterator over all fields contained
    /// by this ADT.
1794
    #[inline]
1795 1796
    pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
        self.variants.iter().flat_map(|v| v.fields.iter())
1797 1798 1799 1800 1801 1802 1803
    }

    pub fn is_payloadfree(&self) -> bool {
        !self.variants.is_empty() &&
            self.variants.iter().all(|v| v.fields.is_empty())
    }

1804
    pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
1805 1806 1807 1808 1809 1810
        self.variants
            .iter()
            .find(|v| v.did == vid)
            .expect("variant_with_id: unknown variant")
    }

N
Niko Matsakis 已提交
1811 1812 1813 1814 1815 1816 1817
    pub fn variant_index_with_id(&self, vid: DefId) -> usize {
        self.variants
            .iter()
            .position(|v| v.did == vid)
            .expect("variant_index_with_id: unknown variant")
    }

1818
    pub fn variant_of_def(&self, def: Def) -> &VariantDef {
1819
        match def {
1820 1821
            Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
            Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
1822
            Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => self.non_enum_variant(),
1823
            _ => bug!("unexpected def {:?} in variant_of_def", def)
1824 1825
        }
    }
1826

1827
    #[inline]
1828 1829
    pub fn discriminants(&'a self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                         -> impl Iterator<Item=ConstInt> + 'a {
1830
        let param_env = ParamEnv::empty(traits::Reveal::UserFacing);
1831
        let repr_type = self.repr.discr_type();
1832 1833 1834 1835 1836
        let initial = repr_type.initial_discriminant(tcx.global_tcx());
        let mut prev_discr = None::<ConstInt>;
        self.variants.iter().map(move |v| {
            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr());
            if let VariantDiscr::Explicit(expr_did) = v.discr {
1837
                let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
1838
                match tcx.const_eval(param_env.and((expr_did, substs))) {
O
Oliver Schneider 已提交
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
                    Ok(&ty::Const {
                        val: ConstVal::Value(Value::ByVal(PrimVal::Bytes(b))),
                        ..
                    }) => {
                        trace!("discriminants: {} ({:?})", b, repr_type);
                        use syntax::attr::IntType;
                        discr = match repr_type {
                            IntType::SignedInt(int_type) => ConstInt::new_signed(
                                b as i128, int_type, tcx.sess.target.isize_ty).unwrap(),
                            IntType::UnsignedInt(uint_type) => ConstInt::new_unsigned(
                                b, uint_type, tcx.sess.target.usize_ty).unwrap(),
                        };
                    }
1852 1853 1854 1855 1856 1857 1858
                    err => {
                        if !expr_did.is_local() {
                            span_bug!(tcx.def_span(expr_did),
                                "variant discriminant evaluation succeeded \
                                 in its crate but failed locally: {:?}", err);
                        }
                    }
1859 1860 1861 1862 1863 1864 1865 1866
                }
            }
            prev_discr = Some(discr);

            discr
        })
    }

1867 1868 1869 1870 1871 1872 1873 1874 1875
    /// Compute the discriminant value used by a specific variant.
    /// Unlike `discriminants`, this is (amortized) constant-time,
    /// only doing at most one query for evaluating an explicit
    /// discriminant (the last one before the requested variant),
    /// assuming there are no constant-evaluation errors there.
    pub fn discriminant_for_variant(&self,
                                    tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                    variant_index: usize)
                                    -> ConstInt {
1876
        let param_env = ParamEnv::empty(traits::Reveal::UserFacing);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
        let repr_type = self.repr.discr_type();
        let mut explicit_value = repr_type.initial_discriminant(tcx.global_tcx());
        let mut explicit_index = variant_index;
        loop {
            match self.variants[explicit_index].discr {
                ty::VariantDiscr::Relative(0) => break,
                ty::VariantDiscr::Relative(distance) => {
                    explicit_index -= distance;
                }
                ty::VariantDiscr::Explicit(expr_did) => {
1887
                    let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
1888
                    match tcx.const_eval(param_env.and((expr_did, substs))) {
O
Oliver Schneider 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
                        Ok(&ty::Const {
                            val: ConstVal::Value(Value::ByVal(PrimVal::Bytes(b))),
                            ..
                        }) => {
                            trace!("discriminants: {} ({:?})", b, repr_type);
                            use syntax::attr::IntType;
                            explicit_value = match repr_type {
                                IntType::SignedInt(int_type) => ConstInt::new_signed(
                                    b as i128, int_type, tcx.sess.target.isize_ty).unwrap(),
                                IntType::UnsignedInt(uint_type) => ConstInt::new_unsigned(
                                    b, uint_type, tcx.sess.target.usize_ty).unwrap(),
                            };
                            break;
                        }
1903 1904 1905 1906 1907 1908 1909 1910 1911
                        err => {
                            if !expr_did.is_local() {
                                span_bug!(tcx.def_span(expr_did),
                                    "variant discriminant evaluation succeeded \
                                     in its crate but failed locally: {:?}", err);
                            }
                            if explicit_index == 0 {
                                break;
                            }
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
                            explicit_index -= 1;
                        }
                    }
                }
            }
        }
        let discr = explicit_value.to_u128_unchecked()
            .wrapping_add((variant_index - explicit_index) as u128);
        match repr_type {
            attr::UnsignedInt(ty) => {
                ConstInt::new_unsigned_truncating(discr, ty,
1923
                                                  tcx.sess.target.usize_ty)
1924 1925 1926
            }
            attr::SignedInt(ty) => {
                ConstInt::new_signed_truncating(discr as i128, ty,
1927
                                                tcx.sess.target.isize_ty)
1928 1929 1930 1931
            }
        }
    }

1932
    pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
1933
        tcx.adt_destructor(self.did)
1934 1935
    }

1936
    /// Returns a list of types such that `Self: Sized` if and only
1937
    /// if that type is Sized, or `TyErr` if this type is recursive.
A
Ariel Ben-Yehuda 已提交
1938 1939 1940 1941 1942 1943 1944 1945
    ///
    /// Oddly enough, checking that the sized-constraint is Sized is
    /// actually more expressive than checking all members:
    /// the Sized trait is inductive, so an associated type that references
    /// Self would prevent its containing ADT from being Sized.
    ///
    /// Due to normalization being eager, this applies even if
    /// the associated type is behind a pointer, e.g. issue #31299.
1946
    pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
1947
        match queries::adt_sized_constraint::try_get(tcx, DUMMY_SP, self.did) {
1948
            Ok(tys) => tys,
1949
            Err(mut bug) => {
1950 1951 1952 1953
                debug!("adt_sized_constraint: {:?} is recursive", self);
                // This should be reported as an error by `check_representable`.
                //
                // Consider the type as Sized in the meanwhile to avoid
1954 1955 1956 1957
                // further errors. Delay our `bug` diagnostic here to get
                // emitted later as well in case we accidentally otherwise don't
                // emit an error.
                bug.delay_as_bug();
1958
                tcx.intern_type_list(&[tcx.types.err])
A
Ariel Ben-Yehuda 已提交
1959
            }
1960 1961
        }
    }
1962

1963 1964 1965 1966
    fn sized_constraint_for_ty(&self,
                               tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               ty: Ty<'tcx>)
                               -> Vec<Ty<'tcx>> {
1967 1968
        let result = match ty.sty {
            TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
1969
            TyRawPtr(..) | TyRef(..) | TyFnDef(..) | TyFnPtr(_) |
J
John Kåre Alsaker 已提交
1970
            TyArray(..) | TyClosure(..) | TyGenerator(..) | TyNever => {
A
Ariel Ben-Yehuda 已提交
1971
                vec![]
1972 1973
            }

1974 1975 1976 1977 1978 1979
            TyStr |
            TyDynamic(..) |
            TySlice(_) |
            TyForeign(..) |
            TyError |
            TyGeneratorWitness(..) => {
1980
                // these are never sized - return the target type
A
Ariel Ben-Yehuda 已提交
1981
                vec![ty]
1982 1983
            }

A
Andrew Cann 已提交
1984
            TyTuple(ref tys, _) => {
1985 1986
                match tys.last() {
                    None => vec![],
1987
                    Some(ty) => self.sized_constraint_for_ty(tcx, ty)
1988
                }
1989 1990
            }

1991
            TyAdt(adt, substs) => {
1992
                // recursive case
1993
                let adt_tys = adt.sized_constraint(tcx);
1994
                debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
1995 1996 1997 1998 1999
                       ty, adt_tys);
                adt_tys.iter()
                    .map(|ty| ty.subst(tcx, substs))
                    .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
                    .collect()
2000 2001
            }

2002
            TyProjection(..) | TyAnon(..) => {
2003 2004
                // must calculate explicitly.
                // FIXME: consider special-casing always-Sized projections
A
Ariel Ben-Yehuda 已提交
2005
                vec![ty]
2006 2007 2008
            }

            TyParam(..) => {
A
Ariel Ben-Yehuda 已提交
2009 2010 2011 2012
                // perf hack: if there is a `T: Sized` bound, then
                // we know that `T` is Sized and do not need to check
                // it on the impl.

2013
                let sized_trait = match tcx.lang_items().sized_trait() {
2014
                    Some(x) => x,
A
Ariel Ben-Yehuda 已提交
2015
                    _ => return vec![ty]
2016 2017 2018
                };
                let sized_predicate = Binder(TraitRef {
                    def_id: sized_trait,
2019
                    substs: tcx.mk_substs_trait(ty, &[])
2020
                }).to_predicate();
2021
                let predicates = tcx.predicates_of(self.did).predicates;
2022
                if predicates.into_iter().any(|p| p == sized_predicate) {
A
Ariel Ben-Yehuda 已提交
2023
                    vec![]
2024
                } else {
A
Ariel Ben-Yehuda 已提交
2025
                    vec![ty]
2026 2027 2028
                }
            }

A
Ariel Ben-Yehuda 已提交
2029
            TyInfer(..) => {
2030 2031 2032 2033 2034 2035 2036
                bug!("unexpected type `{:?}` in sized_constraint_for_ty",
                     ty)
            }
        };
        debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
        result
    }
2037 2038
}

2039
impl<'a, 'gcx, 'tcx> VariantDef {
2040
    #[inline]
J
Jeffrey Seyfried 已提交
2041 2042
    pub fn find_field_named(&self, name: ast::Name) -> Option<&FieldDef> {
        self.index_of_field_named(name).map(|index| &self.fields[index])
2043 2044
    }

J
Jeffrey Seyfried 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
    pub fn index_of_field_named(&self, name: ast::Name) -> Option<usize> {
        if let Some(index) = self.fields.iter().position(|f| f.name == name) {
            return Some(index);
        }
        let mut ident = name.to_ident();
        while ident.ctxt != SyntaxContext::empty() {
            ident.ctxt.remove_mark();
            if let Some(field) = self.fields.iter().position(|f| f.name.to_ident() == ident) {
                return Some(field);
            }
        }
        None
2057 2058
    }

2059
    #[inline]
2060
    pub fn field_named(&self, name: ast::Name) -> &FieldDef {
2061 2062
        self.find_field_named(name).unwrap()
    }
2063 2064
}

2065
impl<'a, 'gcx, 'tcx> FieldDef {
2066
    pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
2067
        tcx.type_of(self.did).subst(tcx, subst)
2068
    }
2069 2070
}

2071 2072 2073 2074 2075 2076
/// Represents the various closure traits in the Rust language. This
/// will determine the type of the environment (`self`, in the
/// desuaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
2077
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
2078
pub enum ClosureKind {
2079 2080 2081
    // Warning: Ordering is significant here! The ordering is chosen
    // because the trait Fn is a subtrait of FnMut and so in turn, and
    // hence we order it so that Fn < FnMut < FnOnce.
2082 2083 2084
    Fn,
    FnMut,
    FnOnce,
2085 2086
}

2087
impl<'a, 'tcx> ClosureKind {
2088 2089 2090
    // This is the initial value used when doing upvar inference.
    pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;

2091
    pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
2092 2093
        match *self {
            ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
2094
            ClosureKind::FnMut => {
2095
                tcx.require_lang_item(FnMutTraitLangItem)
2096
            }
2097
            ClosureKind::FnOnce => {
2098
                tcx.require_lang_item(FnOnceTraitLangItem)
2099 2100 2101
            }
        }
    }
2102 2103 2104 2105 2106

    /// True if this a type that impls this closure kind
    /// must also implement `other`.
    pub fn extends(self, other: ty::ClosureKind) -> bool {
        match (self, other) {
2107 2108 2109 2110 2111 2112
            (ClosureKind::Fn, ClosureKind::Fn) => true,
            (ClosureKind::Fn, ClosureKind::FnMut) => true,
            (ClosureKind::Fn, ClosureKind::FnOnce) => true,
            (ClosureKind::FnMut, ClosureKind::FnMut) => true,
            (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
            (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
2113 2114 2115
            _ => false,
        }
    }
2116 2117 2118 2119 2120 2121 2122 2123 2124

    /// Returns the representative scalar type for this closure kind.
    /// See `TyS::to_opt_closure_kind` for more details.
    pub fn to_ty(self, tcx: TyCtxt<'_, '_, 'tcx>) -> Ty<'tcx> {
        match self {
            ty::ClosureKind::Fn => tcx.types.i8,
            ty::ClosureKind::FnMut => tcx.types.i16,
            ty::ClosureKind::FnOnce => tcx.types.i32,
        }
2125
    }
2126 2127
}

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
impl<'tcx> TyS<'tcx> {
    /// Iterator that walks `self` and any types reachable from
    /// `self`, in depth-first order. Note that just walks the types
    /// that appear in `self`, it does not descend into the fields of
    /// structs or variants. For example:
    ///
    /// ```notrust
    /// isize => { isize }
    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
    /// [isize] => { [isize], isize }
    /// ```
    pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
        TypeWalker::new(self)
2141 2142
    }

2143 2144 2145
    /// Iterator that walks the immediate children of `self`.  Hence
    /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
    /// (but not `i32`, like `walk`).
2146
    pub fn walk_shallow(&'tcx self) -> AccIntoIter<walk::TypeWalkerArray<'tcx>> {
2147
        walk::walk_shallow(self)
2148 2149
    }

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
    /// Walks `ty` and any types appearing within `ty`, invoking the
    /// callback `f` on each type. If the callback returns false, then the
    /// children of the current type are ignored.
    ///
    /// Note: prefer `ty.walk()` where possible.
    pub fn maybe_walk<F>(&'tcx self, mut f: F)
        where F : FnMut(Ty<'tcx>) -> bool
    {
        let mut walker = self.walk();
        while let Some(ty) = walker.next() {
            if !f(ty) {
                walker.skip_current_subtree();
            }
        }
2164
    }
2165
}
2166

2167
impl BorrowKind {
2168
    pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
2169
        match m {
2170 2171
            hir::MutMutable => MutBorrow,
            hir::MutImmutable => ImmBorrow,
2172 2173
        }
    }
2174

2175 2176 2177 2178
    /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
    /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
    /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
    /// question.
2179
    pub fn to_mutbl_lossy(self) -> hir::Mutability {
2180
        match self {
2181 2182
            MutBorrow => hir::MutMutable,
            ImmBorrow => hir::MutImmutable,
2183 2184 2185 2186

            // We have no type corresponding to a unique imm borrow, so
            // use `&mut`. It gives all the capabilities of an `&uniq`
            // and hence is a safe "over approximation".
2187
            UniqueImmBorrow => hir::MutMutable,
2188
        }
2189
    }
2190

2191 2192 2193 2194 2195 2196
    pub fn to_user_str(&self) -> &'static str {
        match *self {
            MutBorrow => "mutable",
            ImmBorrow => "immutable",
            UniqueImmBorrow => "uniquely immutable",
        }
2197 2198 2199
    }
}

2200 2201
#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
2202
    Owned(Lrc<[ast::Attribute]>),
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
    Borrowed(&'gcx [ast::Attribute])
}

impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
    type Target = [ast::Attribute];

    fn deref(&self) -> &[ast::Attribute] {
        match self {
            &Attributes::Owned(ref data) => &data,
            &Attributes::Borrowed(data) => data
        }
    }
}

2217
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2218
    pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
2219
        self.typeck_tables_of(self.hir.body_owner_def_id(body))
2220 2221
    }

N
Niko Matsakis 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
    /// Returns an iterator of the def-ids for all body-owners in this
    /// crate. If you would prefer to iterate over the bodies
    /// themselves, you can do `self.hir.krate().body_ids.iter()`.
    pub fn body_owners(self) -> impl Iterator<Item = DefId> + 'a {
        self.hir.krate()
                .body_ids
                .iter()
                .map(move |&body_id| self.hir.body_owner_def_id(body_id))
    }

2232
    pub fn expr_span(self, id: NodeId) -> Span {
2233
        match self.hir.find(id) {
2234
            Some(hir_map::NodeExpr(e)) => {
2235 2236 2237
                e.span
            }
            Some(f) => {
2238
                bug!("Node id {} is not an expr: {:?}", id, f);
2239 2240
            }
            None => {
2241
                bug!("Node id {} is not present in the node map", id);
2242
            }
2243
        }
2244 2245
    }

2246 2247
    pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
        self.associated_items(id)
2248
            .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
2249
            .collect()
2250 2251
    }

A
Andrew Cann 已提交
2252 2253 2254 2255 2256 2257
    pub fn trait_relevant_for_never(self, did: DefId) -> bool {
        self.associated_items(did).any(|item| {
            item.relevant_for_never()
        })
    }

2258 2259 2260 2261 2262 2263 2264
    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
        let is_associated_item = if let Some(node_id) = self.hir.as_local_node_id(def_id) {
            match self.hir.get(node_id) {
                hir_map::NodeTraitItem(_) | hir_map::NodeImplItem(_) => true,
                _ => false,
            }
        } else {
2265
            match self.describe_def(def_id).expect("no def for def-id") {
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
                Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
                _ => false,
            }
        };

        if is_associated_item {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

2278 2279
    fn associated_item_from_trait_item_ref(self,
                                           parent_def_id: DefId,
2280
                                           parent_vis: &hir::Visibility,
2281
                                           trait_item_ref: &hir::TraitItemRef)
2282
                                           -> AssociatedItem {
2283
        let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
2284 2285 2286 2287
        let (kind, has_self) = match trait_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
2288
            }
2289
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
2290 2291 2292
        };

        AssociatedItem {
2293
            name: trait_item_ref.name,
2294
            kind,
2295 2296
            // Visibility of trait items is inherited from their traits.
            vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
2297
            defaultness: trait_item_ref.defaultness,
2298
            def_id,
2299 2300 2301 2302 2303 2304 2305 2306 2307
            container: TraitContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    fn associated_item_from_impl_item_ref(self,
                                          parent_def_id: DefId,
                                          impl_item_ref: &hir::ImplItemRef)
                                          -> AssociatedItem {
2308
        let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
        let (kind, has_self) = match impl_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
        };

        ty::AssociatedItem {
            name: impl_item_ref.name,
2319
            kind,
2320 2321
            // Visibility of trait impl items doesn't matter.
            vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
2322
            defaultness: impl_item_ref.defaultness,
2323
            def_id,
2324 2325 2326 2327 2328
            container: ImplContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

2329 2330 2331 2332 2333
    #[inline] // FIXME(#35870) Avoid closures being unexported due to impl Trait.
    pub fn associated_items(self, def_id: DefId)
                            -> impl Iterator<Item = ty::AssociatedItem> + 'a {
        let def_ids = self.associated_item_def_ids(def_id);
        (0..def_ids.len()).map(move |i| self.associated_item(def_ids[i]))
2334 2335
    }

2336 2337 2338
    /// Returns true if the impls are the same polarity and are implementing
    /// a trait which contains no items
    pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId) -> bool {
2339
        if !self.features().overlapping_marker_traits {
2340 2341
            return false;
        }
2342 2343 2344 2345 2346 2347 2348 2349
        let trait1_is_empty = self.impl_trait_ref(def_id1)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
        let trait2_is_empty = self.impl_trait_ref(def_id2)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
2350
        self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
2351 2352
            && trait1_is_empty
            && trait2_is_empty
S
Sean Griffin 已提交
2353 2354
    }

2355 2356
    // Returns `ty::VariantDef` if `def` refers to a struct,
    // or variant or their constructors, panics otherwise.
2357
    pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
2358
        match def {
2359
            Def::Variant(did) | Def::VariantCtor(did, ..) => {
2360
                let enum_did = self.parent_def_id(did).unwrap();
2361
                self.adt_def(enum_did).variant_with_id(did)
2362
            }
2363
            Def::Struct(did) | Def::Union(did) => {
2364
                self.adt_def(did).non_enum_variant()
2365 2366 2367
            }
            Def::StructCtor(ctor_did, ..) => {
                let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
2368
                self.adt_def(did).non_enum_variant()
2369 2370 2371 2372 2373
            }
            _ => bug!("expect_variant_def used with unexpected def {:?}", def)
        }
    }

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
    /// Given a `VariantDef`, returns the def-id of the `AdtDef` of which it is a part.
    pub fn adt_def_id_of_variant(self, variant_def: &'tcx VariantDef) -> DefId {
        let def_key = self.def_key(variant_def.did);
        match def_key.disambiguated_data.data {
            // for enum variants and tuple structs, the def-id of the ADT itself
            // is the *parent* of the variant
            DefPathData::EnumVariant(..) | DefPathData::StructCtor =>
                DefId { krate: variant_def.did.krate, index: def_key.parent.unwrap() },

            // otherwise, for structs and unions, they share a def-id
            _ => variant_def.did,
        }
    }

2388
    pub fn item_name(self, id: DefId) -> InternedString {
2389
        if id.index == CRATE_DEF_INDEX {
2390
            self.original_crate_name(id.krate).as_str()
2391
        } else {
2392
            let def_key = self.def_key(id);
2393
            // The name of a StructCtor is that of its struct parent.
2394
            if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
2395 2396 2397 2398 2399 2400 2401 2402 2403
                self.item_name(DefId {
                    krate: id.krate,
                    index: def_key.parent.unwrap()
                })
            } else {
                def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
                    bug!("item_name: no name for {:?}", self.def_path(id));
                })
            }
2404 2405 2406
        }
    }

2407 2408
    /// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
2409
                        -> &'gcx Mir<'gcx>
2410 2411
    {
        match instance {
N
Niko Matsakis 已提交
2412
            ty::InstanceDef::Item(did) => {
2413
                self.optimized_mir(did)
N
Niko Matsakis 已提交
2414 2415 2416 2417 2418
            }
            ty::InstanceDef::Intrinsic(..) |
            ty::InstanceDef::FnPtrShim(..) |
            ty::InstanceDef::Virtual(..) |
            ty::InstanceDef::ClosureOnceShim { .. } |
2419
            ty::InstanceDef::DropGlue(..) |
S
scalexm 已提交
2420
            ty::InstanceDef::CloneShim(..) => {
2421
                self.mir_shims(instance)
N
Niko Matsakis 已提交
2422
            }
2423 2424 2425
        }
    }

2426 2427
    /// Given the DefId of an item, returns its MIR, borrowed immutably.
    /// Returns None if there is no MIR for the DefId
2428 2429 2430 2431 2432
    pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
        if self.is_mir_available(did) {
            Some(self.optimized_mir(did))
        } else {
            None
2433 2434 2435
        }
    }

2436
    /// Get the attributes of a definition.
2437
    pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
2438
        if let Some(id) = self.hir.as_local_node_id(did) {
2439
            Attributes::Borrowed(self.hir.attrs(id))
2440
        } else {
A
achernyak 已提交
2441
            Attributes::Owned(self.item_attrs(did))
2442
        }
2443 2444
    }

2445
    /// Determine whether an item is annotated with an attribute
2446
    pub fn has_attr(self, did: DefId, attr: &str) -> bool {
2447
        attr::contains_name(&self.get_attrs(did), attr)
2448
    }
2449

2450 2451
    /// Returns true if this is an `auto trait`.
    pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
2452
        self.trait_def(trait_def_id).has_auto_impl
2453
    }
2454

J
John Kåre Alsaker 已提交
2455 2456 2457 2458
    pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
        self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
    }

2459 2460
    /// Given the def_id of an impl, return the def_id of the trait it implements.
    /// If it implements no trait, return `None`.
2461
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
2462
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
2463
    }
2464 2465 2466

    /// If the given def ID describes a method belonging to an impl, return the
    /// ID of the impl that the method belongs to. Otherwise, return `None`.
2467
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
2468
        let item = if def_id.krate != LOCAL_CRATE {
A
achernyak 已提交
2469
            if let Some(Def::Method(_)) = self.describe_def(def_id) {
2470 2471 2472 2473 2474
                Some(self.associated_item(def_id))
            } else {
                None
            }
        } else {
2475
            self.opt_associated_item(def_id)
2476 2477 2478
        };

        match item {
2479
            Some(trait_item) => {
2480
                match trait_item.container {
2481 2482 2483
                    TraitContainer(_) => None,
                    ImplContainer(def_id) => Some(def_id),
                }
2484
            }
2485
            None => None
2486 2487 2488
        }
    }

2489 2490
    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
2491
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
2492
        if impl_did.is_local() {
2493 2494
            let node_id = self.hir.as_local_node_id(impl_did).unwrap();
            Ok(self.hir.span(node_id))
2495
        } else {
2496
            Err(self.crate_name(impl_did.krate))
2497 2498
        }
    }
J
Jeffrey Seyfried 已提交
2499

2500 2501 2502 2503 2504 2505 2506
    // Hygienically compare a use-site name (`use_name`) for a field or an associated item with its
    // supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    // definition's parent/scope to perform comparison.
    pub fn hygienic_eq(self, use_name: Name, def_name: Name, def_parent_def_id: DefId) -> bool {
        self.adjust(use_name, def_parent_def_id, DUMMY_NODE_ID).0 == def_name.to_ident()
    }

J
Jeffrey Seyfried 已提交
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
    pub fn adjust(self, name: Name, scope: DefId, block: NodeId) -> (Ident, DefId) {
        self.adjust_ident(name.to_ident(), scope, block)
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
        let expansion = match scope.krate {
            LOCAL_CRATE => self.hir.definitions().expansion(scope.index),
            _ => Mark::root(),
        };
        let scope = match ident.ctxt.adjust(expansion) {
            Some(macro_def) => self.hir.definitions().macro_def_scope(macro_def),
2518
            None if block == DUMMY_NODE_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
J
Jeffrey Seyfried 已提交
2519 2520 2521 2522
            None => self.hir.get_module_parent(block),
        };
        (ident, scope)
    }
2523
}
2524

2525
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
2526
    pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
2527
        F: FnOnce(&[hir::Freevar]) -> T,
2528
    {
A
Alex Crichton 已提交
2529 2530
        let def_id = self.hir.local_def_id(fid);
        match self.freevars(def_id) {
2531
            None => f(&[]),
2532
            Some(d) => f(&d),
2533 2534
        }
    }
2535
}
2536 2537 2538 2539 2540 2541 2542 2543 2544

fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId)
    -> AssociatedItem
{
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let parent_id = tcx.hir.get_parent(id);
    let parent_def_id = tcx.hir.local_def_id(parent_id);
    let parent_item = tcx.hir.expect_item(parent_id);
    match parent_item.node {
2545
        hir::ItemImpl(.., ref impl_item_refs) => {
2546
            if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
2547 2548
                let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
                                                                        impl_item_ref);
2549 2550
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2551 2552 2553 2554
            }
        }

        hir::ItemTrait(.., ref trait_item_refs) => {
2555
            if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
2556 2557 2558
                let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
                                                                         &parent_item.vis,
                                                                         trait_item_ref);
2559 2560
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
2561 2562 2563
            }
        }

2564
        _ => { }
2565
    }
2566 2567 2568 2569

    span_bug!(parent_item.span,
              "unexpected parent of trait or impl item or item not found: {:?}",
              parent_item.node)
2570 2571
}

2572 2573
/// Calculates the Sized-constraint.
///
2574
/// In fact, there are only a few options for the types in the constraint:
2575 2576 2577 2578 2579 2580 2581 2582
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
///     - a TyError, if a type contained itself. The representability
///       check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                  def_id: DefId)
2583
                                  -> &'tcx [Ty<'tcx>] {
2584
    let def = tcx.adt_def(def_id);
2585

2586
    let result = tcx.intern_type_list(&def.variants.iter().flat_map(|v| {
2587 2588
        v.fields.last()
    }).flat_map(|f| {
2589
        def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
2590
    }).collect::<Vec<_>>());
2591

2592
    debug!("adt_sized_constraint: {:?} => {:?}", def, result);
2593

2594
    result
2595 2596
}

A
Ariel Ben-Yehuda 已提交
2597 2598 2599 2600
/// Calculates the dtorck constraint for a type.
fn adt_dtorck_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                   def_id: DefId)
                                   -> DtorckConstraint<'tcx> {
2601
    let def = tcx.adt_def(def_id);
A
Ariel Ben-Yehuda 已提交
2602 2603 2604 2605 2606 2607 2608
    let span = tcx.def_span(def_id);
    debug!("dtorck_constraint: {:?}", def);

    if def.is_phantom_data() {
        let result = DtorckConstraint {
            outlives: vec![],
            dtorck_types: vec![
2609
                tcx.mk_param_from_def(&tcx.generics_of(def_id).types[0])
A
Ariel Ben-Yehuda 已提交
2610 2611 2612 2613 2614 2615 2616
           ]
        };
        debug!("dtorck_constraint: {:?} => {:?}", def, result);
        return result;
    }

    let mut result = def.all_fields()
2617
        .map(|field| tcx.type_of(field.did))
A
Ariel Ben-Yehuda 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
        .map(|fty| tcx.dtorck_constraint_for_ty(span, fty, 0, fty))
        .collect::<Result<DtorckConstraint, ErrorReported>>()
        .unwrap_or(DtorckConstraint::empty());
    result.outlives.extend(tcx.destructor_constraints(def));
    result.dedup();

    debug!("dtorck_constraint: {:?} => {:?}", def, result);

    result
}

2629 2630
fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                     def_id: DefId)
2631
                                     -> Lrc<Vec<DefId>> {
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let item = tcx.hir.expect_item(id);
    let vec: Vec<_> = match item.node {
        hir::ItemTrait(.., ref trait_item_refs) => {
            trait_item_refs.iter()
                           .map(|trait_item_ref| trait_item_ref.id)
                           .map(|id| tcx.hir.local_def_id(id.node_id))
                           .collect()
        }
        hir::ItemImpl(.., ref impl_item_refs) => {
            impl_item_refs.iter()
                          .map(|impl_item_ref| impl_item_ref.id)
                          .map(|id| tcx.hir.local_def_id(id.node_id))
                          .collect()
        }
A
Alex Burka 已提交
2647
        hir::ItemTraitAlias(..) => vec![],
2648 2649
        _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
    };
2650
    Lrc::new(vec)
2651 2652
}

A
achernyak 已提交
2653
fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
A
achernyak 已提交
2654
    tcx.hir.span_if_local(def_id).unwrap()
A
achernyak 已提交
2655 2656
}

A
achernyak 已提交
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
/// If the given def ID describes an item belonging to a trait,
/// return the ID of the trait that the trait item belongs to.
/// Otherwise, return `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
    tcx.opt_associated_item(def_id)
        .and_then(|associated_item| {
            match associated_item.container {
                TraitContainer(def_id) => Some(def_id),
                ImplContainer(_) => None
            }
        })
}

2670
/// See `ParamEnv` struct def'n for details.
2671
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2672 2673
                       def_id: DefId)
                       -> ParamEnv<'tcx> {
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
    // Compute the bounds on Self and the type parameters.

    let bounds = tcx.predicates_of(def_id).instantiate_identity(tcx);
    let predicates = bounds.predicates;

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of a "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so after type checking you can be
    // sure that this will succeed without errors anyway.

2691
    let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
2692 2693
                                             traits::Reveal::UserFacing,
                                             ty::UniverseIndex::ROOT);
2694 2695 2696 2697 2698 2699 2700

    let body_id = tcx.hir.as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
        tcx.hir.maybe_body_owned_by(id).map_or(id, |body| body.node_id)
    });
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}
A
achernyak 已提交
2701

2702
fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
2703
                                 crate_num: CrateNum) -> CrateDisambiguator {
2704 2705 2706 2707
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.sess.local_crate_disambiguator()
}

2708 2709 2710 2711 2712 2713
fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> Symbol {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.crate_name.clone()
}

2714 2715 2716 2717 2718 2719 2720
fn crate_hash<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                        crate_num: CrateNum)
                        -> Svh {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.hir.crate_hash
}

V
varkor 已提交
2721 2722 2723 2724
fn instance_def_size_estimate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                        instance_def: InstanceDef<'tcx>)
                                        -> usize {
    match instance_def {
2725 2726 2727
        InstanceDef::Item(..) |
        InstanceDef::DropGlue(..) => {
            let mir = tcx.instance_mir(instance_def);
V
varkor 已提交
2728 2729
            mir.basic_blocks().iter().map(|bb| bb.statements.len()).sum()
        },
2730
        // Estimate the size of other compiler-generated shims to be 1.
V
varkor 已提交
2731 2732 2733 2734
        _ => 1
    }
}

2735
pub fn provide(providers: &mut ty::maps::Providers) {
2736
    context::provide(providers);
2737
    erase_regions::provide(providers);
2738 2739
    layout::provide(providers);
    util::provide(providers);
2740 2741
    *providers = ty::maps::Providers {
        associated_item,
2742
        associated_item_def_ids,
2743
        adt_sized_constraint,
A
Ariel Ben-Yehuda 已提交
2744
        adt_dtorck_constraint,
A
achernyak 已提交
2745
        def_span,
2746
        param_env,
A
achernyak 已提交
2747
        trait_of_item,
2748
        crate_disambiguator,
2749
        original_crate_name,
2750
        crate_hash,
2751
        trait_impls_of: trait_def::trait_impls_of_provider,
V
varkor 已提交
2752
        instance_def_size_estimate,
2753 2754 2755 2756
        ..*providers
    };
}

2757 2758 2759
/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
2760 2761
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
2762 2763
#[derive(Clone, Debug)]
pub struct CrateInherentImpls {
2764
    pub inherent_impls: DefIdMap<Lrc<Vec<DefId>>>,
2765
}
A
Ariel Ben-Yehuda 已提交
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808

/// A set of constraints that need to be satisfied in order for
/// a type to be valid for destruction.
#[derive(Clone, Debug)]
pub struct DtorckConstraint<'tcx> {
    /// Types that are required to be alive in order for this
    /// type to be valid for destruction.
    pub outlives: Vec<ty::subst::Kind<'tcx>>,
    /// Types that could not be resolved: projections and params.
    pub dtorck_types: Vec<Ty<'tcx>>,
}

impl<'tcx> FromIterator<DtorckConstraint<'tcx>> for DtorckConstraint<'tcx>
{
    fn from_iter<I: IntoIterator<Item=DtorckConstraint<'tcx>>>(iter: I) -> Self {
        let mut result = Self::empty();

        for constraint in iter {
            result.outlives.extend(constraint.outlives);
            result.dtorck_types.extend(constraint.dtorck_types);
        }

        result
    }
}


impl<'tcx> DtorckConstraint<'tcx> {
    fn empty() -> DtorckConstraint<'tcx> {
        DtorckConstraint {
            outlives: vec![],
            dtorck_types: vec![]
        }
    }

    fn dedup<'a>(&mut self) {
        let mut outlives = FxHashSet();
        let mut dtorck_types = FxHashSet();

        self.outlives.retain(|&val| outlives.replace(val).is_none());
        self.dtorck_types.retain(|&val| dtorck_types.replace(val).is_none());
    }
}
2809

2810
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable)]
2811 2812 2813 2814 2815 2816
pub struct SymbolName {
    // FIXME: we don't rely on interning or equality here - better have
    // this be a `&'tcx str`.
    pub name: InternedString
}

2817 2818 2819 2820
impl_stable_hash_for!(struct self::SymbolName {
    name
});

2821 2822 2823 2824 2825 2826 2827 2828
impl SymbolName {
    pub fn new(name: &str) -> SymbolName {
        SymbolName {
            name: Symbol::intern(name).as_str()
        }
    }
}

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
impl Deref for SymbolName {
    type Target = str;

    fn deref(&self) -> &str { &self.name }
}

impl fmt::Display for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}
2840 2841 2842 2843 2844 2845

impl fmt::Debug for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}