deconstruct_pat.rs 73.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
//! [`super::usefulness`] explains most of what is happening in this file. As explained there,
//! values and patterns are made from constructors applied to fields. This file defines a
//! `Constructor` enum, a `Fields` struct, and various operations to manipulate them and convert
//! them from/to patterns.
//!
//! There's one idea that is not detailed in [`super::usefulness`] because the details are not
//! needed there: _constructor splitting_.
//!
//! # Constructor splitting
//!
//! The idea is as follows: given a constructor `c` and a matrix, we want to specialize in turn
//! with all the value constructors that are covered by `c`, and compute usefulness for each.
//! Instead of listing all those constructors (which is intractable), we group those value
//! constructors together as much as possible. Example:
//!
//! ```
//! match (0, false) {
//!     (0 ..=100, true) => {} // `p_1`
//!     (50..=150, false) => {} // `p_2`
//!     (0 ..=200, _) => {} // `q`
//! }
//! ```
//!
//! The naive approach would try all numbers in the range `0..=200`. But we can be a lot more
//! clever: `0` and `1` for example will match the exact same rows, and return equivalent
//! witnesses. In fact all of `0..50` would. We can thus restrict our exploration to 4
//! constructors: `0..50`, `50..=100`, `101..=150` and `151..=200`. That is enough and infinitely
//! more tractable.
//!
//! We capture this idea in a function `split(p_1 ... p_n, c)` which returns a list of constructors
//! `c'` covered by `c`. Given such a `c'`, we require that all value ctors `c''` covered by `c'`
//! return an equivalent set of witnesses after specializing and computing usefulness.
//! In the example above, witnesses for specializing by `c''` covered by `0..50` will only differ
//! in their first element.
//!
//! We usually also ask that the `c'` together cover all of the original `c`. However we allow
//! skipping some constructors as long as it doesn't change whether the resulting list of witnesses
//! is empty of not. We use this in the wildcard `_` case.
//!
//! Splitting is implemented in the [`Constructor::split`] function. We don't do splitting for
//! or-patterns; instead we just try the alternatives one-by-one. For details on splitting
//! wildcards, see [`SplitWildcard`]; for integer ranges, see [`SplitIntRange`]; for slices, see
//! [`SplitVarLenSlice`].

45 46 47 48
use self::Constructor::*;
use self::SliceKind::*;

use super::compare_const_vals;
49
use super::usefulness::{MatchCheckCtxt, PatCtxt};
50 51 52 53 54 55

use rustc_data_structures::captures::Captures;
use rustc_index::vec::Idx;

use rustc_hir::{HirId, RangeEnd};
use rustc_middle::mir::Field;
56
use rustc_middle::thir::{FieldPat, Pat, PatKind, PatRange};
57
use rustc_middle::ty::layout::IntegerExt;
N
Nadrieril 已提交
58
use rustc_middle::ty::{self, Const, Ty, TyCtxt, VariantDef};
59
use rustc_middle::{middle::stability::EvalResult, mir::interpret::ConstValue};
60
use rustc_session::lint;
61
use rustc_span::{Span, DUMMY_SP};
62 63 64
use rustc_target::abi::{Integer, Size, VariantIdx};

use smallvec::{smallvec, SmallVec};
65
use std::cell::Cell;
66
use std::cmp::{self, max, min, Ordering};
67
use std::fmt;
68
use std::iter::{once, IntoIterator};
69 70
use std::ops::RangeInclusive;

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> {
    fn expand<'p, 'tcx>(pat: &'p Pat<'tcx>, vec: &mut Vec<&'p Pat<'tcx>>) {
        if let PatKind::Or { pats } = pat.kind.as_ref() {
            for pat in pats {
                expand(pat, vec);
            }
        } else {
            vec.push(pat)
        }
    }

    let mut pats = Vec::new();
    expand(pat, &mut pats);
    pats
}

88 89 90 91 92 93 94 95 96 97
/// An inclusive interval, used for precise integer exhaustiveness checking.
/// `IntRange`s always store a contiguous range. This means that values are
/// encoded such that `0` encodes the minimum value for the integer,
/// regardless of the signedness.
/// For example, the pattern `-128..=127i8` is encoded as `0..=255`.
/// This makes comparisons and arithmetic on interval endpoints much more
/// straightforward. See `signed_bias` for details.
///
/// `IntRange` is never used to encode an empty range or a "range" that wraps
/// around the (offset) space: i.e., `range.lo <= range.hi`.
98
#[derive(Clone, PartialEq, Eq)]
99
pub(super) struct IntRange {
100
    range: RangeInclusive<u128>,
101 102 103 104
    /// Keeps the bias used for encoding the range. It depends on the type of the range and
    /// possibly the pointer size of the current architecture. The algorithm ensures we never
    /// compare `IntRange`s with different types/architectures.
    bias: u128,
105 106
}

107
impl IntRange {
108 109 110 111 112 113 114 115 116 117 118 119 120 121
    #[inline]
    fn is_integral(ty: Ty<'_>) -> bool {
        matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_) | ty::Bool)
    }

    fn is_singleton(&self) -> bool {
        self.range.start() == self.range.end()
    }

    fn boundaries(&self) -> (u128, u128) {
        (*self.range.start(), *self.range.end())
    }

    #[inline]
122
    fn integral_size_and_signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> Option<(Size, u128)> {
123 124 125 126
        match *ty.kind() {
            ty::Bool => Some((Size::from_bytes(1), 0)),
            ty::Char => Some((Size::from_bytes(4), 0)),
            ty::Int(ity) => {
127
                let size = Integer::from_int_ty(&tcx, ity).size();
128 129
                Some((size, 1u128 << (size.bits() as u128 - 1)))
            }
130
            ty::Uint(uty) => Some((Integer::from_uint_ty(&tcx, uty).size(), 0)),
131 132 133 134 135
            _ => None,
        }
    }

    #[inline]
136
    fn from_const<'tcx>(
137 138
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
N
Nicholas Nethercote 已提交
139
        value: Const<'tcx>,
140
    ) -> Option<IntRange> {
N
Nicholas Nethercote 已提交
141 142
        let ty = value.ty();
        if let Some((target_size, bias)) = Self::integral_size_and_signed_bias(tcx, ty) {
143
            let val = (|| {
N
Nicholas Nethercote 已提交
144
                if let ty::ConstKind::Value(ConstValue::Scalar(scalar)) = value.val() {
145 146 147 148
                    // For this specific pattern we can skip a lot of effort and go
                    // straight to the result, after doing a bit of checking. (We
                    // could remove this branch and just fall through, which
                    // is more general but much slower.)
R
Ralf Jung 已提交
149
                    if let Ok(bits) = scalar.to_bits_or_ptr_internal(target_size) {
150 151 152 153 154 155 156
                        return Some(bits);
                    }
                }
                // This is a more general form of the previous case.
                value.try_eval_bits(tcx, param_env, ty)
            })()?;
            let val = val ^ bias;
157
            Some(IntRange { range: val..=val, bias })
158 159 160 161 162 163
        } else {
            None
        }
    }

    #[inline]
164
    fn from_range<'tcx>(
165 166 167 168 169
        tcx: TyCtxt<'tcx>,
        lo: u128,
        hi: u128,
        ty: Ty<'tcx>,
        end: &RangeEnd,
170
    ) -> Option<IntRange> {
171 172 173 174 175 176 177 178 179 180
        if Self::is_integral(ty) {
            // Perform a shift if the underlying types are signed,
            // which makes the interval arithmetic simpler.
            let bias = IntRange::signed_bias(tcx, ty);
            let (lo, hi) = (lo ^ bias, hi ^ bias);
            let offset = (*end == RangeEnd::Excluded) as u128;
            if lo > hi || (lo == hi && *end == RangeEnd::Excluded) {
                // This should have been caught earlier by E0030.
                bug!("malformed range pattern: {}..={}", lo, (hi - offset));
            }
181
            Some(IntRange { range: lo..=(hi - offset), bias })
182 183 184 185 186 187
        } else {
            None
        }
    }

    // The return value of `signed_bias` should be XORed with an endpoint to encode/decode it.
188
    fn signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> u128 {
189 190
        match *ty.kind() {
            ty::Int(ity) => {
191
                let bits = Integer::from_int_ty(&tcx, ity).size().bits() as u128;
192 193 194 195 196 197 198 199 200 201
                1u128 << (bits - 1)
            }
            _ => 0,
        }
    }

    fn is_subrange(&self, other: &Self) -> bool {
        other.range.start() <= self.range.start() && self.range.end() <= other.range.end()
    }

202
    fn intersection(&self, other: &Self) -> Option<Self> {
203 204
        let (lo, hi) = self.boundaries();
        let (other_lo, other_hi) = other.boundaries();
205
        if lo <= other_hi && other_lo <= hi {
206
            Some(IntRange { range: max(lo, other_lo)..=min(hi, other_hi), bias: self.bias })
207
        } else {
208
            None
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        }
    }

    fn suspicious_intersection(&self, other: &Self) -> bool {
        // `false` in the following cases:
        // 1     ----      // 1  ----------   // 1 ----        // 1       ----
        // 2  ----------   // 2     ----      // 2       ----  // 2 ----
        //
        // The following are currently `false`, but could be `true` in the future (#64007):
        // 1 ---------       // 1     ---------
        // 2     ----------  // 2 ----------
        //
        // `true` in the following cases:
        // 1 -------          // 1       -------
        // 2       --------   // 2 -------
        let (lo, hi) = self.boundaries();
        let (other_lo, other_hi) = other.boundaries();
N
Nadrieril 已提交
226
        (lo == other_hi || hi == other_lo) && !self.is_singleton() && !other.is_singleton()
227 228
    }

229
    /// Only used for displaying the range properly.
230
    fn to_pat<'tcx>(&self, tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Pat<'tcx> {
231 232
        let (lo, hi) = self.boundaries();

233
        let bias = self.bias;
234 235
        let (lo, hi) = (lo ^ bias, hi ^ bias);

236 237 238
        let env = ty::ParamEnv::empty().and(ty);
        let lo_const = ty::Const::from_bits(tcx, lo, env);
        let hi_const = ty::Const::from_bits(tcx, hi, env);
239 240 241 242 243 244 245

        let kind = if lo == hi {
            PatKind::Constant { value: lo_const }
        } else {
            PatKind::Range(PatRange { lo: lo_const, hi: hi_const, end: RangeEnd::Included })
        };

246
        Pat { ty, span: DUMMY_SP, kind: Box::new(kind) }
247 248
    }

N
Nadrieril 已提交
249
    /// Lint on likely incorrect range patterns (#63987)
250
    pub(super) fn lint_overlapping_range_endpoints<'a, 'p: 'a, 'tcx: 'a>(
251
        &self,
252 253
        pcx: PatCtxt<'_, 'p, 'tcx>,
        pats: impl Iterator<Item = &'a DeconstructedPat<'p, 'tcx>>,
254 255 256
        column_count: usize,
        hir_id: HirId,
    ) {
N
Nadrieril 已提交
257 258 259 260
        if self.is_singleton() {
            return;
        }

261
        if column_count != 1 {
N
Nadrieril 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274
            // FIXME: for now, only check for overlapping ranges on simple range
            // patterns. Otherwise with the current logic the following is detected
            // as overlapping:
            // ```
            // match (0u8, true) {
            //   (0 ..= 125, false) => {}
            //   (125 ..= 255, true) => {}
            //   _ => {}
            // }
            // ```
            return;
        }

275 276
        let overlaps: Vec<_> = pats
            .filter_map(|pat| Some((pat.ctor().as_int_range()?, pat.span())))
N
Nadrieril 已提交
277 278 279 280 281
            .filter(|(range, _)| self.suspicious_intersection(range))
            .map(|(range, span)| (self.intersection(&range).unwrap(), span))
            .collect();

        if !overlaps.is_empty() {
282
            pcx.cx.tcx.struct_span_lint_hir(
283
                lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
284
                hir_id,
285
                pcx.span,
286
                |lint| {
287
                    let mut err = lint.build("multiple patterns overlap on their endpoints");
288
                    for (int_range, span) in overlaps {
289
                        err.span_label(
290
                            span,
291
                            &format!(
N
Nadrieril 已提交
292
                                "this range overlaps on `{}`...",
293
                                int_range.to_pat(pcx.cx.tcx, pcx.ty)
294 295 296
                            ),
                        );
                    }
N
Nadrieril 已提交
297 298
                    err.span_label(pcx.span, "... with this range");
                    err.note("you likely meant to write mutually exclusive ranges");
299 300 301 302 303 304 305
                    err.emit();
                },
            );
        }
    }

    /// See `Constructor::is_covered_by`
306 307
    fn is_covered_by(&self, other: &Self) -> bool {
        if self.intersection(other).is_some() {
308 309 310 311 312 313 314 315 316 317
            // Constructor splitting should ensure that all intersections we encounter are actually
            // inclusions.
            assert!(self.is_subrange(other));
            true
        } else {
            false
        }
    }
}

318 319 320 321 322 323 324 325 326 327 328 329 330
/// Note: this is often not what we want: e.g. `false` is converted into the range `0..=0` and
/// would be displayed as such. To render properly, convert to a pattern first.
impl fmt::Debug for IntRange {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let (lo, hi) = self.boundaries();
        let bias = self.bias;
        let (lo, hi) = (lo ^ bias, hi ^ bias);
        write!(f, "{}", lo)?;
        write!(f, "{}", RangeEnd::Included)?;
        write!(f, "{}", hi)
    }
}

331 332 333 334 335 336 337 338
/// Represents a border between 2 integers. Because the intervals spanning borders must be able to
/// cover every integer, we need to be able to represent 2^128 + 1 such borders.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
enum IntBorder {
    JustBefore(u128),
    AfterMax,
}

339
/// A range of integers that is partitioned into disjoint subranges. This does constructor
340 341
/// splitting for integer ranges as explained at the top of the file.
///
342 343 344 345
/// This is fed multiple ranges, and returns an output that covers the input, but is split so that
/// the only intersections between an output range and a seen range are inclusions. No output range
/// straddles the boundary of one of the inputs.
///
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
/// The following input:
/// ```
///   |-------------------------| // `self`
/// |------|  |----------|   |----|
///    |-------| |-------|
/// ```
/// would be iterated over as follows:
/// ```
///   ||---|--||-|---|---|---|--|
/// ```
#[derive(Debug, Clone)]
struct SplitIntRange {
    /// The range we are splitting
    range: IntRange,
    /// The borders of ranges we have seen. They are all contained within `range`. This is kept
    /// sorted.
    borders: Vec<IntBorder>,
}

impl SplitIntRange {
366 367
    fn new(range: IntRange) -> Self {
        SplitIntRange { range, borders: Vec::new() }
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
    }

    /// Internal use
    fn to_borders(r: IntRange) -> [IntBorder; 2] {
        use IntBorder::*;
        let (lo, hi) = r.boundaries();
        let lo = JustBefore(lo);
        let hi = match hi.checked_add(1) {
            Some(m) => JustBefore(m),
            None => AfterMax,
        };
        [lo, hi]
    }

    /// Add ranges relative to which we split.
    fn split(&mut self, ranges: impl Iterator<Item = IntRange>) {
        let this_range = &self.range;
        let included_ranges = ranges.filter_map(|r| this_range.intersection(&r));
        let included_borders = included_ranges.flat_map(|r| {
            let borders = Self::to_borders(r);
            once(borders[0]).chain(once(borders[1]))
        });
        self.borders.extend(included_borders);
        self.borders.sort_unstable();
    }

    /// Iterate over the contained ranges.
    fn iter<'a>(&'a self) -> impl Iterator<Item = IntRange> + Captures<'a> {
        use IntBorder::*;

        let self_range = Self::to_borders(self.range.clone());
        // Start with the start of the range.
        let mut prev_border = self_range[0];
        self.borders
            .iter()
            .copied()
            // End with the end of the range.
            .chain(once(self_range[1]))
            // List pairs of adjacent borders.
            .map(move |border| {
                let ret = (prev_border, border);
                prev_border = border;
                ret
            })
            // Skip duplicates.
            .filter(|(prev_border, border)| prev_border != border)
            // Finally, convert to ranges.
415
            .map(move |(prev_border, border)| {
416 417 418 419 420
                let range = match (prev_border, border) {
                    (JustBefore(n), JustBefore(m)) if n < m => n..=(m - 1),
                    (JustBefore(n), AfterMax) => n..=u128::MAX,
                    _ => unreachable!(), // Ruled out by the sorting and filtering we did
                };
421
                IntRange { range, bias: self.range.bias }
422 423 424 425
            })
    }
}

426 427 428
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum SliceKind {
    /// Patterns of length `n` (`[x, y]`).
N
Nadrieril 已提交
429
    FixedLen(usize),
430 431 432 433 434
    /// Patterns using the `..` notation (`[x, .., y]`).
    /// Captures any array constructor of `length >= i + j`.
    /// In the case where `array_len` is `Some(_)`,
    /// this indicates that we only care about the first `i` and the last `j` values of the array,
    /// and everything in between is a wildcard `_`.
N
Nadrieril 已提交
435
    VarLen(usize, usize),
436 437 438
}

impl SliceKind {
N
Nadrieril 已提交
439
    fn arity(self) -> usize {
440 441 442 443 444 445 446
        match self {
            FixedLen(length) => length,
            VarLen(prefix, suffix) => prefix + suffix,
        }
    }

    /// Whether this pattern includes patterns of length `other_len`.
N
Nadrieril 已提交
447
    fn covers_length(self, other_len: usize) -> bool {
448 449 450 451 452 453 454 455 456 457 458
        match self {
            FixedLen(len) => len == other_len,
            VarLen(prefix, suffix) => prefix + suffix <= other_len,
        }
    }
}

/// A constructor for array and slice patterns.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(super) struct Slice {
    /// `None` if the matched value is a slice, `Some(n)` if it is an array of size `n`.
N
Nadrieril 已提交
459
    array_len: Option<usize>,
460 461 462 463 464
    /// The kind of pattern it is: fixed-length `[x, y]` or variable length `[x, .., y]`.
    kind: SliceKind,
}

impl Slice {
N
Nadrieril 已提交
465
    fn new(array_len: Option<usize>, kind: SliceKind) -> Self {
466 467 468 469 470 471 472 473
        let kind = match (array_len, kind) {
            // If the middle `..` is empty, we effectively have a fixed-length pattern.
            (Some(len), VarLen(prefix, suffix)) if prefix + suffix >= len => FixedLen(len),
            _ => kind,
        };
        Slice { array_len, kind }
    }

N
Nadrieril 已提交
474
    fn arity(self) -> usize {
475 476 477
        self.kind.arity()
    }

478 479 480 481 482
    /// See `Constructor::is_covered_by`
    fn is_covered_by(self, other: Self) -> bool {
        other.kind.covers_length(self.arity())
    }
}
483

484 485
/// This computes constructor splitting for variable-length slices, as explained at the top of the
/// file.
486
///
487 488
/// A slice pattern `[x, .., y]` behaves like the infinite or-pattern `[x, y] | [x, _, y] | [x, _,
/// _, y] | ...`. The corresponding value constructors are fixed-length array constructors above a
N
Nadrieril 已提交
489
/// given minimum length. We obviously can't list this infinitude of constructors. Thankfully,
490 491
/// it turns out that for each finite set of slice patterns, all sufficiently large array lengths
/// are equivalent.
492
///
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
/// Let's look at an example, where we are trying to split the last pattern:
/// ```
/// match x {
///     [true, true, ..] => {}
///     [.., false, false] => {}
///     [..] => {}
/// }
/// ```
/// Here are the results of specialization for the first few lengths:
/// ```
/// // length 0
/// [] => {}
/// // length 1
/// [_] => {}
/// // length 2
/// [true, true] => {}
/// [false, false] => {}
/// [_, _] => {}
/// // length 3
/// [true, true,  _    ] => {}
/// [_,    false, false] => {}
/// [_,    _,     _    ] => {}
/// // length 4
/// [true, true, _,     _    ] => {}
/// [_,    _,    false, false] => {}
/// [_,    _,    _,     _    ] => {}
/// // length 5
/// [true, true, _, _,     _    ] => {}
/// [_,    _,    _, false, false] => {}
/// [_,    _,    _, _,     _    ] => {}
/// ```
524
///
525 526 527
/// If we went above length 5, we would simply be inserting more columns full of wildcards in the
/// middle. This means that the set of witnesses for length `l >= 5` if equivalent to the set for
/// any other `l' >= 5`: simply add or remove wildcards in the middle to convert between them.
528
///
N
Nadrieril 已提交
529
/// This applies to any set of slice patterns: there will be a length `L` above which all lengths
530 531 532
/// behave the same. This is exactly what we need for constructor splitting. Therefore a
/// variable-length slice can be split into a variable-length slice of minimal length `L`, and many
/// fixed-length slices of lengths `< L`.
533
///
534 535 536 537 538 539
/// For each variable-length pattern `p` with a prefix of length `plₚ` and suffix of length `slₚ`,
/// only the first `plₚ` and the last `slₚ` elements are examined. Therefore, as long as `L` is
/// positive (to avoid concerns about empty types), all elements after the maximum prefix length
/// and before the maximum suffix length are not examined by any variable-length pattern, and
/// therefore can be added/removed without affecting them - creating equivalent patterns from any
/// sufficiently-large length.
540 541 542 543 544 545 546 547
///
/// Of course, if fixed-length patterns exist, we must be sure that our length is large enough to
/// miss them all, so we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`
///
/// `max_slice` below will be made to have arity `L`.
#[derive(Debug)]
struct SplitVarLenSlice {
    /// If the type is an array, this is its size.
N
Nadrieril 已提交
548
    array_len: Option<usize>,
549
    /// The arity of the input slice.
N
Nadrieril 已提交
550
    arity: usize,
551 552 553 554 555 556
    /// The smallest slice bigger than any slice seen. `max_slice.arity()` is the length `L`
    /// described above.
    max_slice: SliceKind,
}

impl SplitVarLenSlice {
N
Nadrieril 已提交
557
    fn new(prefix: usize, suffix: usize, array_len: Option<usize>) -> Self {
558 559 560 561 562
        SplitVarLenSlice { array_len, arity: prefix + suffix, max_slice: VarLen(prefix, suffix) }
    }

    /// Pass a set of slices relative to which to split this one.
    fn split(&mut self, slices: impl Iterator<Item = SliceKind>) {
E
est31 已提交
563 564 565
        let VarLen(max_prefix_len, max_suffix_len) = &mut self.max_slice else {
            // No need to split
            return;
566 567 568 569 570 571 572 573 574 575 576 577 578
        };
        // We grow `self.max_slice` to be larger than all slices encountered, as described above.
        // For diagnostics, we keep the prefix and suffix lengths separate, but grow them so that
        // `L = max_prefix_len + max_suffix_len`.
        let mut max_fixed_len = 0;
        for slice in slices {
            match slice {
                FixedLen(len) => {
                    max_fixed_len = cmp::max(max_fixed_len, len);
                }
                VarLen(prefix, suffix) => {
                    *max_prefix_len = cmp::max(*max_prefix_len, prefix);
                    *max_suffix_len = cmp::max(*max_suffix_len, suffix);
579 580 581
                }
            }
        }
582 583 584
        // We want `L = max(L, max_fixed_len + 1)`, modulo the fact that we keep prefix and
        // suffix separate.
        if max_fixed_len + 1 >= *max_prefix_len + *max_suffix_len {
585
            // The subtraction can't overflow thanks to the above check.
586 587
            // The new `max_prefix_len` is larger than its previous value.
            *max_prefix_len = max_fixed_len + 1 - *max_suffix_len;
588 589
        }

590
        // We cap the arity of `max_slice` at the array size.
591
        match self.array_len {
592 593
            Some(len) if self.max_slice.arity() >= len => self.max_slice = FixedLen(len),
            _ => {}
594 595 596
        }
    }

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
    /// Iterate over the partition of this slice.
    fn iter<'a>(&'a self) -> impl Iterator<Item = Slice> + Captures<'a> {
        let smaller_lengths = match self.array_len {
            // The only admissible fixed-length slice is one of the array size. Whether `max_slice`
            // is fixed-length or variable-length, it will be the only relevant slice to output
            // here.
            Some(_) => (0..0), // empty range
            // We cover all arities in the range `(self.arity..infinity)`. We split that range into
            // two: lengths smaller than `max_slice.arity()` are treated independently as
            // fixed-lengths slices, and lengths above are captured by `max_slice`.
            None => self.arity..self.max_slice.arity(),
        };
        smaller_lengths
            .map(FixedLen)
            .chain(once(self.max_slice))
            .map(move |kind| Slice::new(self.array_len, kind))
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
    }
}

/// A value can be decomposed into a constructor applied to some fields. This struct represents
/// the constructor. See also `Fields`.
///
/// `pat_constructor` retrieves the constructor corresponding to a pattern.
/// `specialize_constructor` returns the list of fields corresponding to a pattern, given a
/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
/// `Fields`.
#[derive(Clone, Debug, PartialEq)]
pub(super) enum Constructor<'tcx> {
    /// The constructor for patterns that have a single constructor, like tuples, struct patterns
    /// and fixed-length arrays.
    Single,
    /// Enum variants.
629
    Variant(VariantIdx),
630
    /// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
631
    IntRange(IntRange),
632
    /// Ranges of floating-point literal values (`2.0..=5.2`).
N
Nicholas Nethercote 已提交
633
    FloatRange(ty::Const<'tcx>, ty::Const<'tcx>, RangeEnd),
634
    /// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
N
Nicholas Nethercote 已提交
635
    Str(ty::Const<'tcx>),
636 637 638 639 640 641 642 643 644
    /// Array and slice patterns.
    Slice(Slice),
    /// Constants that must not be matched structurally. They are treated as black
    /// boxes for the purposes of exhaustiveness: we must not inspect them, and they
    /// don't count towards making a match exhaustive.
    Opaque,
    /// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used
    /// for those types for which we cannot list constructors explicitly, like `f64` and `str`.
    NonExhaustive,
645
    /// Stands for constructors that are not seen in the matrix, as explained in the documentation
646 647 648
    /// for [`SplitWildcard`]. The carried `bool` is used for the `non_exhaustive_omitted_patterns`
    /// lint.
    Missing { nonexhaustive_enum_missing_real_variants: bool },
649 650
    /// Wildcard pattern.
    Wildcard,
651 652
    /// Or-pattern.
    Or,
653 654 655 656 657 658 659
}

impl<'tcx> Constructor<'tcx> {
    pub(super) fn is_wildcard(&self) -> bool {
        matches!(self, Wildcard)
    }

660 661 662 663
    pub(super) fn is_non_exhaustive(&self) -> bool {
        matches!(self, NonExhaustive)
    }

664
    fn as_int_range(&self) -> Option<&IntRange> {
665 666 667 668 669 670 671 672 673 674 675 676 677
        match self {
            IntRange(range) => Some(range),
            _ => None,
        }
    }

    fn as_slice(&self) -> Option<Slice> {
        match self {
            Slice(slice) => Some(*slice),
            _ => None,
        }
    }

678 679 680 681 682
    /// Checks if the `Constructor` is a variant and `TyCtxt::eval_stability` returns
    /// `EvalResult::Deny { .. }`.
    ///
    /// This means that the variant has a stdlib unstable feature marking it.
    pub(super) fn is_unstable_variant(&self, pcx: PatCtxt<'_, '_, 'tcx>) -> bool {
C
Caio 已提交
683
        if let Constructor::Variant(idx) = self && let ty::Adt(adt, _) = pcx.ty.kind() {
684
            let variant_def_id = adt.variant(*idx).def_id;
C
Caio 已提交
685 686 687 688 689
            // Filter variants that depend on a disabled unstable feature.
            return matches!(
                pcx.cx.tcx.eval_stability(variant_def_id, None, DUMMY_SP, None),
                EvalResult::Deny { .. }
            );
690 691 692 693 694
        }
        false
    }

    /// Checks if the `Constructor` is a `Constructor::Variant` with a `#[doc(hidden)]`
695
    /// attribute from a type not local to the current crate.
696
    pub(super) fn is_doc_hidden_variant(&self, pcx: PatCtxt<'_, '_, 'tcx>) -> bool {
C
Caio 已提交
697
        if let Constructor::Variant(idx) = self && let ty::Adt(adt, _) = pcx.ty.kind() {
698
            let variant_def_id = adt.variants()[*idx].def_id;
699
            return pcx.cx.tcx.is_doc_hidden(variant_def_id) && !variant_def_id.is_local();
700 701 702 703
        }
        false
    }

704
    fn variant_index_for_adt(&self, adt: ty::AdtDef<'tcx>) -> VariantIdx {
705
        match *self {
706
            Variant(idx) => idx,
707 708 709 710 711 712 713 714
            Single => {
                assert!(!adt.is_enum());
                VariantIdx::new(0)
            }
            _ => bug!("bad constructor {:?} for adt {:?}", self, adt),
        }
    }

715 716 717 718 719 720 721 722 723 724 725 726 727
    /// The number of fields for this constructor. This must be kept in sync with
    /// `Fields::wildcards`.
    pub(super) fn arity(&self, pcx: PatCtxt<'_, '_, 'tcx>) -> usize {
        match self {
            Single | Variant(_) => match pcx.ty.kind() {
                ty::Tuple(fs) => fs.len(),
                ty::Ref(..) => 1,
                ty::Adt(adt, ..) => {
                    if adt.is_box() {
                        // The only legal patterns of type `Box` (outside `std`) are `_` and box
                        // patterns. If we're here we can assume this is a box pattern.
                        1
                    } else {
728
                        let variant = &adt.variant(self.variant_index_for_adt(*adt));
729
                        Fields::list_variant_nonhidden_fields(pcx.cx, pcx.ty, variant).count()
730 731
                    }
                }
732 733 734 735 736 737 738 739 740 741 742
                _ => bug!("Unexpected type for `Single` constructor: {:?}", pcx.ty),
            },
            Slice(slice) => slice.arity(),
            Str(..)
            | FloatRange(..)
            | IntRange(..)
            | NonExhaustive
            | Opaque
            | Missing { .. }
            | Wildcard => 0,
            Or => bug!("The `Or` constructor doesn't have a fixed arity"),
743 744 745
        }
    }

746 747 748 749 750 751 752 753 754 755 756 757 758
    /// Some constructors (namely `Wildcard`, `IntRange` and `Slice`) actually stand for a set of actual
    /// constructors (like variants, integers or fixed-sized slices). When specializing for these
    /// constructors, we want to be specialising for the actual underlying constructors.
    /// Naively, we would simply return the list of constructors they correspond to. We instead are
    /// more clever: if there are constructors that we know will behave the same wrt the current
    /// matrix, we keep them grouped. For example, all slices of a sufficiently large length
    /// will either be all useful or all non-useful with a given matrix.
    ///
    /// See the branches for details on how the splitting is done.
    ///
    /// This function may discard some irrelevant constructors if this preserves behavior and
    /// diagnostics. Eg. for the `_` case, we ignore the constructors already present in the
    /// matrix, unless all of them are.
759 760 761 762 763 764 765 766
    pub(super) fn split<'a>(
        &self,
        pcx: PatCtxt<'_, '_, 'tcx>,
        ctors: impl Iterator<Item = &'a Constructor<'tcx>> + Clone,
    ) -> SmallVec<[Self; 1]>
    where
        'tcx: 'a,
    {
767
        match self {
768 769
            Wildcard => {
                let mut split_wildcard = SplitWildcard::new(pcx);
770
                split_wildcard.split(pcx, ctors);
771 772
                split_wildcard.into_ctors(pcx)
            }
773 774
            // Fast-track if the range is trivial. In particular, we don't do the overlapping
            // ranges check.
775 776
            IntRange(ctor_range) if !ctor_range.is_singleton() => {
                let mut split_range = SplitIntRange::new(ctor_range.clone());
N
Nadrieril 已提交
777 778
                let int_ranges = ctors.filter_map(|ctor| ctor.as_int_range());
                split_range.split(int_ranges.cloned());
779 780 781 782
                split_range.iter().map(IntRange).collect()
            }
            &Slice(Slice { kind: VarLen(self_prefix, self_suffix), array_len }) => {
                let mut split_self = SplitVarLenSlice::new(self_prefix, self_suffix, array_len);
783
                let slices = ctors.filter_map(|c| c.as_slice()).map(|s| s.kind);
784 785 786
                split_self.split(slices);
                split_self.iter().map(Slice).collect()
            }
787 788 789 790 791 792 793 794
            // Any other constructor can be used unchanged.
            _ => smallvec![self.clone()],
        }
    }

    /// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
    /// For the simple cases, this is simply checking for equality. For the "grouped" constructors,
    /// this checks for inclusion.
N
Nadrieril 已提交
795 796
    // We inline because this has a single call site in `Matrix::specialize_constructor`.
    #[inline]
797 798 799 800 801
    pub(super) fn is_covered_by<'p>(&self, pcx: PatCtxt<'_, 'p, 'tcx>, other: &Self) -> bool {
        // This must be kept in sync with `is_covered_by_any`.
        match (self, other) {
            // Wildcards cover anything
            (_, Wildcard) => true,
802
            // The missing ctors are not covered by anything in the matrix except wildcards.
803
            (Missing { .. } | Wildcard, _) => false,
804 805 806 807

            (Single, Single) => true,
            (Variant(self_id), Variant(other_id)) => self_id == other_id,

808
            (IntRange(self_range), IntRange(other_range)) => self_range.is_covered_by(other_range),
809 810 811 812 813
            (
                FloatRange(self_from, self_to, self_end),
                FloatRange(other_from, other_to, other_end),
            ) => {
                match (
N
Nicholas Nethercote 已提交
814 815 816 817 818 819 820 821
                    compare_const_vals(pcx.cx.tcx, *self_to, *other_to, pcx.cx.param_env, pcx.ty),
                    compare_const_vals(
                        pcx.cx.tcx,
                        *self_from,
                        *other_from,
                        pcx.cx.param_env,
                        pcx.ty,
                    ),
822 823 824 825 826 827 828 829 830 831 832
                ) {
                    (Some(to), Some(from)) => {
                        (from == Ordering::Greater || from == Ordering::Equal)
                            && (to == Ordering::Less
                                || (other_end == self_end && to == Ordering::Equal))
                    }
                    _ => false,
                }
            }
            (Str(self_val), Str(other_val)) => {
                // FIXME: there's probably a more direct way of comparing for equality
N
Nicholas Nethercote 已提交
833 834 835 836 837 838 839
                match compare_const_vals(
                    pcx.cx.tcx,
                    *self_val,
                    *other_val,
                    pcx.cx.param_env,
                    pcx.ty,
                ) {
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
                    Some(comparison) => comparison == Ordering::Equal,
                    None => false,
                }
            }
            (Slice(self_slice), Slice(other_slice)) => self_slice.is_covered_by(*other_slice),

            // We are trying to inspect an opaque constant. Thus we skip the row.
            (Opaque, _) | (_, Opaque) => false,
            // Only a wildcard pattern can match the special extra constructor.
            (NonExhaustive, _) => false,

            _ => span_bug!(
                pcx.span,
                "trying to compare incompatible constructors {:?} and {:?}",
                self,
                other
            ),
        }
    }

    /// Faster version of `is_covered_by` when applied to many constructors. `used_ctors` is
    /// assumed to be built from `matrix.head_ctors()` with wildcards filtered out, and `self` is
    /// assumed to have been split from a wildcard.
    fn is_covered_by_any<'p>(
        &self,
        pcx: PatCtxt<'_, 'p, 'tcx>,
        used_ctors: &[Constructor<'tcx>],
    ) -> bool {
        if used_ctors.is_empty() {
            return false;
        }

        // This must be kept in sync with `is_covered_by`.
        match self {
            // If `self` is `Single`, `used_ctors` cannot contain anything else than `Single`s.
            Single => !used_ctors.is_empty(),
876
            Variant(vid) => used_ctors.iter().any(|c| matches!(c, Variant(i) if i == vid)),
877 878 879
            IntRange(range) => used_ctors
                .iter()
                .filter_map(|c| c.as_int_range())
880
                .any(|other| range.is_covered_by(other)),
881 882 883 884 885 886
            Slice(slice) => used_ctors
                .iter()
                .filter_map(|c| c.as_slice())
                .any(|other| slice.is_covered_by(other)),
            // This constructor is never covered by anything else
            NonExhaustive => false,
887
            Str(..) | FloatRange(..) | Opaque | Missing { .. } | Wildcard | Or => {
888
                span_bug!(pcx.span, "found unexpected ctor in all_ctors: {:?}", self)
889 890 891 892 893
            }
        }
    }
}

894 895
/// A wildcard constructor that we split relative to the constructors in the matrix, as explained
/// at the top of the file.
896 897 898 899 900 901 902 903 904 905 906 907 908
///
/// A constructor that is not present in the matrix rows will only be covered by the rows that have
/// wildcards. Thus we can group all of those constructors together; we call them "missing
/// constructors". Splitting a wildcard would therefore list all present constructors individually
/// (or grouped if they are integers or slices), and then all missing constructors together as a
/// group.
///
/// However we can go further: since any constructor will match the wildcard rows, and having more
/// rows can only reduce the amount of usefulness witnesses, we can skip the present constructors
/// and only try the missing ones.
/// This will not preserve the whole list of witnesses, but will preserve whether the list is empty
/// or not. In fact this is quite natural from the point of view of diagnostics too. This is done
/// in `to_ctors`: in some cases we only return `Missing`.
909
#[derive(Debug)]
910 911 912 913
pub(super) struct SplitWildcard<'tcx> {
    /// Constructors seen in the matrix.
    matrix_ctors: Vec<Constructor<'tcx>>,
    /// All the constructors for this type
914 915 916
    all_ctors: SmallVec<[Constructor<'tcx>; 1]>,
}

917
impl<'tcx> SplitWildcard<'tcx> {
918
    pub(super) fn new<'p>(pcx: PatCtxt<'_, 'p, 'tcx>) -> Self {
N
Nadrieril 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
        debug!("SplitWildcard::new({:?})", pcx.ty);
        let cx = pcx.cx;
        let make_range = |start, end| {
            IntRange(
                // `unwrap()` is ok because we know the type is an integer.
                IntRange::from_range(cx.tcx, start, end, pcx.ty, &RangeEnd::Included).unwrap(),
            )
        };
        // This determines the set of all possible constructors for the type `pcx.ty`. For numbers,
        // arrays and slices we use ranges and variable-length slices when appropriate.
        //
        // If the `exhaustive_patterns` feature is enabled, we make sure to omit constructors that
        // are statically impossible. E.g., for `Option<!>`, we do not include `Some(_)` in the
        // returned list of constructors.
        // Invariant: this is empty if and only if the type is uninhabited (as determined by
        // `cx.is_uninhabited()`).
        let all_ctors = match pcx.ty.kind() {
            ty::Bool => smallvec![make_range(0, 1)],
            ty::Array(sub_ty, len) if len.try_eval_usize(cx.tcx, cx.param_env).is_some() => {
N
Nadrieril 已提交
938
                let len = len.eval_usize(cx.tcx, cx.param_env) as usize;
N
Nicholas Nethercote 已提交
939
                if len != 0 && cx.is_uninhabited(*sub_ty) {
N
Nadrieril 已提交
940 941 942 943 944 945 946
                    smallvec![]
                } else {
                    smallvec![Slice(Slice::new(Some(len), VarLen(0, 0)))]
                }
            }
            // Treat arrays of a constant but unknown length like slices.
            ty::Array(sub_ty, _) | ty::Slice(sub_ty) => {
N
Nicholas Nethercote 已提交
947
                let kind = if cx.is_uninhabited(*sub_ty) { FixedLen(0) } else { VarLen(0, 0) };
N
Nadrieril 已提交
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
                smallvec![Slice(Slice::new(None, kind))]
            }
            ty::Adt(def, substs) if def.is_enum() => {
                // If the enum is declared as `#[non_exhaustive]`, we treat it as if it had an
                // additional "unknown" constructor.
                // There is no point in enumerating all possible variants, because the user can't
                // actually match against them all themselves. So we always return only the fictitious
                // constructor.
                // E.g., in an example like:
                //
                // ```
                //     let err: io::ErrorKind = ...;
                //     match err {
                //         io::ErrorKind::NotFound => {},
                //     }
                // ```
                //
                // we don't want to show every possible IO error, but instead have only `_` as the
                // witness.
                let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(pcx.ty);

969 970
                let is_exhaustive_pat_feature = cx.tcx.features().exhaustive_patterns;

N
Nadrieril 已提交
971 972 973 974
                // If `exhaustive_patterns` is disabled and our scrutinee is an empty enum, we treat it
                // as though it had an "unknown" constructor to avoid exposing its emptiness. The
                // exception is if the pattern is at the top level, because we want empty matches to be
                // considered exhaustive.
975
                let is_secretly_empty =
976
                    def.variants().is_empty() && !is_exhaustive_pat_feature && !pcx.is_top_level;
977 978

                let mut ctors: SmallVec<[_; 1]> = def
979
                    .variants()
980 981 982 983 984 985 986 987 988 989 990 991 992 993
                    .iter_enumerated()
                    .filter(|(_, v)| {
                        // If `exhaustive_patterns` is enabled, we exclude variants known to be
                        // uninhabited.
                        let is_uninhabited = is_exhaustive_pat_feature
                            && v.uninhabited_from(cx.tcx, substs, def.adt_kind(), cx.param_env)
                                .contains(cx.tcx, cx.module);
                        !is_uninhabited
                    })
                    .map(|(idx, _)| Variant(idx))
                    .collect();

                if is_secretly_empty || is_declared_nonexhaustive {
                    ctors.push(NonExhaustive);
N
Nadrieril 已提交
994
                }
995
                ctors
N
Nadrieril 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
            }
            ty::Char => {
                smallvec![
                    // The valid Unicode Scalar Value ranges.
                    make_range('\u{0000}' as u128, '\u{D7FF}' as u128),
                    make_range('\u{E000}' as u128, '\u{10FFFF}' as u128),
                ]
            }
            ty::Int(_) | ty::Uint(_)
                if pcx.ty.is_ptr_sized_integral()
                    && !cx.tcx.features().precise_pointer_size_matching =>
            {
                // `usize`/`isize` are not allowed to be matched exhaustively unless the
                // `precise_pointer_size_matching` feature is enabled. So we treat those types like
                // `#[non_exhaustive]` enums by returning a special unmatcheable constructor.
                smallvec![NonExhaustive]
            }
            &ty::Int(ity) => {
1014
                let bits = Integer::from_int_ty(&cx.tcx, ity).size().bits() as u128;
N
Nadrieril 已提交
1015 1016 1017 1018 1019
                let min = 1u128 << (bits - 1);
                let max = min - 1;
                smallvec![make_range(min, max)]
            }
            &ty::Uint(uty) => {
1020
                let size = Integer::from_uint_ty(&cx.tcx, uty).size();
N
Nadrieril 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
                let max = size.truncate(u128::MAX);
                smallvec![make_range(0, max)]
            }
            // If `exhaustive_patterns` is disabled and our scrutinee is the never type, we cannot
            // expose its emptiness. The exception is if the pattern is at the top level, because we
            // want empty matches to be considered exhaustive.
            ty::Never if !cx.tcx.features().exhaustive_patterns && !pcx.is_top_level => {
                smallvec![NonExhaustive]
            }
            ty::Never => smallvec![],
            _ if cx.is_uninhabited(pcx.ty) => smallvec![],
            ty::Adt(..) | ty::Tuple(..) | ty::Ref(..) => smallvec![Single],
            // This type is one for which we cannot list constructors, like `str` or `f64`.
            _ => smallvec![NonExhaustive],
        };
1036

N
Nadrieril 已提交
1037
        SplitWildcard { matrix_ctors: Vec::new(), all_ctors }
1038 1039 1040 1041
    }

    /// Pass a set of constructors relative to which to split this one. Don't call twice, it won't
    /// do what you want.
1042 1043 1044 1045 1046 1047 1048
    pub(super) fn split<'a>(
        &mut self,
        pcx: PatCtxt<'_, '_, 'tcx>,
        ctors: impl Iterator<Item = &'a Constructor<'tcx>> + Clone,
    ) where
        'tcx: 'a,
    {
1049
        // Since `all_ctors` never contains wildcards, this won't recurse further.
1050 1051 1052
        self.all_ctors =
            self.all_ctors.iter().flat_map(|ctor| ctor.split(pcx, ctors.clone())).collect();
        self.matrix_ctors = ctors.filter(|c| !c.is_wildcard()).cloned().collect();
1053 1054
    }

1055 1056 1057
    /// Whether there are any value constructors for this type that are not present in the matrix.
    fn any_missing(&self, pcx: PatCtxt<'_, '_, 'tcx>) -> bool {
        self.iter_missing(pcx).next().is_some()
1058 1059
    }

1060
    /// Iterate over the constructors for this type that are not present in the matrix.
1061
    pub(super) fn iter_missing<'a, 'p>(
1062 1063 1064
        &'a self,
        pcx: PatCtxt<'a, 'p, 'tcx>,
    ) -> impl Iterator<Item = &'a Constructor<'tcx>> + Captures<'p> {
1065 1066 1067 1068 1069 1070 1071
        self.all_ctors.iter().filter(move |ctor| !ctor.is_covered_by_any(pcx, &self.matrix_ctors))
    }

    /// Return the set of constructors resulting from splitting the wildcard. As explained at the
    /// top of the file, if any constructors are missing we can ignore the present ones.
    fn into_ctors(self, pcx: PatCtxt<'_, '_, 'tcx>) -> SmallVec<[Constructor<'tcx>; 1]> {
        if self.any_missing(pcx) {
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
            // Some constructors are missing, thus we can specialize with the special `Missing`
            // constructor, which stands for those constructors that are not seen in the matrix,
            // and matches the same rows as any of them (namely the wildcard rows). See the top of
            // the file for details.
            // However, when all constructors are missing we can also specialize with the full
            // `Wildcard` constructor. The difference will depend on what we want in diagnostics.

            // If some constructors are missing, we typically want to report those constructors,
            // e.g.:
            // ```
            //     enum Direction { N, S, E, W }
            //     let Direction::N = ...;
            // ```
            // we can report 3 witnesses: `S`, `E`, and `W`.
            //
            // However, if the user didn't actually specify a constructor
            // in this arm, e.g., in
            // ```
            //     let x: (Direction, Direction, bool) = ...;
            //     let (_, _, false) = x;
            // ```
            // we don't want to show all 16 possible witnesses `(<direction-1>, <direction-2>,
            // true)` - we are satisfied with `(_, _, true)`. So if all constructors are missing we
            // prefer to report just a wildcard `_`.
            //
            // The exception is: if we are at the top-level, for example in an empty match, we
            // sometimes prefer reporting the list of constructors instead of just `_`.
            let report_when_all_missing = pcx.is_top_level && !IntRange::is_integral(pcx.ty);
            let ctor = if !self.matrix_ctors.is_empty() || report_when_all_missing {
1101 1102 1103 1104
                if pcx.is_non_exhaustive {
                    Missing {
                        nonexhaustive_enum_missing_real_variants: self
                            .iter_missing(pcx)
1105
                            .any(|c| !(c.is_non_exhaustive() || c.is_unstable_variant(pcx))),
1106 1107 1108 1109
                    }
                } else {
                    Missing { nonexhaustive_enum_missing_real_variants: false }
                }
1110 1111 1112 1113
            } else {
                Wildcard
            };
            return smallvec![ctor];
1114 1115 1116 1117
        }

        // All the constructors are present in the matrix, so we just go through them all.
        self.all_ctors
1118 1119 1120 1121 1122 1123
    }
}

/// A value can be decomposed into a constructor applied to some fields. This struct represents
/// those fields, generalized to allow patterns in each field. See also `Constructor`.
///
N
Nadrieril 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
/// This is constructed for a constructor using [`Fields::wildcards()`]. The idea is that
/// [`Fields::wildcards()`] constructs a list of fields where all entries are wildcards, and then
/// given a pattern we fill some of the fields with its subpatterns.
/// In the following example `Fields::wildcards` returns `[_, _, _, _]`. Then in
/// `extract_pattern_arguments` we fill some of the entries, and the result is
/// `[Some(0), _, _, _]`.
/// ```rust
/// let x: [Option<u8>; 4] = foo();
/// match x {
///     [Some(0), ..] => {}
/// }
/// ```
///
/// Note that the number of fields of a constructor may not match the fields declared in the
/// original struct/variant. This happens if a private or `non_exhaustive` field is uninhabited,
/// because the code mustn't observe that it is uninhabited. In that case that field is not
/// included in `fields`. For that reason, when you have a `mir::Field` you must use
/// `index_with_declared_idx`.
N
Nadrieril 已提交
1142
#[derive(Debug, Clone, Copy)]
N
Nadrieril 已提交
1143
pub(super) struct Fields<'p, 'tcx> {
N
Nadrieril 已提交
1144
    fields: &'p [DeconstructedPat<'p, 'tcx>],
1145 1146 1147
}

impl<'p, 'tcx> Fields<'p, 'tcx> {
N
Nadrieril 已提交
1148
    fn empty() -> Self {
N
Nadrieril 已提交
1149
        Fields { fields: &[] }
N
Nadrieril 已提交
1150 1151
    }

1152 1153
    fn singleton(cx: &MatchCheckCtxt<'p, 'tcx>, field: DeconstructedPat<'p, 'tcx>) -> Self {
        let field: &_ = cx.pattern_arena.alloc(field);
N
Nadrieril 已提交
1154
        Fields { fields: std::slice::from_ref(field) }
1155 1156 1157
    }

    pub(super) fn from_iter(
N
Nadrieril 已提交
1158
        cx: &MatchCheckCtxt<'p, 'tcx>,
1159
        fields: impl IntoIterator<Item = DeconstructedPat<'p, 'tcx>>,
N
Nadrieril 已提交
1160
    ) -> Self {
N
Nadrieril 已提交
1161 1162
        let fields: &[_] = cx.pattern_arena.alloc_from_iter(fields);
        Fields { fields }
1163 1164 1165 1166 1167 1168
    }

    fn wildcards_from_tys(
        cx: &MatchCheckCtxt<'p, 'tcx>,
        tys: impl IntoIterator<Item = Ty<'tcx>>,
    ) -> Self {
1169
        Fields::from_iter(cx, tys.into_iter().map(DeconstructedPat::wildcard))
1170 1171
    }

N
Nadrieril 已提交
1172 1173 1174 1175 1176 1177 1178 1179
    // In the cases of either a `#[non_exhaustive]` field list or a non-public field, we hide
    // uninhabited fields in order not to reveal the uninhabitedness of the whole variant.
    // This lists the fields we keep along with their types.
    fn list_variant_nonhidden_fields<'a>(
        cx: &'a MatchCheckCtxt<'p, 'tcx>,
        ty: Ty<'tcx>,
        variant: &'a VariantDef,
    ) -> impl Iterator<Item = (Field, Ty<'tcx>)> + Captures<'a> + Captures<'p> {
E
est31 已提交
1180
        let ty::Adt(adt, substs) = ty.kind() else { bug!() };
N
Nadrieril 已提交
1181
        // Whether we must not match the fields of this variant exhaustively.
1182
        let is_non_exhaustive = variant.is_field_list_non_exhaustive() && !adt.did().is_local();
N
Nadrieril 已提交
1183 1184 1185

        variant.fields.iter().enumerate().filter_map(move |(i, field)| {
            let ty = field.ty(cx.tcx, substs);
1186 1187
            // `field.ty()` doesn't normalize after substituting.
            let ty = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
N
Nadrieril 已提交
1188 1189
            let is_visible = adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx);
            let is_uninhabited = cx.is_uninhabited(ty);
1190

N
Nadrieril 已提交
1191 1192 1193 1194 1195 1196 1197 1198
            if is_uninhabited && (!is_visible || is_non_exhaustive) {
                None
            } else {
                Some((Field::new(i), ty))
            }
        })
    }

1199 1200
    /// Creates a new list of wildcard fields for a given constructor. The result must have a
    /// length of `constructor.arity()`.
N
Nadrieril 已提交
1201 1202 1203 1204 1205
    pub(super) fn wildcards(
        cx: &MatchCheckCtxt<'p, 'tcx>,
        ty: Ty<'tcx>,
        constructor: &Constructor<'tcx>,
    ) -> Self {
1206 1207
        let ret = match constructor {
            Single | Variant(_) => match ty.kind() {
L
lcnr 已提交
1208
                ty::Tuple(fs) => Fields::wildcards_from_tys(cx, fs.iter()),
N
Nadrieril 已提交
1209
                ty::Ref(_, rty, _) => Fields::wildcards_from_tys(cx, once(*rty)),
1210 1211
                ty::Adt(adt, substs) => {
                    if adt.is_box() {
1212 1213
                        // The only legal patterns of type `Box` (outside `std`) are `_` and box
                        // patterns. If we're here we can assume this is a box pattern.
N
Nadrieril 已提交
1214
                        Fields::wildcards_from_tys(cx, once(substs.type_at(0)))
1215
                    } else {
1216
                        let variant = &adt.variant(constructor.variant_index_for_adt(*adt));
N
Nadrieril 已提交
1217 1218 1219
                        let tys = Fields::list_variant_nonhidden_fields(cx, ty, variant)
                            .map(|(_, ty)| ty);
                        Fields::wildcards_from_tys(cx, tys)
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
                    }
                }
                _ => bug!("Unexpected type for `Single` constructor: {:?}", ty),
            },
            Slice(slice) => match *ty.kind() {
                ty::Slice(ty) | ty::Array(ty, _) => {
                    let arity = slice.arity();
                    Fields::wildcards_from_tys(cx, (0..arity).map(|_| ty))
                }
                _ => bug!("bad slice pattern {:?} {:?}", constructor, ty),
            },
1231 1232 1233 1234 1235 1236
            Str(..)
            | FloatRange(..)
            | IntRange(..)
            | NonExhaustive
            | Opaque
            | Missing { .. }
N
Nadrieril 已提交
1237
            | Wildcard => Fields::empty(),
1238 1239 1240
            Or => {
                bug!("called `Fields::wildcards` on an `Or` ctor")
            }
1241 1242 1243 1244 1245
        };
        debug!("Fields::wildcards({:?}, {:?}) = {:#?}", constructor, ty, ret);
        ret
    }

N
Nadrieril 已提交
1246 1247 1248
    /// Returns the list of patterns.
    pub(super) fn iter_patterns<'a>(
        &'a self,
1249
    ) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
N
Nadrieril 已提交
1250
        self.fields.iter()
N
Nadrieril 已提交
1251
    }
1252
}
N
Nadrieril 已提交
1253

1254 1255
/// Values and patterns can be represented as a constructor applied to some fields. This represents
/// a pattern in this form.
1256
/// This also keeps track of whether the pattern has been found reachable during analysis. For this
1257
/// reason we should be careful not to clone patterns for which we care about that. Use
1258
/// `clone_and_forget_reachability` if you're sure.
1259 1260 1261 1262 1263
pub(crate) struct DeconstructedPat<'p, 'tcx> {
    ctor: Constructor<'tcx>,
    fields: Fields<'p, 'tcx>,
    ty: Ty<'tcx>,
    span: Span,
1264
    reachable: Cell<bool>,
1265 1266 1267 1268
}

impl<'p, 'tcx> DeconstructedPat<'p, 'tcx> {
    pub(super) fn wildcard(ty: Ty<'tcx>) -> Self {
1269
        Self::new(Wildcard, Fields::empty(), ty, DUMMY_SP)
1270 1271
    }

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
    pub(super) fn new(
        ctor: Constructor<'tcx>,
        fields: Fields<'p, 'tcx>,
        ty: Ty<'tcx>,
        span: Span,
    ) -> Self {
        DeconstructedPat { ctor, fields, ty, span, reachable: Cell::new(false) }
    }

    /// Construct a pattern that matches everything that starts with this constructor.
    /// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern
    /// `Some(_)`.
    pub(super) fn wild_from_ctor(pcx: PatCtxt<'_, 'p, 'tcx>, ctor: Constructor<'tcx>) -> Self {
        let fields = Fields::wildcards(pcx.cx, pcx.ty, &ctor);
        DeconstructedPat::new(ctor, fields, pcx.ty, DUMMY_SP)
    }

    /// Clone this value. This method emphasizes that cloning loses reachability information and
    /// should be done carefully.
    pub(super) fn clone_and_forget_reachability(&self) -> Self {
        DeconstructedPat::new(self.ctor.clone(), self.fields, self.ty, self.span)
1293 1294 1295 1296 1297
    }

    pub(crate) fn from_pat(cx: &MatchCheckCtxt<'p, 'tcx>, pat: &Pat<'tcx>) -> Self {
        let mkpat = |pat| DeconstructedPat::from_pat(cx, pat);
        let ctor;
N
Nadrieril 已提交
1298
        let fields;
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
        match pat.kind.as_ref() {
            PatKind::AscribeUserType { subpattern, .. } => return mkpat(subpattern),
            PatKind::Binding { subpattern: Some(subpat), .. } => return mkpat(subpat),
            PatKind::Binding { subpattern: None, .. } | PatKind::Wild => {
                ctor = Wildcard;
                fields = Fields::empty();
            }
            PatKind::Deref { subpattern } => {
                ctor = Single;
                fields = Fields::singleton(cx, mkpat(subpattern));
            }
            PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
                match pat.ty.kind() {
                    ty::Tuple(fs) => {
                        ctor = Single;
L
lcnr 已提交
1314 1315
                        let mut wilds: SmallVec<[_; 2]> =
                            fs.iter().map(DeconstructedPat::wildcard).collect();
1316
                        for pat in subpatterns {
N
Nadrieril 已提交
1317
                            wilds[pat.field.index()] = mkpat(&pat.pattern);
1318
                        }
N
Nadrieril 已提交
1319
                        fields = Fields::from_iter(cx, wilds);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
                    }
                    ty::Adt(adt, substs) if adt.is_box() => {
                        // The only legal patterns of type `Box` (outside `std`) are `_` and box
                        // patterns. If we're here we can assume this is a box pattern.
                        // FIXME(Nadrieril): A `Box` can in theory be matched either with `Box(_,
                        // _)` or a box pattern. As a hack to avoid an ICE with the former, we
                        // ignore other fields than the first one. This will trigger an error later
                        // anyway.
                        // See https://github.com/rust-lang/rust/issues/82772 ,
                        // explanation: https://github.com/rust-lang/rust/pull/82789#issuecomment-796921977
                        // The problem is that we can't know from the type whether we'll match
                        // normally or through box-patterns. We'll have to figure out a proper
                        // solution when we introduce generalized deref patterns. Also need to
                        // prevent mixing of those two options.
                        let pat = subpatterns.into_iter().find(|pat| pat.field.index() == 0);
                        let pat = if let Some(pat) = pat {
                            mkpat(&pat.pattern)
                        } else {
                            DeconstructedPat::wildcard(substs.type_at(0))
                        };
                        ctor = Single;
                        fields = Fields::singleton(cx, pat);
                    }
                    ty::Adt(adt, _) => {
                        ctor = match pat.kind.as_ref() {
                            PatKind::Leaf { .. } => Single,
                            PatKind::Variant { variant_index, .. } => Variant(*variant_index),
                            _ => bug!(),
                        };
1349
                        let variant = &adt.variant(ctor.variant_index_for_adt(*adt));
1350 1351 1352 1353 1354 1355 1356 1357 1358
                        // For each field in the variant, we store the relevant index into `self.fields` if any.
                        let mut field_id_to_id: Vec<Option<usize>> =
                            (0..variant.fields.len()).map(|_| None).collect();
                        let tys = Fields::list_variant_nonhidden_fields(cx, pat.ty, variant)
                            .enumerate()
                            .map(|(i, (field, ty))| {
                                field_id_to_id[field.index()] = Some(i);
                                ty
                            });
N
Nadrieril 已提交
1359 1360
                        let mut wilds: SmallVec<[_; 2]> =
                            tys.map(DeconstructedPat::wildcard).collect();
1361 1362
                        for pat in subpatterns {
                            if let Some(i) = field_id_to_id[pat.field.index()] {
N
Nadrieril 已提交
1363
                                wilds[i] = mkpat(&pat.pattern);
1364 1365
                            }
                        }
N
Nadrieril 已提交
1366
                        fields = Fields::from_iter(cx, wilds);
1367 1368 1369 1370 1371
                    }
                    _ => bug!("pattern has unexpected type: pat: {:?}, ty: {:?}", pat, pat.ty),
                }
            }
            PatKind::Constant { value } => {
N
Nicholas Nethercote 已提交
1372
                if let Some(int_range) = IntRange::from_const(cx.tcx, cx.param_env, *value) {
1373 1374 1375 1376 1377
                    ctor = IntRange(int_range);
                    fields = Fields::empty();
                } else {
                    match pat.ty.kind() {
                        ty::Float(_) => {
N
Nicholas Nethercote 已提交
1378
                            ctor = FloatRange(*value, *value, RangeEnd::Included);
1379 1380 1381 1382 1383 1384 1385 1386 1387
                            fields = Fields::empty();
                        }
                        ty::Ref(_, t, _) if t.is_str() => {
                            // We want a `&str` constant to behave like a `Deref` pattern, to be compatible
                            // with other `Deref` patterns. This could have been done in `const_to_pat`,
                            // but that causes issues with the rest of the matching code.
                            // So here, the constructor for a `"foo"` pattern is `&` (represented by
                            // `Single`), and has one field. That field has constructor `Str(value)` and no
                            // fields.
1388 1389
                            // Note: `t` is `str`, not `&str`.
                            let subpattern =
N
Nicholas Nethercote 已提交
1390
                                DeconstructedPat::new(Str(*value), Fields::empty(), *t, pat.span);
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
                            ctor = Single;
                            fields = Fields::singleton(cx, subpattern)
                        }
                        // All constants that can be structurally matched have already been expanded
                        // into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
                        // opaque.
                        _ => {
                            ctor = Opaque;
                            fields = Fields::empty();
                        }
                    }
                }
            }
            &PatKind::Range(PatRange { lo, hi, end }) => {
N
Nicholas Nethercote 已提交
1405
                let ty = lo.ty();
1406 1407
                ctor = if let Some(int_range) = IntRange::from_range(
                    cx.tcx,
N
Nicholas Nethercote 已提交
1408 1409
                    lo.eval_bits(cx.tcx, cx.param_env, lo.ty()),
                    hi.eval_bits(cx.tcx, cx.param_env, hi.ty()),
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
                    ty,
                    &end,
                ) {
                    IntRange(int_range)
                } else {
                    FloatRange(lo, hi, end)
                };
                fields = Fields::empty();
            }
            PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
                let array_len = match pat.ty.kind() {
                    ty::Array(_, length) => Some(length.eval_usize(cx.tcx, cx.param_env) as usize),
                    ty::Slice(_) => None,
                    _ => span_bug!(pat.span, "bad ty {:?} for slice pattern", pat.ty),
                };
                let kind = if slice.is_some() {
                    VarLen(prefix.len(), suffix.len())
                } else {
                    FixedLen(prefix.len() + suffix.len())
                };
                ctor = Slice(Slice::new(array_len, kind));
                fields = Fields::from_iter(cx, prefix.iter().chain(suffix).map(mkpat));
            }
            PatKind::Or { .. } => {
                ctor = Or;
                let pats = expand_or_pat(pat);
                fields = Fields::from_iter(cx, pats.into_iter().map(mkpat));
            }
        }
1439
        DeconstructedPat::new(ctor, fields, pat.ty, pat.span)
1440 1441 1442 1443 1444 1445 1446 1447 1448
    }

    pub(crate) fn to_pat(&self, cx: &MatchCheckCtxt<'p, 'tcx>) -> Pat<'tcx> {
        let is_wildcard = |pat: &Pat<'_>| {
            matches!(*pat.kind, PatKind::Binding { subpattern: None, .. } | PatKind::Wild)
        };
        let mut subpatterns = self.iter_fields().map(|p| p.to_pat(cx));
        let pat = match &self.ctor {
            Single | Variant(_) => match self.ty.kind() {
N
Nadrieril 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
                ty::Tuple(..) => PatKind::Leaf {
                    subpatterns: subpatterns
                        .enumerate()
                        .map(|(i, p)| FieldPat { field: Field::new(i), pattern: p })
                        .collect(),
                },
                ty::Adt(adt_def, _) if adt_def.is_box() => {
                    // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
                    // of `std`). So this branch is only reachable when the feature is enabled and
                    // the pattern is a box pattern.
                    PatKind::Deref { subpattern: subpatterns.next().unwrap() }
                }
1461
                ty::Adt(adt_def, substs) => {
1462 1463
                    let variant_index = self.ctor.variant_index_for_adt(*adt_def);
                    let variant = &adt_def.variant(variant_index);
1464 1465 1466 1467 1468 1469
                    let subpatterns = Fields::list_variant_nonhidden_fields(cx, self.ty, variant)
                        .zip(subpatterns)
                        .map(|((field, _ty), pattern)| FieldPat { field, pattern })
                        .collect();

                    if adt_def.is_enum() {
1470
                        PatKind::Variant { adt_def: *adt_def, substs, variant_index, subpatterns }
1471 1472 1473 1474 1475 1476 1477
                    } else {
                        PatKind::Leaf { subpatterns }
                    }
                }
                // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
                // be careful to reconstruct the correct constant pattern here. However a string
                // literal pattern will never be reported as a non-exhaustiveness witness, so we
1478
                // ignore this issue.
1479
                ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
1480
                _ => bug!("unexpected ctor for type {:?} {:?}", self.ctor, self.ty),
1481
            },
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
            Slice(slice) => {
                match slice.kind {
                    FixedLen(_) => PatKind::Slice {
                        prefix: subpatterns.collect(),
                        slice: None,
                        suffix: vec![],
                    },
                    VarLen(prefix, _) => {
                        let mut subpatterns = subpatterns.peekable();
                        let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix).collect();
                        if slice.array_len.is_some() {
                            // Improves diagnostics a bit: if the type is a known-size array, instead
                            // of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
                            // This is incorrect if the size is not known, since `[_, ..]` captures
                            // arrays of lengths `>= 1` whereas `[..]` captures any length.
                            while !prefix.is_empty() && is_wildcard(prefix.last().unwrap()) {
                                prefix.pop();
                            }
                            while subpatterns.peek().is_some()
                                && is_wildcard(subpatterns.peek().unwrap())
                            {
                                subpatterns.next();
                            }
1505
                        }
1506 1507 1508
                        let suffix: Vec<_> = subpatterns.collect();
                        let wild = Pat::wildcard_from_ty(self.ty);
                        PatKind::Slice { prefix, slice: Some(wild), suffix }
1509 1510
                    }
                }
1511
            }
1512 1513
            &Str(value) => PatKind::Constant { value },
            &FloatRange(lo, hi, end) => PatKind::Range(PatRange { lo, hi, end }),
1514 1515
            IntRange(range) => return range.to_pat(cx.tcx, self.ty),
            Wildcard | NonExhaustive => PatKind::Wild,
1516
            Missing { .. } => bug!(
1517 1518
                "trying to convert a `Missing` constructor into a `Pat`; this is probably a bug,
                `Missing` should have been processed in `apply_constructors`"
1519
            ),
1520 1521 1522
            Opaque | Or => {
                bug!("can't convert to pattern: {:?}", self)
            }
1523 1524
        };

1525
        Pat { ty: self.ty, span: DUMMY_SP, kind: Box::new(pat) }
1526 1527
    }

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
    pub(super) fn is_or_pat(&self) -> bool {
        matches!(self.ctor, Or)
    }

    pub(super) fn ctor(&self) -> &Constructor<'tcx> {
        &self.ctor
    }
    pub(super) fn ty(&self) -> Ty<'tcx> {
        self.ty
    }
    pub(super) fn span(&self) -> Span {
        self.span
1540 1541
    }

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
    pub(super) fn iter_fields<'a>(
        &'a self,
    ) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
        self.fields.iter_patterns()
    }

    /// Specialize this pattern with a constructor.
    /// `other_ctor` can be different from `self.ctor`, but must be covered by it.
    pub(super) fn specialize<'a>(
        &'a self,
N
Nadrieril 已提交
1552
        cx: &MatchCheckCtxt<'p, 'tcx>,
1553
        other_ctor: &Constructor<'tcx>,
N
Nadrieril 已提交
1554
    ) -> SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]> {
1555 1556 1557
        match (&self.ctor, other_ctor) {
            (Wildcard, _) => {
                // We return a wildcard for each field of `other_ctor`.
N
Nadrieril 已提交
1558
                Fields::wildcards(cx, self.ty, other_ctor).iter_patterns().collect()
1559
            }
1560 1561 1562 1563 1564 1565
            (Slice(self_slice), Slice(other_slice))
                if self_slice.arity() != other_slice.arity() =>
            {
                // The only tricky case: two slices of different arity. Since `self_slice` covers
                // `other_slice`, `self_slice` must be `VarLen`, i.e. of the form
                // `[prefix, .., suffix]`. Moreover `other_slice` is guaranteed to have a larger
N
Nadrieril 已提交
1566 1567
                // arity. So we fill the middle part with enough wildcards to reach the length of
                // the new, larger slice.
1568 1569 1570
                match self_slice.kind {
                    FixedLen(_) => bug!("{:?} doesn't cover {:?}", self_slice, other_slice),
                    VarLen(prefix, suffix) => {
E
est31 已提交
1571 1572
                        let (ty::Slice(inner_ty) | ty::Array(inner_ty, _)) = *self.ty.kind() else {
                            bug!("bad slice pattern {:?} {:?}", self.ctor, self.ty);
N
Nadrieril 已提交
1573
                        };
N
Nadrieril 已提交
1574 1575 1576 1577
                        let prefix = &self.fields.fields[..prefix];
                        let suffix = &self.fields.fields[self_slice.arity() - suffix..];
                        let wildcard: &_ =
                            cx.pattern_arena.alloc(DeconstructedPat::wildcard(inner_ty));
1578
                        let extra_wildcards = other_slice.arity() - self_slice.arity();
N
Nadrieril 已提交
1579 1580
                        let extra_wildcards = (0..extra_wildcards).map(|_| wildcard);
                        prefix.iter().chain(extra_wildcards).chain(suffix).collect()
1581 1582 1583
                    }
                }
            }
N
Nadrieril 已提交
1584
            _ => self.fields.iter_patterns().collect(),
1585 1586
        }
    }
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

    /// We keep track for each pattern if it was ever reachable during the analysis. This is used
    /// with `unreachable_spans` to report unreachable subpatterns arising from or patterns.
    pub(super) fn set_reachable(&self) {
        self.reachable.set(true)
    }
    pub(super) fn is_reachable(&self) -> bool {
        self.reachable.get()
    }

    /// Report the spans of subpatterns that were not reachable, if any.
    pub(super) fn unreachable_spans(&self) -> Vec<Span> {
        let mut spans = Vec::new();
        self.collect_unreachable_spans(&mut spans);
        spans
    }

    fn collect_unreachable_spans(&self, spans: &mut Vec<Span>) {
        // We don't look at subpatterns if we already reported the whole pattern as unreachable.
        if !self.is_reachable() {
            spans.push(self.span);
        } else {
            for p in self.iter_fields() {
                p.collect_unreachable_spans(spans);
            }
        }
    }
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
}

/// This is mostly copied from the `Pat` impl. This is best effort and not good enough for a
/// `Display` impl.
impl<'p, 'tcx> fmt::Debug for DeconstructedPat<'p, 'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // Printing lists is a chore.
        let mut first = true;
        let mut start_or_continue = |s| {
            if first {
                first = false;
                ""
            } else {
                s
            }
        };
        let mut start_or_comma = || start_or_continue(", ");

        match &self.ctor {
            Single | Variant(_) => match self.ty.kind() {
                ty::Adt(def, _) if def.is_box() => {
                    // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
                    // of `std`). So this branch is only reachable when the feature is enabled and
                    // the pattern is a box pattern.
                    let subpattern = self.iter_fields().next().unwrap();
                    write!(f, "box {:?}", subpattern)
                }
                ty::Adt(..) | ty::Tuple(..) => {
                    let variant = match self.ty.kind() {
1643
                        ty::Adt(adt, _) => Some(adt.variant(self.ctor.variant_index_for_adt(*adt))),
1644 1645 1646 1647 1648
                        ty::Tuple(_) => None,
                        _ => unreachable!(),
                    };

                    if let Some(variant) = variant {
1649
                        write!(f, "{}", variant.name)?;
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
                    }

                    // Without `cx`, we can't know which field corresponds to which, so we can't
                    // get the names of the fields. Instead we just display everything as a suple
                    // struct, which should be good enough.
                    write!(f, "(")?;
                    for p in self.iter_fields() {
                        write!(f, "{}", start_or_comma())?;
                        write!(f, "{:?}", p)?;
                    }
                    write!(f, ")")
                }
                // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
                // be careful to detect strings here. However a string literal pattern will never
                // be reported as a non-exhaustiveness witness, so we can ignore this issue.
                ty::Ref(_, _, mutbl) => {
                    let subpattern = self.iter_fields().next().unwrap();
                    write!(f, "&{}{:?}", mutbl.prefix_str(), subpattern)
                }
                _ => write!(f, "_"),
            },
            Slice(slice) => {
                let mut subpatterns = self.fields.iter_patterns();
                write!(f, "[")?;
                match slice.kind {
                    FixedLen(_) => {
                        for p in subpatterns {
                            write!(f, "{}{:?}", start_or_comma(), p)?;
N
Nadrieril 已提交
1678 1679
                        }
                    }
1680 1681 1682 1683 1684 1685 1686 1687
                    VarLen(prefix_len, _) => {
                        for p in subpatterns.by_ref().take(prefix_len) {
                            write!(f, "{}{:?}", start_or_comma(), p)?;
                        }
                        write!(f, "{}", start_or_comma())?;
                        write!(f, "..")?;
                        for p in subpatterns {
                            write!(f, "{}{:?}", start_or_comma(), p)?;
N
Nadrieril 已提交
1688 1689 1690
                        }
                    }
                }
1691
                write!(f, "]")
1692
            }
1693 1694 1695 1696
            &FloatRange(lo, hi, end) => {
                write!(f, "{}", lo)?;
                write!(f, "{}", end)?;
                write!(f, "{}", hi)
1697
            }
1698
            IntRange(range) => write!(f, "{:?}", range), // Best-effort, will render e.g. `false` as `0..=0`
1699
            Wildcard | Missing { .. } | NonExhaustive => write!(f, "_ : {:?}", self.ty),
1700 1701 1702
            Or => {
                for pat in self.iter_fields() {
                    write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
1703
                }
1704 1705 1706 1707 1708
                Ok(())
            }
            Str(value) => write!(f, "{}", value),
            Opaque => write!(f, "<constant pattern>"),
        }
1709 1710
    }
}