deconstruct_pat.rs 58.9 KB
Newer Older
1 2 3 4 5 6 7
//! This module provides functions to deconstruct and reconstruct patterns into a constructor
//! applied to some fields. This is used by the `_match` module to compute pattern
//! usefulness/exhaustiveness.
use self::Constructor::*;
use self::SliceKind::*;

use super::compare_const_vals;
N
Nadrieril 已提交
8
use super::usefulness::{MatchCheckCtxt, PatCtxt};
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
use super::{FieldPat, Pat, PatKind, PatRange};

use rustc_data_structures::captures::Captures;
use rustc_index::vec::Idx;

use rustc_attr::{SignedInt, UnsignedInt};
use rustc_hir::def_id::DefId;
use rustc_hir::{HirId, RangeEnd};
use rustc_middle::mir::interpret::ConstValue;
use rustc_middle::mir::Field;
use rustc_middle::ty::layout::IntegerExt;
use rustc_middle::ty::{self, Const, Ty, TyCtxt};
use rustc_session::lint;
use rustc_span::{Span, DUMMY_SP};
use rustc_target::abi::{Integer, Size, VariantIdx};

use smallvec::{smallvec, SmallVec};
use std::cmp::{self, max, min, Ordering};
use std::iter::IntoIterator;
use std::ops::RangeInclusive;

/// An inclusive interval, used for precise integer exhaustiveness checking.
/// `IntRange`s always store a contiguous range. This means that values are
/// encoded such that `0` encodes the minimum value for the integer,
/// regardless of the signedness.
/// For example, the pattern `-128..=127i8` is encoded as `0..=255`.
/// This makes comparisons and arithmetic on interval endpoints much more
/// straightforward. See `signed_bias` for details.
///
/// `IntRange` is never used to encode an empty range or a "range" that wraps
/// around the (offset) space: i.e., `range.lo <= range.hi`.
40 41
#[derive(Clone, Debug, PartialEq, Eq)]
pub(super) struct IntRange {
42 43 44
    range: RangeInclusive<u128>,
}

45
impl IntRange {
46 47 48 49 50 51 52 53 54 55 56 57 58 59
    #[inline]
    fn is_integral(ty: Ty<'_>) -> bool {
        matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_) | ty::Bool)
    }

    fn is_singleton(&self) -> bool {
        self.range.start() == self.range.end()
    }

    fn boundaries(&self) -> (u128, u128) {
        (*self.range.start(), *self.range.end())
    }

    #[inline]
60
    fn integral_size_and_signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> Option<(Size, u128)> {
61 62 63 64 65 66 67 68 69 70 71 72 73
        match *ty.kind() {
            ty::Bool => Some((Size::from_bytes(1), 0)),
            ty::Char => Some((Size::from_bytes(4), 0)),
            ty::Int(ity) => {
                let size = Integer::from_attr(&tcx, SignedInt(ity)).size();
                Some((size, 1u128 << (size.bits() as u128 - 1)))
            }
            ty::Uint(uty) => Some((Integer::from_attr(&tcx, UnsignedInt(uty)).size(), 0)),
            _ => None,
        }
    }

    #[inline]
74
    fn from_const<'tcx>(
75 76 77
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        value: &Const<'tcx>,
78
    ) -> Option<IntRange> {
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        if let Some((target_size, bias)) = Self::integral_size_and_signed_bias(tcx, value.ty) {
            let ty = value.ty;
            let val = (|| {
                if let ty::ConstKind::Value(ConstValue::Scalar(scalar)) = value.val {
                    // For this specific pattern we can skip a lot of effort and go
                    // straight to the result, after doing a bit of checking. (We
                    // could remove this branch and just fall through, which
                    // is more general but much slower.)
                    if let Ok(bits) = scalar.to_bits_or_ptr(target_size, &tcx) {
                        return Some(bits);
                    }
                }
                // This is a more general form of the previous case.
                value.try_eval_bits(tcx, param_env, ty)
            })()?;
            let val = val ^ bias;
95
            Some(IntRange { range: val..=val })
96 97 98 99 100 101
        } else {
            None
        }
    }

    #[inline]
102
    fn from_range<'tcx>(
103 104 105 106 107
        tcx: TyCtxt<'tcx>,
        lo: u128,
        hi: u128,
        ty: Ty<'tcx>,
        end: &RangeEnd,
108
    ) -> Option<IntRange> {
109 110 111 112 113 114 115 116 117 118
        if Self::is_integral(ty) {
            // Perform a shift if the underlying types are signed,
            // which makes the interval arithmetic simpler.
            let bias = IntRange::signed_bias(tcx, ty);
            let (lo, hi) = (lo ^ bias, hi ^ bias);
            let offset = (*end == RangeEnd::Excluded) as u128;
            if lo > hi || (lo == hi && *end == RangeEnd::Excluded) {
                // This should have been caught earlier by E0030.
                bug!("malformed range pattern: {}..={}", lo, (hi - offset));
            }
119
            Some(IntRange { range: lo..=(hi - offset) })
120 121 122 123 124 125
        } else {
            None
        }
    }

    // The return value of `signed_bias` should be XORed with an endpoint to encode/decode it.
126
    fn signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> u128 {
127 128 129 130 131 132 133 134 135 136 137 138 139
        match *ty.kind() {
            ty::Int(ity) => {
                let bits = Integer::from_attr(&tcx, SignedInt(ity)).size().bits() as u128;
                1u128 << (bits - 1)
            }
            _ => 0,
        }
    }

    fn is_subrange(&self, other: &Self) -> bool {
        other.range.start() <= self.range.start() && self.range.end() <= other.range.end()
    }

140
    fn intersection(&self, other: &Self) -> Option<Self> {
141 142
        let (lo, hi) = self.boundaries();
        let (other_lo, other_hi) = other.boundaries();
143
        if lo <= other_hi && other_lo <= hi {
144
            Some(IntRange { range: max(lo, other_lo)..=min(hi, other_hi) })
145
        } else {
146
            None
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        }
    }

    fn suspicious_intersection(&self, other: &Self) -> bool {
        // `false` in the following cases:
        // 1     ----      // 1  ----------   // 1 ----        // 1       ----
        // 2  ----------   // 2     ----      // 2       ----  // 2 ----
        //
        // The following are currently `false`, but could be `true` in the future (#64007):
        // 1 ---------       // 1     ---------
        // 2     ----------  // 2 ----------
        //
        // `true` in the following cases:
        // 1 -------          // 1       -------
        // 2       --------   // 2 -------
        let (lo, hi) = self.boundaries();
        let (other_lo, other_hi) = other.boundaries();
N
Nadrieril 已提交
164
        (lo == other_hi || hi == other_lo) && !self.is_singleton() && !other.is_singleton()
165 166
    }

167
    fn to_pat<'tcx>(&self, tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Pat<'tcx> {
168 169
        let (lo, hi) = self.boundaries();

170
        let bias = IntRange::signed_bias(tcx, ty);
171 172
        let (lo, hi) = (lo ^ bias, hi ^ bias);

173 174 175
        let env = ty::ParamEnv::empty().and(ty);
        let lo_const = ty::Const::from_bits(tcx, lo, env);
        let hi_const = ty::Const::from_bits(tcx, hi, env);
176 177 178 179 180 181 182

        let kind = if lo == hi {
            PatKind::Constant { value: lo_const }
        } else {
            PatKind::Range(PatRange { lo: lo_const, hi: hi_const, end: RangeEnd::Included })
        };

183
        Pat { ty, span: DUMMY_SP, kind: Box::new(kind) }
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    }

    /// For exhaustive integer matching, some constructors are grouped within other constructors
    /// (namely integer typed values are grouped within ranges). However, when specialising these
    /// constructors, we want to be specialising for the underlying constructors (the integers), not
    /// the groups (the ranges). Thus we need to split the groups up. Splitting them up naïvely would
    /// mean creating a separate constructor for every single value in the range, which is clearly
    /// impractical. However, observe that for some ranges of integers, the specialisation will be
    /// identical across all values in that range (i.e., there are equivalence classes of ranges of
    /// constructors based on their `U(S(c, P), S(c, p))` outcome). These classes are grouped by
    /// the patterns that apply to them (in the matrix `P`). We can split the range whenever the
    /// patterns that apply to that range (specifically: the patterns that *intersect* with that range)
    /// change.
    /// Our solution, therefore, is to split the range constructor into subranges at every single point
    /// the group of intersecting patterns changes (using the method described below).
    /// And voilà! We're testing precisely those ranges that we need to, without any exhaustive matching
    /// on actual integers. The nice thing about this is that the number of subranges is linear in the
    /// number of rows in the matrix (i.e., the number of cases in the `match` statement), so we don't
    /// need to be worried about matching over gargantuan ranges.
    ///
    /// Essentially, given the first column of a matrix representing ranges, looking like the following:
    ///
    /// |------|  |----------| |-------|    ||
    ///    |-------| |-------|            |----| ||
    ///       |---------|
    ///
    /// We split the ranges up into equivalence classes so the ranges are no longer overlapping:
    ///
    /// |--|--|||-||||--||---|||-------|  |-|||| ||
    ///
    /// The logic for determining how to split the ranges is fairly straightforward: we calculate
    /// boundaries for each interval range, sort them, then create constructors for each new interval
    /// between every pair of boundary points. (This essentially sums up to performing the intuitive
    /// merging operation depicted above.)
218
    fn split<'p, 'tcx>(
219 220 221 222 223 224 225 226 227 228 229 230 231 232
        &self,
        pcx: PatCtxt<'_, 'p, 'tcx>,
        hir_id: Option<HirId>,
    ) -> SmallVec<[Constructor<'tcx>; 1]> {
        /// Represents a border between 2 integers. Because the intervals spanning borders
        /// must be able to cover every integer, we need to be able to represent
        /// 2^128 + 1 such borders.
        #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
        enum Border {
            JustBefore(u128),
            AfterMax,
        }

        // A function for extracting the borders of an integer interval.
233
        fn range_borders(r: IntRange) -> impl Iterator<Item = Border> {
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
            let (lo, hi) = r.range.into_inner();
            let from = Border::JustBefore(lo);
            let to = match hi.checked_add(1) {
                Some(m) => Border::JustBefore(m),
                None => Border::AfterMax,
            };
            vec![from, to].into_iter()
        }

        // Collect the span and range of all the intersecting ranges to lint on likely
        // incorrect range patterns. (#63987)
        let mut overlaps = vec![];
        let row_len = pcx.matrix.column_count().unwrap_or(0);
        // `borders` is the set of borders between equivalence classes: each equivalence
        // class lies between 2 borders.
        let row_borders = pcx
            .matrix
251 252 253
            .head_ctors_and_spans(pcx.cx)
            .filter_map(|(ctor, span)| Some((ctor.as_int_range()?, span)))
            .filter_map(|(range, span)| {
254
                let intersection = self.intersection(&range);
255 256 257 258 259
                let should_lint = self.suspicious_intersection(&range);
                if let (Some(range), 1, true) = (&intersection, row_len, should_lint) {
                    // FIXME: for now, only check for overlapping ranges on simple range
                    // patterns. Otherwise with the current logic the following is detected
                    // as overlapping:
260 261 262 263 264 265 266 267
                    // ```
                    // match (0u8, true) {
                    //   (0 ..= 125, false) => {}
                    //   (125 ..= 255, true) => {}
                    //   _ => {}
                    // }
                    // ```
                    overlaps.push((range.clone(), span));
268 269 270 271 272 273 274 275
                }
                intersection
            })
            .flat_map(range_borders);
        let self_borders = range_borders(self.clone());
        let mut borders: Vec<_> = row_borders.chain(self_borders).collect();
        borders.sort_unstable();

276
        self.lint_overlapping_range_endpoints(pcx, hir_id, overlaps);
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

        // We're going to iterate through every adjacent pair of borders, making sure that
        // each represents an interval of nonnegative length, and convert each such
        // interval into a constructor.
        borders
            .array_windows()
            .filter_map(|&pair| match pair {
                [Border::JustBefore(n), Border::JustBefore(m)] => {
                    if n < m {
                        Some(n..=(m - 1))
                    } else {
                        None
                    }
                }
                [Border::JustBefore(n), Border::AfterMax] => Some(n..=u128::MAX),
                [Border::AfterMax, _] => None,
            })
294
            .map(|range| IntRange { range })
295 296 297 298
            .map(IntRange)
            .collect()
    }

299
    fn lint_overlapping_range_endpoints(
300
        &self,
301
        pcx: PatCtxt<'_, '_, '_>,
302
        hir_id: Option<HirId>,
303
        overlaps: Vec<(IntRange, Span)>,
304 305
    ) {
        if let (true, Some(hir_id)) = (!overlaps.is_empty(), hir_id) {
306
            pcx.cx.tcx.struct_span_lint_hir(
307
                lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
308
                hir_id,
309
                pcx.span,
310
                |lint| {
311
                    let mut err = lint.build("multiple patterns overlap on their endpoints");
312
                    for (int_range, span) in overlaps {
313
                        err.span_label(
314
                            span,
315
                            &format!(
N
Nadrieril 已提交
316
                                "this range overlaps on `{}`...",
317
                                int_range.to_pat(pcx.cx.tcx, pcx.ty)
318 319 320
                            ),
                        );
                    }
N
Nadrieril 已提交
321 322
                    err.span_label(pcx.span, "... with this range");
                    err.note("you likely meant to write mutually exclusive ranges");
323 324 325 326 327 328 329
                    err.emit();
                },
            );
        }
    }

    /// See `Constructor::is_covered_by`
330 331
    fn is_covered_by(&self, other: &Self) -> bool {
        if self.intersection(other).is_some() {
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
            // Constructor splitting should ensure that all intersections we encounter are actually
            // inclusions.
            assert!(self.is_subrange(other));
            true
        } else {
            false
        }
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum SliceKind {
    /// Patterns of length `n` (`[x, y]`).
    FixedLen(u64),
    /// Patterns using the `..` notation (`[x, .., y]`).
    /// Captures any array constructor of `length >= i + j`.
    /// In the case where `array_len` is `Some(_)`,
    /// this indicates that we only care about the first `i` and the last `j` values of the array,
    /// and everything in between is a wildcard `_`.
    VarLen(u64, u64),
}

impl SliceKind {
    fn arity(self) -> u64 {
        match self {
            FixedLen(length) => length,
            VarLen(prefix, suffix) => prefix + suffix,
        }
    }

    /// Whether this pattern includes patterns of length `other_len`.
    fn covers_length(self, other_len: u64) -> bool {
        match self {
            FixedLen(len) => len == other_len,
            VarLen(prefix, suffix) => prefix + suffix <= other_len,
        }
    }
}

/// A constructor for array and slice patterns.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(super) struct Slice {
    /// `None` if the matched value is a slice, `Some(n)` if it is an array of size `n`.
    array_len: Option<u64>,
    /// The kind of pattern it is: fixed-length `[x, y]` or variable length `[x, .., y]`.
    kind: SliceKind,
}

impl Slice {
    fn new(array_len: Option<u64>, kind: SliceKind) -> Self {
        let kind = match (array_len, kind) {
            // If the middle `..` is empty, we effectively have a fixed-length pattern.
            (Some(len), VarLen(prefix, suffix)) if prefix + suffix >= len => FixedLen(len),
            _ => kind,
        };
        Slice { array_len, kind }
    }

    fn arity(self) -> u64 {
        self.kind.arity()
    }

    /// The exhaustiveness-checking paper does not include any details on
    /// checking variable-length slice patterns. However, they may be
    /// matched by an infinite collection of fixed-length array patterns.
    ///
    /// Checking the infinite set directly would take an infinite amount
    /// of time. However, it turns out that for each finite set of
    /// patterns `P`, all sufficiently large array lengths are equivalent:
    ///
    /// Each slice `s` with a "sufficiently-large" length `l ≥ L` that applies
    /// to exactly the subset `Pₜ` of `P` can be transformed to a slice
    /// `sₘ` for each sufficiently-large length `m` that applies to exactly
    /// the same subset of `P`.
    ///
    /// Because of that, each witness for reachability-checking of one
    /// of the sufficiently-large lengths can be transformed to an
    /// equally-valid witness of any other length, so we only have
    /// to check slices of the "minimal sufficiently-large length"
    /// and less.
    ///
    /// Note that the fact that there is a *single* `sₘ` for each `m`
    /// not depending on the specific pattern in `P` is important: if
    /// you look at the pair of patterns
    ///     `[true, ..]`
    ///     `[.., false]`
    /// Then any slice of length ≥1 that matches one of these two
    /// patterns can be trivially turned to a slice of any
    /// other length ≥1 that matches them and vice-versa,
    /// but the slice of length 2 `[false, true]` that matches neither
    /// of these patterns can't be turned to a slice from length 1 that
    /// matches neither of these patterns, so we have to consider
    /// slices from length 2 there.
    ///
    /// Now, to see that that length exists and find it, observe that slice
    /// patterns are either "fixed-length" patterns (`[_, _, _]`) or
    /// "variable-length" patterns (`[_, .., _]`).
    ///
    /// For fixed-length patterns, all slices with lengths *longer* than
    /// the pattern's length have the same outcome (of not matching), so
    /// as long as `L` is greater than the pattern's length we can pick
    /// any `sₘ` from that length and get the same result.
    ///
    /// For variable-length patterns, the situation is more complicated,
    /// because as seen above the precise value of `sₘ` matters.
    ///
    /// However, for each variable-length pattern `p` with a prefix of length
    /// `plₚ` and suffix of length `slₚ`, only the first `plₚ` and the last
    /// `slₚ` elements are examined.
    ///
    /// Therefore, as long as `L` is positive (to avoid concerns about empty
    /// types), all elements after the maximum prefix length and before
    /// the maximum suffix length are not examined by any variable-length
    /// pattern, and therefore can be added/removed without affecting
    /// them - creating equivalent patterns from any sufficiently-large
    /// length.
    ///
    /// Of course, if fixed-length patterns exist, we must be sure
    /// that our length is large enough to miss them all, so
    /// we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`
    ///
    /// for example, with the above pair of patterns, all elements
    /// but the first and last can be added/removed, so any
    /// witness of length ≥2 (say, `[false, false, true]`) can be
    /// turned to a witness from any other length ≥2.
    fn split<'p, 'tcx>(self, pcx: PatCtxt<'_, 'p, 'tcx>) -> SmallVec<[Constructor<'tcx>; 1]> {
        let (self_prefix, self_suffix) = match self.kind {
            VarLen(self_prefix, self_suffix) => (self_prefix, self_suffix),
            _ => return smallvec![Slice(self)],
        };

        let head_ctors = pcx.matrix.head_ctors(pcx.cx).filter(|c| !c.is_wildcard());

        let mut max_prefix_len = self_prefix;
        let mut max_suffix_len = self_suffix;
        let mut max_fixed_len = 0;

        for ctor in head_ctors {
            if let Slice(slice) = ctor {
                match slice.kind {
                    FixedLen(len) => {
                        max_fixed_len = cmp::max(max_fixed_len, len);
                    }
                    VarLen(prefix, suffix) => {
                        max_prefix_len = cmp::max(max_prefix_len, prefix);
                        max_suffix_len = cmp::max(max_suffix_len, suffix);
                    }
                }
            } else {
                bug!("unexpected ctor for slice type: {:?}", ctor);
            }
        }

        // For diagnostics, we keep the prefix and suffix lengths separate, so in the case
        // where `max_fixed_len + 1` is the largest, we adapt `max_prefix_len` accordingly,
        // so that `L = max_prefix_len + max_suffix_len`.
        if max_fixed_len + 1 >= max_prefix_len + max_suffix_len {
            // The subtraction can't overflow thanks to the above check.
            // The new `max_prefix_len` is also guaranteed to be larger than its previous
            // value.
            max_prefix_len = max_fixed_len + 1 - max_suffix_len;
        }

        let final_slice = VarLen(max_prefix_len, max_suffix_len);
        let final_slice = Slice::new(self.array_len, final_slice);
        match self.array_len {
            Some(_) => smallvec![Slice(final_slice)],
            None => {
                // `self` originally covered the range `(self.arity()..infinity)`. We split that
                // range into two: lengths smaller than `final_slice.arity()` are treated
                // independently as fixed-lengths slices, and lengths above are captured by
                // `final_slice`.
                let smaller_lengths = (self.arity()..final_slice.arity()).map(FixedLen);
                smaller_lengths
                    .map(|kind| Slice::new(self.array_len, kind))
                    .chain(Some(final_slice))
                    .map(Slice)
                    .collect()
            }
        }
    }

    /// See `Constructor::is_covered_by`
    fn is_covered_by(self, other: Self) -> bool {
        other.kind.covers_length(self.arity())
    }
}

/// A value can be decomposed into a constructor applied to some fields. This struct represents
/// the constructor. See also `Fields`.
///
/// `pat_constructor` retrieves the constructor corresponding to a pattern.
/// `specialize_constructor` returns the list of fields corresponding to a pattern, given a
/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
/// `Fields`.
#[derive(Clone, Debug, PartialEq)]
pub(super) enum Constructor<'tcx> {
    /// The constructor for patterns that have a single constructor, like tuples, struct patterns
    /// and fixed-length arrays.
    Single,
    /// Enum variants.
    Variant(DefId),
    /// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
535
    IntRange(IntRange),
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
    /// Ranges of floating-point literal values (`2.0..=5.2`).
    FloatRange(&'tcx ty::Const<'tcx>, &'tcx ty::Const<'tcx>, RangeEnd),
    /// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
    Str(&'tcx ty::Const<'tcx>),
    /// Array and slice patterns.
    Slice(Slice),
    /// Constants that must not be matched structurally. They are treated as black
    /// boxes for the purposes of exhaustiveness: we must not inspect them, and they
    /// don't count towards making a match exhaustive.
    Opaque,
    /// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used
    /// for those types for which we cannot list constructors explicitly, like `f64` and `str`.
    NonExhaustive,
    /// Wildcard pattern.
    Wildcard,
}

impl<'tcx> Constructor<'tcx> {
    pub(super) fn is_wildcard(&self) -> bool {
        matches!(self, Wildcard)
    }

558
    fn as_int_range(&self) -> Option<&IntRange> {
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
        match self {
            IntRange(range) => Some(range),
            _ => None,
        }
    }

    fn as_slice(&self) -> Option<Slice> {
        match self {
            Slice(slice) => Some(*slice),
            _ => None,
        }
    }

    fn variant_index_for_adt(&self, adt: &'tcx ty::AdtDef) -> VariantIdx {
        match *self {
            Variant(id) => adt.variant_index_with_id(id),
            Single => {
                assert!(!adt.is_enum());
                VariantIdx::new(0)
            }
            _ => bug!("bad constructor {:?} for adt {:?}", self, adt),
        }
    }

583 584 585 586 587 588 589 590 591 592
    /// Determines the constructor that the given pattern can be specialized to.
    pub(super) fn from_pat<'p>(cx: &MatchCheckCtxt<'p, 'tcx>, pat: &'p Pat<'tcx>) -> Self {
        match pat.kind.as_ref() {
            PatKind::AscribeUserType { .. } => bug!(), // Handled by `expand_pattern`
            PatKind::Binding { .. } | PatKind::Wild => Wildcard,
            PatKind::Leaf { .. } | PatKind::Deref { .. } => Single,
            &PatKind::Variant { adt_def, variant_index, .. } => {
                Variant(adt_def.variants[variant_index].def_id)
            }
            PatKind::Constant { value } => {
593
                if let Some(int_range) = IntRange::from_const(cx.tcx, cx.param_env, value) {
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
                    IntRange(int_range)
                } else {
                    match pat.ty.kind() {
                        ty::Float(_) => FloatRange(value, value, RangeEnd::Included),
                        // In `expand_pattern`, we convert string literals to `&CONST` patterns with
                        // `CONST` a pattern of type `str`. In truth this contains a constant of type
                        // `&str`.
                        ty::Str => Str(value),
                        // All constants that can be structurally matched have already been expanded
                        // into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
                        // opaque.
                        _ => Opaque,
                    }
                }
            }
            &PatKind::Range(PatRange { lo, hi, end }) => {
                let ty = lo.ty;
                if let Some(int_range) = IntRange::from_range(
                    cx.tcx,
                    lo.eval_bits(cx.tcx, cx.param_env, lo.ty),
                    hi.eval_bits(cx.tcx, cx.param_env, hi.ty),
                    ty,
                    &end,
                ) {
                    IntRange(int_range)
                } else {
                    FloatRange(lo, hi, end)
                }
            }
            PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
                let array_len = match pat.ty.kind() {
                    ty::Array(_, length) => Some(length.eval_usize(cx.tcx, cx.param_env)),
                    ty::Slice(_) => None,
                    _ => span_bug!(pat.span, "bad ty {:?} for slice pattern", pat.ty),
                };
                let prefix = prefix.len() as u64;
                let suffix = suffix.len() as u64;
                let kind = if slice.is_some() {
                    VarLen(prefix, suffix)
                } else {
                    FixedLen(prefix + suffix)
                };
                Slice(Slice::new(array_len, kind))
            }
            PatKind::Or { .. } => bug!("Or-pattern should have been expanded earlier on."),
        }
    }

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
    /// Some constructors (namely `Wildcard`, `IntRange` and `Slice`) actually stand for a set of actual
    /// constructors (like variants, integers or fixed-sized slices). When specializing for these
    /// constructors, we want to be specialising for the actual underlying constructors.
    /// Naively, we would simply return the list of constructors they correspond to. We instead are
    /// more clever: if there are constructors that we know will behave the same wrt the current
    /// matrix, we keep them grouped. For example, all slices of a sufficiently large length
    /// will either be all useful or all non-useful with a given matrix.
    ///
    /// See the branches for details on how the splitting is done.
    ///
    /// This function may discard some irrelevant constructors if this preserves behavior and
    /// diagnostics. Eg. for the `_` case, we ignore the constructors already present in the
    /// matrix, unless all of them are.
    ///
    /// `hir_id` is `None` when we're evaluating the wildcard pattern. In that case we do not want
    /// to lint for overlapping ranges.
    pub(super) fn split<'p>(
        &self,
        pcx: PatCtxt<'_, 'p, 'tcx>,
        hir_id: Option<HirId>,
    ) -> SmallVec<[Self; 1]> {
        debug!("Constructor::split({:#?}, {:#?})", self, pcx.matrix);

        match self {
            Wildcard => Constructor::split_wildcard(pcx),
            // Fast-track if the range is trivial. In particular, we don't do the overlapping
            // ranges check.
669
            IntRange(ctor_range) if !ctor_range.is_singleton() => ctor_range.split(pcx, hir_id),
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
            Slice(slice @ Slice { kind: VarLen(..), .. }) => slice.split(pcx),
            // Any other constructor can be used unchanged.
            _ => smallvec![self.clone()],
        }
    }

    /// For wildcards, there are two groups of constructors: there are the constructors actually
    /// present in the matrix (`head_ctors`), and the constructors not present (`missing_ctors`).
    /// Two constructors that are not in the matrix will either both be caught (by a wildcard), or
    /// both not be caught. Therefore we can keep the missing constructors grouped together.
    fn split_wildcard<'p>(pcx: PatCtxt<'_, 'p, 'tcx>) -> SmallVec<[Self; 1]> {
        // Missing constructors are those that are not matched by any non-wildcard patterns in the
        // current column. We only fully construct them on-demand, because they're rarely used and
        // can be big.
        let missing_ctors = MissingConstructors::new(pcx);
        if missing_ctors.is_empty(pcx) {
            // All the constructors are present in the matrix, so we just go through them all.
            // We must also split them first.
            missing_ctors.all_ctors
        } else {
            // Some constructors are missing, thus we can specialize with the wildcard constructor,
            // which will stand for those constructors that are missing, and behaves like any of
            // them.
            smallvec![Wildcard]
        }
    }

    /// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
    /// For the simple cases, this is simply checking for equality. For the "grouped" constructors,
    /// this checks for inclusion.
N
Nadrieril 已提交
700 701
    // We inline because this has a single call site in `Matrix::specialize_constructor`.
    #[inline]
702 703 704 705 706 707 708 709 710 711 712
    pub(super) fn is_covered_by<'p>(&self, pcx: PatCtxt<'_, 'p, 'tcx>, other: &Self) -> bool {
        // This must be kept in sync with `is_covered_by_any`.
        match (self, other) {
            // Wildcards cover anything
            (_, Wildcard) => true,
            // Wildcards are only covered by wildcards
            (Wildcard, _) => false,

            (Single, Single) => true,
            (Variant(self_id), Variant(other_id)) => self_id == other_id,

713
            (IntRange(self_range), IntRange(other_range)) => self_range.is_covered_by(other_range),
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
            (
                FloatRange(self_from, self_to, self_end),
                FloatRange(other_from, other_to, other_end),
            ) => {
                match (
                    compare_const_vals(pcx.cx.tcx, self_to, other_to, pcx.cx.param_env, pcx.ty),
                    compare_const_vals(pcx.cx.tcx, self_from, other_from, pcx.cx.param_env, pcx.ty),
                ) {
                    (Some(to), Some(from)) => {
                        (from == Ordering::Greater || from == Ordering::Equal)
                            && (to == Ordering::Less
                                || (other_end == self_end && to == Ordering::Equal))
                    }
                    _ => false,
                }
            }
            (Str(self_val), Str(other_val)) => {
                // FIXME: there's probably a more direct way of comparing for equality
                match compare_const_vals(pcx.cx.tcx, self_val, other_val, pcx.cx.param_env, pcx.ty)
                {
                    Some(comparison) => comparison == Ordering::Equal,
                    None => false,
                }
            }
            (Slice(self_slice), Slice(other_slice)) => self_slice.is_covered_by(*other_slice),

            // We are trying to inspect an opaque constant. Thus we skip the row.
            (Opaque, _) | (_, Opaque) => false,
            // Only a wildcard pattern can match the special extra constructor.
            (NonExhaustive, _) => false,

            _ => span_bug!(
                pcx.span,
                "trying to compare incompatible constructors {:?} and {:?}",
                self,
                other
            ),
        }
    }

    /// Faster version of `is_covered_by` when applied to many constructors. `used_ctors` is
    /// assumed to be built from `matrix.head_ctors()` with wildcards filtered out, and `self` is
    /// assumed to have been split from a wildcard.
    fn is_covered_by_any<'p>(
        &self,
        pcx: PatCtxt<'_, 'p, 'tcx>,
        used_ctors: &[Constructor<'tcx>],
    ) -> bool {
        if used_ctors.is_empty() {
            return false;
        }

        // This must be kept in sync with `is_covered_by`.
        match self {
            // If `self` is `Single`, `used_ctors` cannot contain anything else than `Single`s.
            Single => !used_ctors.is_empty(),
            Variant(_) => used_ctors.iter().any(|c| c == self),
            IntRange(range) => used_ctors
                .iter()
                .filter_map(|c| c.as_int_range())
774
                .any(|other| range.is_covered_by(other)),
775 776 777 778 779 780 781
            Slice(slice) => used_ctors
                .iter()
                .filter_map(|c| c.as_slice())
                .any(|other| slice.is_covered_by(other)),
            // This constructor is never covered by anything else
            NonExhaustive => false,
            Str(..) | FloatRange(..) | Opaque | Wildcard => {
782
                span_bug!(pcx.span, "found unexpected ctor in all_ctors: {:?}", self)
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
            }
        }
    }
}

/// This determines the set of all possible constructors of a pattern matching
/// values of type `left_ty`. For vectors, this would normally be an infinite set
/// but is instead bounded by the maximum fixed length of slice patterns in
/// the column of patterns being analyzed.
///
/// We make sure to omit constructors that are statically impossible. E.g., for
/// `Option<!>`, we do not include `Some(_)` in the returned list of constructors.
/// Invariant: this returns an empty `Vec` if and only if the type is uninhabited (as determined by
/// `cx.is_uninhabited()`).
fn all_constructors<'p, 'tcx>(pcx: PatCtxt<'_, 'p, 'tcx>) -> Vec<Constructor<'tcx>> {
    debug!("all_constructors({:?})", pcx.ty);
    let cx = pcx.cx;
    let make_range = |start, end| {
        IntRange(
            // `unwrap()` is ok because we know the type is an integer.
803
            IntRange::from_range(cx.tcx, start, end, pcx.ty, &RangeEnd::Included).unwrap(),
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
        )
    };
    match pcx.ty.kind() {
        ty::Bool => vec![make_range(0, 1)],
        ty::Array(sub_ty, len) if len.try_eval_usize(cx.tcx, cx.param_env).is_some() => {
            let len = len.eval_usize(cx.tcx, cx.param_env);
            if len != 0 && cx.is_uninhabited(sub_ty) {
                vec![]
            } else {
                vec![Slice(Slice::new(Some(len), VarLen(0, 0)))]
            }
        }
        // Treat arrays of a constant but unknown length like slices.
        ty::Array(sub_ty, _) | ty::Slice(sub_ty) => {
            let kind = if cx.is_uninhabited(sub_ty) { FixedLen(0) } else { VarLen(0, 0) };
            vec![Slice(Slice::new(None, kind))]
        }
        ty::Adt(def, substs) if def.is_enum() => {
            // If the enum is declared as `#[non_exhaustive]`, we treat it as if it had an
            // additional "unknown" constructor.
            // There is no point in enumerating all possible variants, because the user can't
            // actually match against them all themselves. So we always return only the fictitious
            // constructor.
            // E.g., in an example like:
            //
            // ```
            //     let err: io::ErrorKind = ...;
            //     match err {
            //         io::ErrorKind::NotFound => {},
            //     }
            // ```
            //
            // we don't want to show every possible IO error, but instead have only `_` as the
            // witness.
            let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(pcx.ty);

            // If `exhaustive_patterns` is disabled and our scrutinee is an empty enum, we treat it
            // as though it had an "unknown" constructor to avoid exposing its emptiness. The
            // exception is if the pattern is at the top level, because we want empty matches to be
            // considered exhaustive.
            let is_secretly_empty = def.variants.is_empty()
                && !cx.tcx.features().exhaustive_patterns
                && !pcx.is_top_level;

            if is_secretly_empty || is_declared_nonexhaustive {
                vec![NonExhaustive]
            } else if cx.tcx.features().exhaustive_patterns {
                // If `exhaustive_patterns` is enabled, we exclude variants known to be
                // uninhabited.
                def.variants
                    .iter()
                    .filter(|v| {
                        !v.uninhabited_from(cx.tcx, substs, def.adt_kind(), cx.param_env)
                            .contains(cx.tcx, cx.module)
                    })
                    .map(|v| Variant(v.def_id))
                    .collect()
            } else {
                def.variants.iter().map(|v| Variant(v.def_id)).collect()
            }
        }
        ty::Char => {
            vec![
                // The valid Unicode Scalar Value ranges.
                make_range('\u{0000}' as u128, '\u{D7FF}' as u128),
                make_range('\u{E000}' as u128, '\u{10FFFF}' as u128),
            ]
        }
        ty::Int(_) | ty::Uint(_)
            if pcx.ty.is_ptr_sized_integral()
                && !cx.tcx.features().precise_pointer_size_matching =>
        {
            // `usize`/`isize` are not allowed to be matched exhaustively unless the
            // `precise_pointer_size_matching` feature is enabled. So we treat those types like
            // `#[non_exhaustive]` enums by returning a special unmatcheable constructor.
            vec![NonExhaustive]
        }
        &ty::Int(ity) => {
            let bits = Integer::from_attr(&cx.tcx, SignedInt(ity)).size().bits() as u128;
            let min = 1u128 << (bits - 1);
            let max = min - 1;
            vec![make_range(min, max)]
        }
        &ty::Uint(uty) => {
            let size = Integer::from_attr(&cx.tcx, UnsignedInt(uty)).size();
            let max = size.truncate(u128::MAX);
            vec![make_range(0, max)]
        }
        // If `exhaustive_patterns` is disabled and our scrutinee is the never type, we cannot
        // expose its emptiness. The exception is if the pattern is at the top level, because we
        // want empty matches to be considered exhaustive.
        ty::Never if !cx.tcx.features().exhaustive_patterns && !pcx.is_top_level => {
            vec![NonExhaustive]
        }
        ty::Never => vec![],
        _ if cx.is_uninhabited(pcx.ty) => vec![],
        ty::Adt(..) | ty::Tuple(..) | ty::Ref(..) => vec![Single],
        // This type is one for which we cannot list constructors, like `str` or `f64`.
        _ => vec![NonExhaustive],
    }
}

// A struct to compute a set of constructors equivalent to `all_ctors \ used_ctors`.
#[derive(Debug)]
pub(super) struct MissingConstructors<'tcx> {
    all_ctors: SmallVec<[Constructor<'tcx>; 1]>,
    used_ctors: Vec<Constructor<'tcx>>,
}

impl<'tcx> MissingConstructors<'tcx> {
    pub(super) fn new<'p>(pcx: PatCtxt<'_, 'p, 'tcx>) -> Self {
        let used_ctors: Vec<Constructor<'_>> =
            pcx.matrix.head_ctors(pcx.cx).cloned().filter(|c| !c.is_wildcard()).collect();
        // Since `all_ctors` never contains wildcards, this won't recurse further.
        let all_ctors =
            all_constructors(pcx).into_iter().flat_map(|ctor| ctor.split(pcx, None)).collect();

        MissingConstructors { all_ctors, used_ctors }
    }

    fn is_empty<'p>(&self, pcx: PatCtxt<'_, 'p, 'tcx>) -> bool {
        self.iter(pcx).next().is_none()
    }

    /// Iterate over all_ctors \ used_ctors
    fn iter<'a, 'p>(
        &'a self,
        pcx: PatCtxt<'a, 'p, 'tcx>,
    ) -> impl Iterator<Item = &'a Constructor<'tcx>> + Captures<'p> {
        self.all_ctors.iter().filter(move |ctor| !ctor.is_covered_by_any(pcx, &self.used_ctors))
    }

    /// List the patterns corresponding to the missing constructors. In some cases, instead of
    /// listing all constructors of a given type, we prefer to simply report a wildcard.
    pub(super) fn report_patterns<'p>(
        &self,
        pcx: PatCtxt<'_, 'p, 'tcx>,
    ) -> SmallVec<[Pat<'tcx>; 1]> {
        // There are 2 ways we can report a witness here.
        // Commonly, we can report all the "free"
        // constructors as witnesses, e.g., if we have:
        //
        // ```
        //     enum Direction { N, S, E, W }
        //     let Direction::N = ...;
        // ```
        //
        // we can report 3 witnesses: `S`, `E`, and `W`.
        //
        // However, there is a case where we don't want
        // to do this and instead report a single `_` witness:
        // if the user didn't actually specify a constructor
        // in this arm, e.g., in
        //
        // ```
        //     let x: (Direction, Direction, bool) = ...;
        //     let (_, _, false) = x;
        // ```
        //
        // we don't want to show all 16 possible witnesses
        // `(<direction-1>, <direction-2>, true)` - we are
        // satisfied with `(_, _, true)`. In this case,
        // `used_ctors` is empty.
        // The exception is: if we are at the top-level, for example in an empty match, we
        // sometimes prefer reporting the list of constructors instead of just `_`.
        let report_when_all_missing = pcx.is_top_level && !IntRange::is_integral(pcx.ty);
        if self.used_ctors.is_empty() && !report_when_all_missing {
            // All constructors are unused. Report only a wildcard
            // rather than each individual constructor.
            smallvec![Pat::wildcard_from_ty(pcx.ty)]
        } else {
            // Construct for each missing constructor a "wild" version of this
            // constructor, that matches everything that can be built with
            // it. For example, if `ctor` is a `Constructor::Variant` for
            // `Option::Some`, we get the pattern `Some(_)`.
            self.iter(pcx)
                .map(|missing_ctor| Fields::wildcards(pcx, &missing_ctor).apply(pcx, missing_ctor))
                .collect()
        }
    }
}

/// Some fields need to be explicitly hidden away in certain cases; see the comment above the
/// `Fields` struct. This struct represents such a potentially-hidden field. When a field is hidden
/// we still keep its type around.
#[derive(Debug, Copy, Clone)]
pub(super) enum FilteredField<'p, 'tcx> {
    Kept(&'p Pat<'tcx>),
    Hidden(Ty<'tcx>),
}

impl<'p, 'tcx> FilteredField<'p, 'tcx> {
    fn kept(self) -> Option<&'p Pat<'tcx>> {
        match self {
            FilteredField::Kept(p) => Some(p),
            FilteredField::Hidden(_) => None,
        }
    }

    fn to_pattern(self) -> Pat<'tcx> {
        match self {
            FilteredField::Kept(p) => p.clone(),
            FilteredField::Hidden(ty) => Pat::wildcard_from_ty(ty),
        }
    }
}

/// A value can be decomposed into a constructor applied to some fields. This struct represents
/// those fields, generalized to allow patterns in each field. See also `Constructor`.
///
/// If a private or `non_exhaustive` field is uninhabited, the code mustn't observe that it is
/// uninhabited. For that, we filter these fields out of the matrix. This is subtle because we
/// still need to have those fields back when going to/from a `Pat`. Most of this is handled
/// automatically in `Fields`, but when constructing or deconstructing `Fields` you need to be
/// careful. As a rule, when going to/from the matrix, use the filtered field list; when going
/// to/from `Pat`, use the full field list.
/// This filtering is uncommon in practice, because uninhabited fields are rarely used, so we avoid
/// it when possible to preserve performance.
#[derive(Debug, Clone)]
pub(super) enum Fields<'p, 'tcx> {
    /// Lists of patterns that don't contain any filtered fields.
    /// `Slice` and `Vec` behave the same; the difference is only to avoid allocating and
    /// triple-dereferences when possible. Frankly this is premature optimization, I (Nadrieril)
    /// have not measured if it really made a difference.
    Slice(&'p [Pat<'tcx>]),
    Vec(SmallVec<[&'p Pat<'tcx>; 2]>),
    /// Patterns where some of the fields need to be hidden. `kept_count` caches the number of
    /// non-hidden fields.
    Filtered {
        fields: SmallVec<[FilteredField<'p, 'tcx>; 2]>,
        kept_count: usize,
    },
}

impl<'p, 'tcx> Fields<'p, 'tcx> {
    fn empty() -> Self {
        Fields::Slice(&[])
    }

    /// Construct a new `Fields` from the given pattern. Must not be used if the pattern is a field
    /// of a struct/tuple/variant.
    fn from_single_pattern(pat: &'p Pat<'tcx>) -> Self {
        Fields::Slice(std::slice::from_ref(pat))
    }

    /// Convenience; internal use.
    fn wildcards_from_tys(
        cx: &MatchCheckCtxt<'p, 'tcx>,
        tys: impl IntoIterator<Item = Ty<'tcx>>,
    ) -> Self {
        let wilds = tys.into_iter().map(Pat::wildcard_from_ty);
        let pats = cx.pattern_arena.alloc_from_iter(wilds);
        Fields::Slice(pats)
    }

    /// Creates a new list of wildcard fields for a given constructor.
    pub(super) fn wildcards(pcx: PatCtxt<'_, 'p, 'tcx>, constructor: &Constructor<'tcx>) -> Self {
        let ty = pcx.ty;
        let cx = pcx.cx;
        let wildcard_from_ty = |ty| &*cx.pattern_arena.alloc(Pat::wildcard_from_ty(ty));

        let ret = match constructor {
            Single | Variant(_) => match ty.kind() {
                ty::Tuple(ref fs) => {
                    Fields::wildcards_from_tys(cx, fs.into_iter().map(|ty| ty.expect_ty()))
                }
                ty::Ref(_, rty, _) => Fields::from_single_pattern(wildcard_from_ty(rty)),
                ty::Adt(adt, substs) => {
                    if adt.is_box() {
                        // Use T as the sub pattern type of Box<T>.
                        Fields::from_single_pattern(wildcard_from_ty(substs.type_at(0)))
                    } else {
                        let variant = &adt.variants[constructor.variant_index_for_adt(adt)];
                        // Whether we must not match the fields of this variant exhaustively.
                        let is_non_exhaustive =
                            variant.is_field_list_non_exhaustive() && !adt.did.is_local();
                        let field_tys = variant.fields.iter().map(|field| field.ty(cx.tcx, substs));
                        // In the following cases, we don't need to filter out any fields. This is
                        // the vast majority of real cases, since uninhabited fields are uncommon.
                        let has_no_hidden_fields = (adt.is_enum() && !is_non_exhaustive)
                            || !field_tys.clone().any(|ty| cx.is_uninhabited(ty));

                        if has_no_hidden_fields {
                            Fields::wildcards_from_tys(cx, field_tys)
                        } else {
                            let mut kept_count = 0;
                            let fields = variant
                                .fields
                                .iter()
                                .map(|field| {
                                    let ty = field.ty(cx.tcx, substs);
                                    let is_visible = adt.is_enum()
                                        || field.vis.is_accessible_from(cx.module, cx.tcx);
                                    let is_uninhabited = cx.is_uninhabited(ty);

                                    // In the cases of either a `#[non_exhaustive]` field list
                                    // or a non-public field, we hide uninhabited fields in
                                    // order not to reveal the uninhabitedness of the whole
                                    // variant.
                                    if is_uninhabited && (!is_visible || is_non_exhaustive) {
                                        FilteredField::Hidden(ty)
                                    } else {
                                        kept_count += 1;
                                        FilteredField::Kept(wildcard_from_ty(ty))
                                    }
                                })
                                .collect();
                            Fields::Filtered { fields, kept_count }
                        }
                    }
                }
                _ => bug!("Unexpected type for `Single` constructor: {:?}", ty),
            },
            Slice(slice) => match *ty.kind() {
                ty::Slice(ty) | ty::Array(ty, _) => {
                    let arity = slice.arity();
                    Fields::wildcards_from_tys(cx, (0..arity).map(|_| ty))
                }
                _ => bug!("bad slice pattern {:?} {:?}", constructor, ty),
            },
            Str(..) | FloatRange(..) | IntRange(..) | NonExhaustive | Opaque | Wildcard => {
                Fields::empty()
            }
        };
        debug!("Fields::wildcards({:?}, {:?}) = {:#?}", constructor, ty, ret);
        ret
    }

    /// Apply a constructor to a list of patterns, yielding a new pattern. `self`
    /// must have as many elements as this constructor's arity.
    ///
    /// This is roughly the inverse of `specialize_constructor`.
    ///
    /// Examples:
    /// `ctor`: `Constructor::Single`
    /// `ty`: `Foo(u32, u32, u32)`
    /// `self`: `[10, 20, _]`
    /// returns `Foo(10, 20, _)`
    ///
    /// `ctor`: `Constructor::Variant(Option::Some)`
    /// `ty`: `Option<bool>`
    /// `self`: `[false]`
    /// returns `Some(false)`
    pub(super) fn apply(self, pcx: PatCtxt<'_, 'p, 'tcx>, ctor: &Constructor<'tcx>) -> Pat<'tcx> {
        let mut subpatterns = self.all_patterns();

        let pat = match ctor {
            Single | Variant(_) => match pcx.ty.kind() {
                ty::Adt(..) | ty::Tuple(..) => {
                    let subpatterns = subpatterns
                        .enumerate()
                        .map(|(i, p)| FieldPat { field: Field::new(i), pattern: p })
                        .collect();

                    if let ty::Adt(adt, substs) = pcx.ty.kind() {
                        if adt.is_enum() {
                            PatKind::Variant {
                                adt_def: adt,
                                substs,
                                variant_index: ctor.variant_index_for_adt(adt),
                                subpatterns,
                            }
                        } else {
                            PatKind::Leaf { subpatterns }
                        }
                    } else {
                        PatKind::Leaf { subpatterns }
                    }
                }
                // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
                // be careful to reconstruct the correct constant pattern here. However a string
                // literal pattern will never be reported as a non-exhaustiveness witness, so we
                // can ignore this issue.
                ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
                ty::Slice(_) | ty::Array(..) => bug!("bad slice pattern {:?} {:?}", ctor, pcx.ty),
                _ => PatKind::Wild,
            },
            Slice(slice) => match slice.kind {
                FixedLen(_) => {
                    PatKind::Slice { prefix: subpatterns.collect(), slice: None, suffix: vec![] }
                }
                VarLen(prefix, _) => {
                    let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix as usize).collect();
                    if slice.array_len.is_some() {
                        // Improves diagnostics a bit: if the type is a known-size array, instead
                        // of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
                        // This is incorrect if the size is not known, since `[_, ..]` captures
                        // arrays of lengths `>= 1` whereas `[..]` captures any length.
                        while !prefix.is_empty() && prefix.last().unwrap().is_wildcard() {
                            prefix.pop();
                        }
                    }
                    let suffix: Vec<_> = if slice.array_len.is_some() {
                        // Same as above.
                        subpatterns.skip_while(Pat::is_wildcard).collect()
                    } else {
                        subpatterns.collect()
                    };
                    let wild = Pat::wildcard_from_ty(pcx.ty);
                    PatKind::Slice { prefix, slice: Some(wild), suffix }
                }
            },
            &Str(value) => PatKind::Constant { value },
            &FloatRange(lo, hi, end) => PatKind::Range(PatRange { lo, hi, end }),
1208
            IntRange(range) => return range.to_pat(pcx.cx.tcx, pcx.ty),
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
            NonExhaustive => PatKind::Wild,
            Opaque => bug!("we should not try to apply an opaque constructor"),
            Wildcard => bug!(
                "trying to apply a wildcard constructor; this should have been done in `apply_constructors`"
            ),
        };

        Pat { ty: pcx.ty, span: DUMMY_SP, kind: Box::new(pat) }
    }

    /// Returns the number of patterns from the viewpoint of match-checking, i.e. excluding hidden
    /// fields. This is what we want in most cases in this file, the only exception being
    /// conversion to/from `Pat`.
    pub(super) fn len(&self) -> usize {
        match self {
            Fields::Slice(pats) => pats.len(),
            Fields::Vec(pats) => pats.len(),
            Fields::Filtered { kept_count, .. } => *kept_count,
        }
    }

    /// Returns the complete list of patterns, including hidden fields.
    fn all_patterns(self) -> impl Iterator<Item = Pat<'tcx>> {
        let pats: SmallVec<[_; 2]> = match self {
            Fields::Slice(pats) => pats.iter().cloned().collect(),
            Fields::Vec(pats) => pats.into_iter().cloned().collect(),
            Fields::Filtered { fields, .. } => {
                // We don't skip any fields here.
                fields.into_iter().map(|p| p.to_pattern()).collect()
            }
        };
        pats.into_iter()
    }

    /// Returns the filtered list of patterns, not including hidden fields.
    pub(super) fn filtered_patterns(self) -> SmallVec<[&'p Pat<'tcx>; 2]> {
        match self {
            Fields::Slice(pats) => pats.iter().collect(),
            Fields::Vec(pats) => pats,
            Fields::Filtered { fields, .. } => {
                // We skip hidden fields here
                fields.into_iter().filter_map(|p| p.kept()).collect()
            }
        }
    }

    /// Overrides some of the fields with the provided patterns. Exactly like
    /// `replace_fields_indexed`, except that it takes `FieldPat`s as input.
    fn replace_with_fieldpats(
        &self,
        new_pats: impl IntoIterator<Item = &'p FieldPat<'tcx>>,
    ) -> Self {
        self.replace_fields_indexed(
            new_pats.into_iter().map(|pat| (pat.field.index(), &pat.pattern)),
        )
    }

    /// Overrides some of the fields with the provided patterns. This is used when a pattern
    /// defines some fields but not all, for example `Foo { field1: Some(_), .. }`: here we start with a
    /// `Fields` that is just one wildcard per field of the `Foo` struct, and override the entry
    /// corresponding to `field1` with the pattern `Some(_)`. This is also used for slice patterns
    /// for the same reason.
    fn replace_fields_indexed(
        &self,
        new_pats: impl IntoIterator<Item = (usize, &'p Pat<'tcx>)>,
    ) -> Self {
        let mut fields = self.clone();
        if let Fields::Slice(pats) = fields {
            fields = Fields::Vec(pats.iter().collect());
        }

        match &mut fields {
            Fields::Vec(pats) => {
                for (i, pat) in new_pats {
                    pats[i] = pat
                }
            }
            Fields::Filtered { fields, .. } => {
                for (i, pat) in new_pats {
                    if let FilteredField::Kept(p) = &mut fields[i] {
                        *p = pat
                    }
                }
            }
            Fields::Slice(_) => unreachable!(),
        }
        fields
    }

    /// Replaces contained fields with the given filtered list of patterns, e.g. taken from the
    /// matrix. There must be `len()` patterns in `pats`.
    pub(super) fn replace_fields(
        &self,
        cx: &MatchCheckCtxt<'p, 'tcx>,
        pats: impl IntoIterator<Item = Pat<'tcx>>,
    ) -> Self {
        let pats: &[_] = cx.pattern_arena.alloc_from_iter(pats);

        match self {
            Fields::Filtered { fields, kept_count } => {
                let mut pats = pats.iter();
                let mut fields = fields.clone();
                for f in &mut fields {
                    if let FilteredField::Kept(p) = f {
                        // We take one input pattern for each `Kept` field, in order.
                        *p = pats.next().unwrap();
                    }
                }
                Fields::Filtered { fields, kept_count: *kept_count }
            }
            _ => Fields::Slice(pats),
        }
    }

    /// Replaces contained fields with the arguments of the given pattern. Only use on a pattern
    /// that is compatible with the constructor used to build `self`.
    /// This is meant to be used on the result of `Fields::wildcards()`. The idea is that
    /// `wildcards` constructs a list of fields where all entries are wildcards, and the pattern
    /// provided to this function fills some of the fields with non-wildcards.
    /// In the following example `Fields::wildcards` would return `[_, _, _, _]`. If we call
    /// `replace_with_pattern_arguments` on it with the pattern, the result will be `[Some(0), _,
    /// _, _]`.
    /// ```rust
    /// let x: [Option<u8>; 4] = foo();
    /// match x {
    ///     [Some(0), ..] => {}
    /// }
    /// ```
    /// This is guaranteed to preserve the number of patterns in `self`.
    pub(super) fn replace_with_pattern_arguments(&self, pat: &'p Pat<'tcx>) -> Self {
        match pat.kind.as_ref() {
            PatKind::Deref { subpattern } => {
                assert_eq!(self.len(), 1);
                Fields::from_single_pattern(subpattern)
            }
            PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
                self.replace_with_fieldpats(subpatterns)
            }
            PatKind::Array { prefix, suffix, .. } | PatKind::Slice { prefix, suffix, .. } => {
                // Number of subpatterns for the constructor
                let ctor_arity = self.len();

                // Replace the prefix and the suffix with the given patterns, leaving wildcards in
                // the middle if there was a subslice pattern `..`.
                let prefix = prefix.iter().enumerate();
                let suffix =
                    suffix.iter().enumerate().map(|(i, p)| (ctor_arity - suffix.len() + i, p));
                self.replace_fields_indexed(prefix.chain(suffix))
            }
            _ => self.clone(),
        }
    }
}