deconstruct_pat.rs 60.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
//! [`super::usefulness`] explains most of what is happening in this file. As explained there,
//! values and patterns are made from constructors applied to fields. This file defines a
//! `Constructor` enum, a `Fields` struct, and various operations to manipulate them and convert
//! them from/to patterns.
//!
//! There's one idea that is not detailed in [`super::usefulness`] because the details are not
//! needed there: _constructor splitting_.
//!
//! # Constructor splitting
//!
//! The idea is as follows: given a constructor `c` and a matrix, we want to specialize in turn
//! with all the value constructors that are covered by `c`, and compute usefulness for each.
//! Instead of listing all those constructors (which is intractable), we group those value
//! constructors together as much as possible. Example:
//!
//! ```
//! match (0, false) {
//!     (0 ..=100, true) => {} // `p_1`
//!     (50..=150, false) => {} // `p_2`
//!     (0 ..=200, _) => {} // `q`
//! }
//! ```
//!
//! The naive approach would try all numbers in the range `0..=200`. But we can be a lot more
//! clever: `0` and `1` for example will match the exact same rows, and return equivalent
//! witnesses. In fact all of `0..50` would. We can thus restrict our exploration to 4
//! constructors: `0..50`, `50..=100`, `101..=150` and `151..=200`. That is enough and infinitely
//! more tractable.
//!
//! We capture this idea in a function `split(p_1 ... p_n, c)` which returns a list of constructors
//! `c'` covered by `c`. Given such a `c'`, we require that all value ctors `c''` covered by `c'`
//! return an equivalent set of witnesses after specializing and computing usefulness.
//! In the example above, witnesses for specializing by `c''` covered by `0..50` will only differ
//! in their first element.
//!
//! We usually also ask that the `c'` together cover all of the original `c`. However we allow
//! skipping some constructors as long as it doesn't change whether the resulting list of witnesses
//! is empty of not. We use this in the wildcard `_` case.
//!
//! Splitting is implemented in the [`Constructor::split`] function. We don't do splitting for
//! or-patterns; instead we just try the alternatives one-by-one. For details on splitting
//! wildcards, see [`SplitWildcard`]; for integer ranges, see [`SplitIntRange`]; for slices, see
//! [`SplitVarLenSlice`].

45 46 47 48
use self::Constructor::*;
use self::SliceKind::*;

use super::compare_const_vals;
49
use super::usefulness::{is_wildcard, MatchCheckCtxt, PatCtxt};
50 51 52 53 54 55 56

use rustc_data_structures::captures::Captures;
use rustc_index::vec::Idx;

use rustc_hir::{HirId, RangeEnd};
use rustc_middle::mir::interpret::ConstValue;
use rustc_middle::mir::Field;
57
use rustc_middle::thir::{FieldPat, Pat, PatKind, PatRange};
58
use rustc_middle::ty::layout::IntegerExt;
N
Nadrieril 已提交
59
use rustc_middle::ty::{self, Const, Ty, TyCtxt, VariantDef};
60
use rustc_session::lint;
61
use rustc_span::{Span, DUMMY_SP};
62 63 64 65
use rustc_target::abi::{Integer, Size, VariantIdx};

use smallvec::{smallvec, SmallVec};
use std::cmp::{self, max, min, Ordering};
66
use std::iter::{once, IntoIterator};
67 68 69 70 71 72 73 74 75 76 77 78
use std::ops::RangeInclusive;

/// An inclusive interval, used for precise integer exhaustiveness checking.
/// `IntRange`s always store a contiguous range. This means that values are
/// encoded such that `0` encodes the minimum value for the integer,
/// regardless of the signedness.
/// For example, the pattern `-128..=127i8` is encoded as `0..=255`.
/// This makes comparisons and arithmetic on interval endpoints much more
/// straightforward. See `signed_bias` for details.
///
/// `IntRange` is never used to encode an empty range or a "range" that wraps
/// around the (offset) space: i.e., `range.lo <= range.hi`.
79 80
#[derive(Clone, Debug, PartialEq, Eq)]
pub(super) struct IntRange {
81 82 83
    range: RangeInclusive<u128>,
}

84
impl IntRange {
85 86 87 88 89 90 91 92 93 94 95 96 97 98
    #[inline]
    fn is_integral(ty: Ty<'_>) -> bool {
        matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_) | ty::Bool)
    }

    fn is_singleton(&self) -> bool {
        self.range.start() == self.range.end()
    }

    fn boundaries(&self) -> (u128, u128) {
        (*self.range.start(), *self.range.end())
    }

    #[inline]
99
    fn integral_size_and_signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> Option<(Size, u128)> {
100 101 102 103
        match *ty.kind() {
            ty::Bool => Some((Size::from_bytes(1), 0)),
            ty::Char => Some((Size::from_bytes(4), 0)),
            ty::Int(ity) => {
104
                let size = Integer::from_int_ty(&tcx, ity).size();
105 106
                Some((size, 1u128 << (size.bits() as u128 - 1)))
            }
107
            ty::Uint(uty) => Some((Integer::from_uint_ty(&tcx, uty).size(), 0)),
108 109 110 111 112
            _ => None,
        }
    }

    #[inline]
113
    fn from_const<'tcx>(
114 115 116
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        value: &Const<'tcx>,
117
    ) -> Option<IntRange> {
118 119 120 121 122 123 124 125
        if let Some((target_size, bias)) = Self::integral_size_and_signed_bias(tcx, value.ty) {
            let ty = value.ty;
            let val = (|| {
                if let ty::ConstKind::Value(ConstValue::Scalar(scalar)) = value.val {
                    // For this specific pattern we can skip a lot of effort and go
                    // straight to the result, after doing a bit of checking. (We
                    // could remove this branch and just fall through, which
                    // is more general but much slower.)
R
Ralf Jung 已提交
126
                    if let Ok(bits) = scalar.to_bits_or_ptr_internal(target_size) {
127 128 129 130 131 132 133
                        return Some(bits);
                    }
                }
                // This is a more general form of the previous case.
                value.try_eval_bits(tcx, param_env, ty)
            })()?;
            let val = val ^ bias;
134
            Some(IntRange { range: val..=val })
135 136 137 138 139 140
        } else {
            None
        }
    }

    #[inline]
141
    fn from_range<'tcx>(
142 143 144 145 146
        tcx: TyCtxt<'tcx>,
        lo: u128,
        hi: u128,
        ty: Ty<'tcx>,
        end: &RangeEnd,
147
    ) -> Option<IntRange> {
148 149 150 151 152 153 154 155 156 157
        if Self::is_integral(ty) {
            // Perform a shift if the underlying types are signed,
            // which makes the interval arithmetic simpler.
            let bias = IntRange::signed_bias(tcx, ty);
            let (lo, hi) = (lo ^ bias, hi ^ bias);
            let offset = (*end == RangeEnd::Excluded) as u128;
            if lo > hi || (lo == hi && *end == RangeEnd::Excluded) {
                // This should have been caught earlier by E0030.
                bug!("malformed range pattern: {}..={}", lo, (hi - offset));
            }
158
            Some(IntRange { range: lo..=(hi - offset) })
159 160 161 162 163 164
        } else {
            None
        }
    }

    // The return value of `signed_bias` should be XORed with an endpoint to encode/decode it.
165
    fn signed_bias(tcx: TyCtxt<'_>, ty: Ty<'_>) -> u128 {
166 167
        match *ty.kind() {
            ty::Int(ity) => {
168
                let bits = Integer::from_int_ty(&tcx, ity).size().bits() as u128;
169 170 171 172 173 174 175 176 177 178
                1u128 << (bits - 1)
            }
            _ => 0,
        }
    }

    fn is_subrange(&self, other: &Self) -> bool {
        other.range.start() <= self.range.start() && self.range.end() <= other.range.end()
    }

179
    fn intersection(&self, other: &Self) -> Option<Self> {
180 181
        let (lo, hi) = self.boundaries();
        let (other_lo, other_hi) = other.boundaries();
182
        if lo <= other_hi && other_lo <= hi {
183
            Some(IntRange { range: max(lo, other_lo)..=min(hi, other_hi) })
184
        } else {
185
            None
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        }
    }

    fn suspicious_intersection(&self, other: &Self) -> bool {
        // `false` in the following cases:
        // 1     ----      // 1  ----------   // 1 ----        // 1       ----
        // 2  ----------   // 2     ----      // 2       ----  // 2 ----
        //
        // The following are currently `false`, but could be `true` in the future (#64007):
        // 1 ---------       // 1     ---------
        // 2     ----------  // 2 ----------
        //
        // `true` in the following cases:
        // 1 -------          // 1       -------
        // 2       --------   // 2 -------
        let (lo, hi) = self.boundaries();
        let (other_lo, other_hi) = other.boundaries();
N
Nadrieril 已提交
203
        (lo == other_hi || hi == other_lo) && !self.is_singleton() && !other.is_singleton()
204 205
    }

206
    fn to_pat<'tcx>(&self, tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Pat<'tcx> {
207 208
        let (lo, hi) = self.boundaries();

209
        let bias = IntRange::signed_bias(tcx, ty);
210 211
        let (lo, hi) = (lo ^ bias, hi ^ bias);

212 213 214
        let env = ty::ParamEnv::empty().and(ty);
        let lo_const = ty::Const::from_bits(tcx, lo, env);
        let hi_const = ty::Const::from_bits(tcx, hi, env);
215 216 217 218 219 220 221

        let kind = if lo == hi {
            PatKind::Constant { value: lo_const }
        } else {
            PatKind::Range(PatRange { lo: lo_const, hi: hi_const, end: RangeEnd::Included })
        };

222
        Pat { ty, span: DUMMY_SP, kind: Box::new(kind) }
223 224
    }

N
Nadrieril 已提交
225
    /// Lint on likely incorrect range patterns (#63987)
226 227 228 229 230 231 232
    pub(super) fn lint_overlapping_range_endpoints<'a, 'tcx: 'a>(
        &self,
        pcx: PatCtxt<'_, '_, 'tcx>,
        ctors: impl Iterator<Item = (&'a Constructor<'tcx>, Span)>,
        column_count: usize,
        hir_id: HirId,
    ) {
N
Nadrieril 已提交
233 234 235 236
        if self.is_singleton() {
            return;
        }

237
        if column_count != 1 {
N
Nadrieril 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250
            // FIXME: for now, only check for overlapping ranges on simple range
            // patterns. Otherwise with the current logic the following is detected
            // as overlapping:
            // ```
            // match (0u8, true) {
            //   (0 ..= 125, false) => {}
            //   (125 ..= 255, true) => {}
            //   _ => {}
            // }
            // ```
            return;
        }

251
        let overlaps: Vec<_> = ctors
N
Nadrieril 已提交
252 253 254 255 256 257
            .filter_map(|(ctor, span)| Some((ctor.as_int_range()?, span)))
            .filter(|(range, _)| self.suspicious_intersection(range))
            .map(|(range, span)| (self.intersection(&range).unwrap(), span))
            .collect();

        if !overlaps.is_empty() {
258
            pcx.cx.tcx.struct_span_lint_hir(
259
                lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
260
                hir_id,
261
                pcx.span,
262
                |lint| {
263
                    let mut err = lint.build("multiple patterns overlap on their endpoints");
264
                    for (int_range, span) in overlaps {
265
                        err.span_label(
266
                            span,
267
                            &format!(
N
Nadrieril 已提交
268
                                "this range overlaps on `{}`...",
269
                                int_range.to_pat(pcx.cx.tcx, pcx.ty)
270 271 272
                            ),
                        );
                    }
N
Nadrieril 已提交
273 274
                    err.span_label(pcx.span, "... with this range");
                    err.note("you likely meant to write mutually exclusive ranges");
275 276 277 278 279 280 281
                    err.emit();
                },
            );
        }
    }

    /// See `Constructor::is_covered_by`
282 283
    fn is_covered_by(&self, other: &Self) -> bool {
        if self.intersection(other).is_some() {
284 285 286 287 288 289 290 291 292 293
            // Constructor splitting should ensure that all intersections we encounter are actually
            // inclusions.
            assert!(self.is_subrange(other));
            true
        } else {
            false
        }
    }
}

294 295 296 297 298 299 300 301
/// Represents a border between 2 integers. Because the intervals spanning borders must be able to
/// cover every integer, we need to be able to represent 2^128 + 1 such borders.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
enum IntBorder {
    JustBefore(u128),
    AfterMax,
}

302
/// A range of integers that is partitioned into disjoint subranges. This does constructor
303 304
/// splitting for integer ranges as explained at the top of the file.
///
305 306 307 308
/// This is fed multiple ranges, and returns an output that covers the input, but is split so that
/// the only intersections between an output range and a seen range are inclusions. No output range
/// straddles the boundary of one of the inputs.
///
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
/// The following input:
/// ```
///   |-------------------------| // `self`
/// |------|  |----------|   |----|
///    |-------| |-------|
/// ```
/// would be iterated over as follows:
/// ```
///   ||---|--||-|---|---|---|--|
/// ```
#[derive(Debug, Clone)]
struct SplitIntRange {
    /// The range we are splitting
    range: IntRange,
    /// The borders of ranges we have seen. They are all contained within `range`. This is kept
    /// sorted.
    borders: Vec<IntBorder>,
}

impl SplitIntRange {
329 330
    fn new(range: IntRange) -> Self {
        SplitIntRange { range, borders: Vec::new() }
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    }

    /// Internal use
    fn to_borders(r: IntRange) -> [IntBorder; 2] {
        use IntBorder::*;
        let (lo, hi) = r.boundaries();
        let lo = JustBefore(lo);
        let hi = match hi.checked_add(1) {
            Some(m) => JustBefore(m),
            None => AfterMax,
        };
        [lo, hi]
    }

    /// Add ranges relative to which we split.
    fn split(&mut self, ranges: impl Iterator<Item = IntRange>) {
        let this_range = &self.range;
        let included_ranges = ranges.filter_map(|r| this_range.intersection(&r));
        let included_borders = included_ranges.flat_map(|r| {
            let borders = Self::to_borders(r);
            once(borders[0]).chain(once(borders[1]))
        });
        self.borders.extend(included_borders);
        self.borders.sort_unstable();
    }

    /// Iterate over the contained ranges.
    fn iter<'a>(&'a self) -> impl Iterator<Item = IntRange> + Captures<'a> {
        use IntBorder::*;

        let self_range = Self::to_borders(self.range.clone());
        // Start with the start of the range.
        let mut prev_border = self_range[0];
        self.borders
            .iter()
            .copied()
            // End with the end of the range.
            .chain(once(self_range[1]))
            // List pairs of adjacent borders.
            .map(move |border| {
                let ret = (prev_border, border);
                prev_border = border;
                ret
            })
            // Skip duplicates.
            .filter(|(prev_border, border)| prev_border != border)
            // Finally, convert to ranges.
            .map(|(prev_border, border)| {
                let range = match (prev_border, border) {
                    (JustBefore(n), JustBefore(m)) if n < m => n..=(m - 1),
                    (JustBefore(n), AfterMax) => n..=u128::MAX,
                    _ => unreachable!(), // Ruled out by the sorting and filtering we did
                };
                IntRange { range }
            })
    }
}

389 390 391
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum SliceKind {
    /// Patterns of length `n` (`[x, y]`).
N
Nadrieril 已提交
392
    FixedLen(usize),
393 394 395 396 397
    /// Patterns using the `..` notation (`[x, .., y]`).
    /// Captures any array constructor of `length >= i + j`.
    /// In the case where `array_len` is `Some(_)`,
    /// this indicates that we only care about the first `i` and the last `j` values of the array,
    /// and everything in between is a wildcard `_`.
N
Nadrieril 已提交
398
    VarLen(usize, usize),
399 400 401
}

impl SliceKind {
N
Nadrieril 已提交
402
    fn arity(self) -> usize {
403 404 405 406 407 408 409
        match self {
            FixedLen(length) => length,
            VarLen(prefix, suffix) => prefix + suffix,
        }
    }

    /// Whether this pattern includes patterns of length `other_len`.
N
Nadrieril 已提交
410
    fn covers_length(self, other_len: usize) -> bool {
411 412 413 414 415 416 417 418 419 420 421
        match self {
            FixedLen(len) => len == other_len,
            VarLen(prefix, suffix) => prefix + suffix <= other_len,
        }
    }
}

/// A constructor for array and slice patterns.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(super) struct Slice {
    /// `None` if the matched value is a slice, `Some(n)` if it is an array of size `n`.
N
Nadrieril 已提交
422
    array_len: Option<usize>,
423 424 425 426 427
    /// The kind of pattern it is: fixed-length `[x, y]` or variable length `[x, .., y]`.
    kind: SliceKind,
}

impl Slice {
N
Nadrieril 已提交
428
    fn new(array_len: Option<usize>, kind: SliceKind) -> Self {
429 430 431 432 433 434 435 436
        let kind = match (array_len, kind) {
            // If the middle `..` is empty, we effectively have a fixed-length pattern.
            (Some(len), VarLen(prefix, suffix)) if prefix + suffix >= len => FixedLen(len),
            _ => kind,
        };
        Slice { array_len, kind }
    }

N
Nadrieril 已提交
437
    fn arity(self) -> usize {
438 439 440
        self.kind.arity()
    }

441 442 443 444 445
    /// See `Constructor::is_covered_by`
    fn is_covered_by(self, other: Self) -> bool {
        other.kind.covers_length(self.arity())
    }
}
446

447 448
/// This computes constructor splitting for variable-length slices, as explained at the top of the
/// file.
449
///
450 451
/// A slice pattern `[x, .., y]` behaves like the infinite or-pattern `[x, y] | [x, _, y] | [x, _,
/// _, y] | ...`. The corresponding value constructors are fixed-length array constructors above a
N
Nadrieril 已提交
452
/// given minimum length. We obviously can't list this infinitude of constructors. Thankfully,
453 454
/// it turns out that for each finite set of slice patterns, all sufficiently large array lengths
/// are equivalent.
455
///
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/// Let's look at an example, where we are trying to split the last pattern:
/// ```
/// match x {
///     [true, true, ..] => {}
///     [.., false, false] => {}
///     [..] => {}
/// }
/// ```
/// Here are the results of specialization for the first few lengths:
/// ```
/// // length 0
/// [] => {}
/// // length 1
/// [_] => {}
/// // length 2
/// [true, true] => {}
/// [false, false] => {}
/// [_, _] => {}
/// // length 3
/// [true, true,  _    ] => {}
/// [_,    false, false] => {}
/// [_,    _,     _    ] => {}
/// // length 4
/// [true, true, _,     _    ] => {}
/// [_,    _,    false, false] => {}
/// [_,    _,    _,     _    ] => {}
/// // length 5
/// [true, true, _, _,     _    ] => {}
/// [_,    _,    _, false, false] => {}
/// [_,    _,    _, _,     _    ] => {}
/// ```
487
///
488 489 490
/// If we went above length 5, we would simply be inserting more columns full of wildcards in the
/// middle. This means that the set of witnesses for length `l >= 5` if equivalent to the set for
/// any other `l' >= 5`: simply add or remove wildcards in the middle to convert between them.
491
///
N
Nadrieril 已提交
492
/// This applies to any set of slice patterns: there will be a length `L` above which all lengths
493 494 495
/// behave the same. This is exactly what we need for constructor splitting. Therefore a
/// variable-length slice can be split into a variable-length slice of minimal length `L`, and many
/// fixed-length slices of lengths `< L`.
496
///
497 498 499 500 501 502
/// For each variable-length pattern `p` with a prefix of length `plₚ` and suffix of length `slₚ`,
/// only the first `plₚ` and the last `slₚ` elements are examined. Therefore, as long as `L` is
/// positive (to avoid concerns about empty types), all elements after the maximum prefix length
/// and before the maximum suffix length are not examined by any variable-length pattern, and
/// therefore can be added/removed without affecting them - creating equivalent patterns from any
/// sufficiently-large length.
503 504 505 506 507 508 509 510
///
/// Of course, if fixed-length patterns exist, we must be sure that our length is large enough to
/// miss them all, so we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`
///
/// `max_slice` below will be made to have arity `L`.
#[derive(Debug)]
struct SplitVarLenSlice {
    /// If the type is an array, this is its size.
N
Nadrieril 已提交
511
    array_len: Option<usize>,
512
    /// The arity of the input slice.
N
Nadrieril 已提交
513
    arity: usize,
514 515 516 517 518 519
    /// The smallest slice bigger than any slice seen. `max_slice.arity()` is the length `L`
    /// described above.
    max_slice: SliceKind,
}

impl SplitVarLenSlice {
N
Nadrieril 已提交
520
    fn new(prefix: usize, suffix: usize, array_len: Option<usize>) -> Self {
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
        SplitVarLenSlice { array_len, arity: prefix + suffix, max_slice: VarLen(prefix, suffix) }
    }

    /// Pass a set of slices relative to which to split this one.
    fn split(&mut self, slices: impl Iterator<Item = SliceKind>) {
        let (max_prefix_len, max_suffix_len) = match &mut self.max_slice {
            VarLen(prefix, suffix) => (prefix, suffix),
            FixedLen(_) => return, // No need to split
        };
        // We grow `self.max_slice` to be larger than all slices encountered, as described above.
        // For diagnostics, we keep the prefix and suffix lengths separate, but grow them so that
        // `L = max_prefix_len + max_suffix_len`.
        let mut max_fixed_len = 0;
        for slice in slices {
            match slice {
                FixedLen(len) => {
                    max_fixed_len = cmp::max(max_fixed_len, len);
                }
                VarLen(prefix, suffix) => {
                    *max_prefix_len = cmp::max(*max_prefix_len, prefix);
                    *max_suffix_len = cmp::max(*max_suffix_len, suffix);
542 543 544
                }
            }
        }
545 546 547
        // We want `L = max(L, max_fixed_len + 1)`, modulo the fact that we keep prefix and
        // suffix separate.
        if max_fixed_len + 1 >= *max_prefix_len + *max_suffix_len {
548
            // The subtraction can't overflow thanks to the above check.
549 550
            // The new `max_prefix_len` is larger than its previous value.
            *max_prefix_len = max_fixed_len + 1 - *max_suffix_len;
551 552
        }

553
        // We cap the arity of `max_slice` at the array size.
554
        match self.array_len {
555 556
            Some(len) if self.max_slice.arity() >= len => self.max_slice = FixedLen(len),
            _ => {}
557 558 559
        }
    }

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
    /// Iterate over the partition of this slice.
    fn iter<'a>(&'a self) -> impl Iterator<Item = Slice> + Captures<'a> {
        let smaller_lengths = match self.array_len {
            // The only admissible fixed-length slice is one of the array size. Whether `max_slice`
            // is fixed-length or variable-length, it will be the only relevant slice to output
            // here.
            Some(_) => (0..0), // empty range
            // We cover all arities in the range `(self.arity..infinity)`. We split that range into
            // two: lengths smaller than `max_slice.arity()` are treated independently as
            // fixed-lengths slices, and lengths above are captured by `max_slice`.
            None => self.arity..self.max_slice.arity(),
        };
        smaller_lengths
            .map(FixedLen)
            .chain(once(self.max_slice))
            .map(move |kind| Slice::new(self.array_len, kind))
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
    }
}

/// A value can be decomposed into a constructor applied to some fields. This struct represents
/// the constructor. See also `Fields`.
///
/// `pat_constructor` retrieves the constructor corresponding to a pattern.
/// `specialize_constructor` returns the list of fields corresponding to a pattern, given a
/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
/// `Fields`.
#[derive(Clone, Debug, PartialEq)]
pub(super) enum Constructor<'tcx> {
    /// The constructor for patterns that have a single constructor, like tuples, struct patterns
    /// and fixed-length arrays.
    Single,
    /// Enum variants.
592
    Variant(VariantIdx),
593
    /// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
594
    IntRange(IntRange),
595 596 597 598 599 600 601 602 603 604 605 606 607
    /// Ranges of floating-point literal values (`2.0..=5.2`).
    FloatRange(&'tcx ty::Const<'tcx>, &'tcx ty::Const<'tcx>, RangeEnd),
    /// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
    Str(&'tcx ty::Const<'tcx>),
    /// Array and slice patterns.
    Slice(Slice),
    /// Constants that must not be matched structurally. They are treated as black
    /// boxes for the purposes of exhaustiveness: we must not inspect them, and they
    /// don't count towards making a match exhaustive.
    Opaque,
    /// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used
    /// for those types for which we cannot list constructors explicitly, like `f64` and `str`.
    NonExhaustive,
608
    /// Stands for constructors that are not seen in the matrix, as explained in the documentation
609 610 611
    /// for [`SplitWildcard`]. The carried `bool` is used for the `non_exhaustive_omitted_patterns`
    /// lint.
    Missing { nonexhaustive_enum_missing_real_variants: bool },
612 613 614 615 616 617 618 619 620
    /// Wildcard pattern.
    Wildcard,
}

impl<'tcx> Constructor<'tcx> {
    pub(super) fn is_wildcard(&self) -> bool {
        matches!(self, Wildcard)
    }

621 622 623 624
    pub(super) fn is_non_exhaustive(&self) -> bool {
        matches!(self, NonExhaustive)
    }

625
    fn as_int_range(&self) -> Option<&IntRange> {
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
        match self {
            IntRange(range) => Some(range),
            _ => None,
        }
    }

    fn as_slice(&self) -> Option<Slice> {
        match self {
            Slice(slice) => Some(*slice),
            _ => None,
        }
    }

    fn variant_index_for_adt(&self, adt: &'tcx ty::AdtDef) -> VariantIdx {
        match *self {
641
            Variant(idx) => idx,
642 643 644 645 646 647 648 649
            Single => {
                assert!(!adt.is_enum());
                VariantIdx::new(0)
            }
            _ => bug!("bad constructor {:?} for adt {:?}", self, adt),
        }
    }

650 651 652 653 654 655
    /// Determines the constructor that the given pattern can be specialized to.
    pub(super) fn from_pat<'p>(cx: &MatchCheckCtxt<'p, 'tcx>, pat: &'p Pat<'tcx>) -> Self {
        match pat.kind.as_ref() {
            PatKind::AscribeUserType { .. } => bug!(), // Handled by `expand_pattern`
            PatKind::Binding { .. } | PatKind::Wild => Wildcard,
            PatKind::Leaf { .. } | PatKind::Deref { .. } => Single,
656
            &PatKind::Variant { variant_index, .. } => Variant(variant_index),
657
            PatKind::Constant { value } => {
658
                if let Some(int_range) = IntRange::from_const(cx.tcx, cx.param_env, value) {
659 660 661 662
                    IntRange(int_range)
                } else {
                    match pat.ty.kind() {
                        ty::Float(_) => FloatRange(value, value, RangeEnd::Included),
663 664 665 666
                        // We make `&str` constants behave like `Deref` patterns, to be compatible
                        // with other `Deref` patterns. See also `Fields::extract_pattern_arguments`.
                        ty::Ref(_, t, _) if t.is_str() => Single,
                        // In truth this carries a constant of type `&str`.
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
                        ty::Str => Str(value),
                        // All constants that can be structurally matched have already been expanded
                        // into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
                        // opaque.
                        _ => Opaque,
                    }
                }
            }
            &PatKind::Range(PatRange { lo, hi, end }) => {
                let ty = lo.ty;
                if let Some(int_range) = IntRange::from_range(
                    cx.tcx,
                    lo.eval_bits(cx.tcx, cx.param_env, lo.ty),
                    hi.eval_bits(cx.tcx, cx.param_env, hi.ty),
                    ty,
                    &end,
                ) {
                    IntRange(int_range)
                } else {
                    FloatRange(lo, hi, end)
                }
            }
            PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
                let array_len = match pat.ty.kind() {
N
Nadrieril 已提交
691
                    ty::Array(_, length) => Some(length.eval_usize(cx.tcx, cx.param_env) as usize),
692 693 694
                    ty::Slice(_) => None,
                    _ => span_bug!(pat.span, "bad ty {:?} for slice pattern", pat.ty),
                };
N
Nadrieril 已提交
695 696
                let prefix = prefix.len();
                let suffix = suffix.len();
697 698 699 700 701 702 703 704 705 706 707
                let kind = if slice.is_some() {
                    VarLen(prefix, suffix)
                } else {
                    FixedLen(prefix + suffix)
                };
                Slice(Slice::new(array_len, kind))
            }
            PatKind::Or { .. } => bug!("Or-pattern should have been expanded earlier on."),
        }
    }

708 709 710 711 712 713 714 715 716 717 718 719 720
    /// Some constructors (namely `Wildcard`, `IntRange` and `Slice`) actually stand for a set of actual
    /// constructors (like variants, integers or fixed-sized slices). When specializing for these
    /// constructors, we want to be specialising for the actual underlying constructors.
    /// Naively, we would simply return the list of constructors they correspond to. We instead are
    /// more clever: if there are constructors that we know will behave the same wrt the current
    /// matrix, we keep them grouped. For example, all slices of a sufficiently large length
    /// will either be all useful or all non-useful with a given matrix.
    ///
    /// See the branches for details on how the splitting is done.
    ///
    /// This function may discard some irrelevant constructors if this preserves behavior and
    /// diagnostics. Eg. for the `_` case, we ignore the constructors already present in the
    /// matrix, unless all of them are.
721 722 723 724 725 726 727 728
    pub(super) fn split<'a>(
        &self,
        pcx: PatCtxt<'_, '_, 'tcx>,
        ctors: impl Iterator<Item = &'a Constructor<'tcx>> + Clone,
    ) -> SmallVec<[Self; 1]>
    where
        'tcx: 'a,
    {
729
        match self {
730 731
            Wildcard => {
                let mut split_wildcard = SplitWildcard::new(pcx);
732
                split_wildcard.split(pcx, ctors);
733 734
                split_wildcard.into_ctors(pcx)
            }
735 736
            // Fast-track if the range is trivial. In particular, we don't do the overlapping
            // ranges check.
737 738
            IntRange(ctor_range) if !ctor_range.is_singleton() => {
                let mut split_range = SplitIntRange::new(ctor_range.clone());
N
Nadrieril 已提交
739 740
                let int_ranges = ctors.filter_map(|ctor| ctor.as_int_range());
                split_range.split(int_ranges.cloned());
741 742 743 744
                split_range.iter().map(IntRange).collect()
            }
            &Slice(Slice { kind: VarLen(self_prefix, self_suffix), array_len }) => {
                let mut split_self = SplitVarLenSlice::new(self_prefix, self_suffix, array_len);
745
                let slices = ctors.filter_map(|c| c.as_slice()).map(|s| s.kind);
746 747 748
                split_self.split(slices);
                split_self.iter().map(Slice).collect()
            }
749 750 751 752 753 754 755 756
            // Any other constructor can be used unchanged.
            _ => smallvec![self.clone()],
        }
    }

    /// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
    /// For the simple cases, this is simply checking for equality. For the "grouped" constructors,
    /// this checks for inclusion.
N
Nadrieril 已提交
757 758
    // We inline because this has a single call site in `Matrix::specialize_constructor`.
    #[inline]
759 760 761 762 763
    pub(super) fn is_covered_by<'p>(&self, pcx: PatCtxt<'_, 'p, 'tcx>, other: &Self) -> bool {
        // This must be kept in sync with `is_covered_by_any`.
        match (self, other) {
            // Wildcards cover anything
            (_, Wildcard) => true,
764
            // The missing ctors are not covered by anything in the matrix except wildcards.
765
            (Missing { .. } | Wildcard, _) => false,
766 767 768 769

            (Single, Single) => true,
            (Variant(self_id), Variant(other_id)) => self_id == other_id,

770
            (IntRange(self_range), IntRange(other_range)) => self_range.is_covered_by(other_range),
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
            (
                FloatRange(self_from, self_to, self_end),
                FloatRange(other_from, other_to, other_end),
            ) => {
                match (
                    compare_const_vals(pcx.cx.tcx, self_to, other_to, pcx.cx.param_env, pcx.ty),
                    compare_const_vals(pcx.cx.tcx, self_from, other_from, pcx.cx.param_env, pcx.ty),
                ) {
                    (Some(to), Some(from)) => {
                        (from == Ordering::Greater || from == Ordering::Equal)
                            && (to == Ordering::Less
                                || (other_end == self_end && to == Ordering::Equal))
                    }
                    _ => false,
                }
            }
            (Str(self_val), Str(other_val)) => {
                // FIXME: there's probably a more direct way of comparing for equality
                match compare_const_vals(pcx.cx.tcx, self_val, other_val, pcx.cx.param_env, pcx.ty)
                {
                    Some(comparison) => comparison == Ordering::Equal,
                    None => false,
                }
            }
            (Slice(self_slice), Slice(other_slice)) => self_slice.is_covered_by(*other_slice),

            // We are trying to inspect an opaque constant. Thus we skip the row.
            (Opaque, _) | (_, Opaque) => false,
            // Only a wildcard pattern can match the special extra constructor.
            (NonExhaustive, _) => false,

            _ => span_bug!(
                pcx.span,
                "trying to compare incompatible constructors {:?} and {:?}",
                self,
                other
            ),
        }
    }

    /// Faster version of `is_covered_by` when applied to many constructors. `used_ctors` is
    /// assumed to be built from `matrix.head_ctors()` with wildcards filtered out, and `self` is
    /// assumed to have been split from a wildcard.
    fn is_covered_by_any<'p>(
        &self,
        pcx: PatCtxt<'_, 'p, 'tcx>,
        used_ctors: &[Constructor<'tcx>],
    ) -> bool {
        if used_ctors.is_empty() {
            return false;
        }

        // This must be kept in sync with `is_covered_by`.
        match self {
            // If `self` is `Single`, `used_ctors` cannot contain anything else than `Single`s.
            Single => !used_ctors.is_empty(),
            Variant(_) => used_ctors.iter().any(|c| c == self),
            IntRange(range) => used_ctors
                .iter()
                .filter_map(|c| c.as_int_range())
831
                .any(|other| range.is_covered_by(other)),
832 833 834 835 836 837
            Slice(slice) => used_ctors
                .iter()
                .filter_map(|c| c.as_slice())
                .any(|other| slice.is_covered_by(other)),
            // This constructor is never covered by anything else
            NonExhaustive => false,
838
            Str(..) | FloatRange(..) | Opaque | Missing { .. } | Wildcard => {
839
                span_bug!(pcx.span, "found unexpected ctor in all_ctors: {:?}", self)
840 841 842 843 844
            }
        }
    }
}

845 846
/// A wildcard constructor that we split relative to the constructors in the matrix, as explained
/// at the top of the file.
847 848 849 850 851 852 853 854 855 856 857 858 859
///
/// A constructor that is not present in the matrix rows will only be covered by the rows that have
/// wildcards. Thus we can group all of those constructors together; we call them "missing
/// constructors". Splitting a wildcard would therefore list all present constructors individually
/// (or grouped if they are integers or slices), and then all missing constructors together as a
/// group.
///
/// However we can go further: since any constructor will match the wildcard rows, and having more
/// rows can only reduce the amount of usefulness witnesses, we can skip the present constructors
/// and only try the missing ones.
/// This will not preserve the whole list of witnesses, but will preserve whether the list is empty
/// or not. In fact this is quite natural from the point of view of diagnostics too. This is done
/// in `to_ctors`: in some cases we only return `Missing`.
860
#[derive(Debug)]
861 862 863 864
pub(super) struct SplitWildcard<'tcx> {
    /// Constructors seen in the matrix.
    matrix_ctors: Vec<Constructor<'tcx>>,
    /// All the constructors for this type
865 866 867
    all_ctors: SmallVec<[Constructor<'tcx>; 1]>,
}

868
impl<'tcx> SplitWildcard<'tcx> {
869
    pub(super) fn new<'p>(pcx: PatCtxt<'_, 'p, 'tcx>) -> Self {
N
Nadrieril 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
        debug!("SplitWildcard::new({:?})", pcx.ty);
        let cx = pcx.cx;
        let make_range = |start, end| {
            IntRange(
                // `unwrap()` is ok because we know the type is an integer.
                IntRange::from_range(cx.tcx, start, end, pcx.ty, &RangeEnd::Included).unwrap(),
            )
        };
        // This determines the set of all possible constructors for the type `pcx.ty`. For numbers,
        // arrays and slices we use ranges and variable-length slices when appropriate.
        //
        // If the `exhaustive_patterns` feature is enabled, we make sure to omit constructors that
        // are statically impossible. E.g., for `Option<!>`, we do not include `Some(_)` in the
        // returned list of constructors.
        // Invariant: this is empty if and only if the type is uninhabited (as determined by
        // `cx.is_uninhabited()`).
        let all_ctors = match pcx.ty.kind() {
            ty::Bool => smallvec![make_range(0, 1)],
            ty::Array(sub_ty, len) if len.try_eval_usize(cx.tcx, cx.param_env).is_some() => {
N
Nadrieril 已提交
889
                let len = len.eval_usize(cx.tcx, cx.param_env) as usize;
N
Nadrieril 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
                if len != 0 && cx.is_uninhabited(sub_ty) {
                    smallvec![]
                } else {
                    smallvec![Slice(Slice::new(Some(len), VarLen(0, 0)))]
                }
            }
            // Treat arrays of a constant but unknown length like slices.
            ty::Array(sub_ty, _) | ty::Slice(sub_ty) => {
                let kind = if cx.is_uninhabited(sub_ty) { FixedLen(0) } else { VarLen(0, 0) };
                smallvec![Slice(Slice::new(None, kind))]
            }
            ty::Adt(def, substs) if def.is_enum() => {
                // If the enum is declared as `#[non_exhaustive]`, we treat it as if it had an
                // additional "unknown" constructor.
                // There is no point in enumerating all possible variants, because the user can't
                // actually match against them all themselves. So we always return only the fictitious
                // constructor.
                // E.g., in an example like:
                //
                // ```
                //     let err: io::ErrorKind = ...;
                //     match err {
                //         io::ErrorKind::NotFound => {},
                //     }
                // ```
                //
                // we don't want to show every possible IO error, but instead have only `_` as the
                // witness.
                let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(pcx.ty);

                // If `exhaustive_patterns` is disabled and our scrutinee is an empty enum, we treat it
                // as though it had an "unknown" constructor to avoid exposing its emptiness. The
                // exception is if the pattern is at the top level, because we want empty matches to be
                // considered exhaustive.
                let is_secretly_empty = def.variants.is_empty()
                    && !cx.tcx.features().exhaustive_patterns
                    && !pcx.is_top_level;

928
                if is_secretly_empty {
N
Nadrieril 已提交
929
                    smallvec![NonExhaustive]
930 931 932 933 934 935
                } else if is_declared_nonexhaustive {
                    def.variants
                        .indices()
                        .map(|idx| Variant(idx))
                        .chain(Some(NonExhaustive))
                        .collect()
N
Nadrieril 已提交
936 937 938 939
                } else if cx.tcx.features().exhaustive_patterns {
                    // If `exhaustive_patterns` is enabled, we exclude variants known to be
                    // uninhabited.
                    def.variants
940 941
                        .iter_enumerated()
                        .filter(|(_, v)| {
N
Nadrieril 已提交
942 943 944
                            !v.uninhabited_from(cx.tcx, substs, def.adt_kind(), cx.param_env)
                                .contains(cx.tcx, cx.module)
                        })
945
                        .map(|(idx, _)| Variant(idx))
N
Nadrieril 已提交
946 947
                        .collect()
                } else {
948
                    def.variants.indices().map(|idx| Variant(idx)).collect()
N
Nadrieril 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
                }
            }
            ty::Char => {
                smallvec![
                    // The valid Unicode Scalar Value ranges.
                    make_range('\u{0000}' as u128, '\u{D7FF}' as u128),
                    make_range('\u{E000}' as u128, '\u{10FFFF}' as u128),
                ]
            }
            ty::Int(_) | ty::Uint(_)
                if pcx.ty.is_ptr_sized_integral()
                    && !cx.tcx.features().precise_pointer_size_matching =>
            {
                // `usize`/`isize` are not allowed to be matched exhaustively unless the
                // `precise_pointer_size_matching` feature is enabled. So we treat those types like
                // `#[non_exhaustive]` enums by returning a special unmatcheable constructor.
                smallvec![NonExhaustive]
            }
            &ty::Int(ity) => {
968
                let bits = Integer::from_int_ty(&cx.tcx, ity).size().bits() as u128;
N
Nadrieril 已提交
969 970 971 972 973
                let min = 1u128 << (bits - 1);
                let max = min - 1;
                smallvec![make_range(min, max)]
            }
            &ty::Uint(uty) => {
974
                let size = Integer::from_uint_ty(&cx.tcx, uty).size();
N
Nadrieril 已提交
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
                let max = size.truncate(u128::MAX);
                smallvec![make_range(0, max)]
            }
            // If `exhaustive_patterns` is disabled and our scrutinee is the never type, we cannot
            // expose its emptiness. The exception is if the pattern is at the top level, because we
            // want empty matches to be considered exhaustive.
            ty::Never if !cx.tcx.features().exhaustive_patterns && !pcx.is_top_level => {
                smallvec![NonExhaustive]
            }
            ty::Never => smallvec![],
            _ if cx.is_uninhabited(pcx.ty) => smallvec![],
            ty::Adt(..) | ty::Tuple(..) | ty::Ref(..) => smallvec![Single],
            // This type is one for which we cannot list constructors, like `str` or `f64`.
            _ => smallvec![NonExhaustive],
        };
990

N
Nadrieril 已提交
991
        SplitWildcard { matrix_ctors: Vec::new(), all_ctors }
992 993 994 995
    }

    /// Pass a set of constructors relative to which to split this one. Don't call twice, it won't
    /// do what you want.
996 997 998 999 1000 1001 1002
    pub(super) fn split<'a>(
        &mut self,
        pcx: PatCtxt<'_, '_, 'tcx>,
        ctors: impl Iterator<Item = &'a Constructor<'tcx>> + Clone,
    ) where
        'tcx: 'a,
    {
1003
        // Since `all_ctors` never contains wildcards, this won't recurse further.
1004 1005 1006
        self.all_ctors =
            self.all_ctors.iter().flat_map(|ctor| ctor.split(pcx, ctors.clone())).collect();
        self.matrix_ctors = ctors.filter(|c| !c.is_wildcard()).cloned().collect();
1007 1008
    }

1009 1010 1011
    /// Whether there are any value constructors for this type that are not present in the matrix.
    fn any_missing(&self, pcx: PatCtxt<'_, '_, 'tcx>) -> bool {
        self.iter_missing(pcx).next().is_some()
1012 1013
    }

1014
    /// Iterate over the constructors for this type that are not present in the matrix.
1015
    pub(super) fn iter_missing<'a, 'p>(
1016 1017 1018
        &'a self,
        pcx: PatCtxt<'a, 'p, 'tcx>,
    ) -> impl Iterator<Item = &'a Constructor<'tcx>> + Captures<'p> {
1019 1020 1021 1022 1023 1024 1025
        self.all_ctors.iter().filter(move |ctor| !ctor.is_covered_by_any(pcx, &self.matrix_ctors))
    }

    /// Return the set of constructors resulting from splitting the wildcard. As explained at the
    /// top of the file, if any constructors are missing we can ignore the present ones.
    fn into_ctors(self, pcx: PatCtxt<'_, '_, 'tcx>) -> SmallVec<[Constructor<'tcx>; 1]> {
        if self.any_missing(pcx) {
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
            // Some constructors are missing, thus we can specialize with the special `Missing`
            // constructor, which stands for those constructors that are not seen in the matrix,
            // and matches the same rows as any of them (namely the wildcard rows). See the top of
            // the file for details.
            // However, when all constructors are missing we can also specialize with the full
            // `Wildcard` constructor. The difference will depend on what we want in diagnostics.

            // If some constructors are missing, we typically want to report those constructors,
            // e.g.:
            // ```
            //     enum Direction { N, S, E, W }
            //     let Direction::N = ...;
            // ```
            // we can report 3 witnesses: `S`, `E`, and `W`.
            //
            // However, if the user didn't actually specify a constructor
            // in this arm, e.g., in
            // ```
            //     let x: (Direction, Direction, bool) = ...;
            //     let (_, _, false) = x;
            // ```
            // we don't want to show all 16 possible witnesses `(<direction-1>, <direction-2>,
            // true)` - we are satisfied with `(_, _, true)`. So if all constructors are missing we
            // prefer to report just a wildcard `_`.
            //
            // The exception is: if we are at the top-level, for example in an empty match, we
            // sometimes prefer reporting the list of constructors instead of just `_`.
            let report_when_all_missing = pcx.is_top_level && !IntRange::is_integral(pcx.ty);
            let ctor = if !self.matrix_ctors.is_empty() || report_when_all_missing {
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
                if pcx.is_non_exhaustive {
                    Missing {
                        nonexhaustive_enum_missing_real_variants: self
                            .iter_missing(pcx)
                            .filter(|c| !c.is_non_exhaustive())
                            .next()
                            .is_some(),
                    }
                } else {
                    Missing { nonexhaustive_enum_missing_real_variants: false }
                }
1066 1067 1068 1069
            } else {
                Wildcard
            };
            return smallvec![ctor];
1070 1071 1072 1073
        }

        // All the constructors are present in the matrix, so we just go through them all.
        self.all_ctors
1074 1075 1076 1077 1078 1079
    }
}

/// A value can be decomposed into a constructor applied to some fields. This struct represents
/// those fields, generalized to allow patterns in each field. See also `Constructor`.
///
N
Nadrieril 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
/// This is constructed for a constructor using [`Fields::wildcards()`]. The idea is that
/// [`Fields::wildcards()`] constructs a list of fields where all entries are wildcards, and then
/// given a pattern we fill some of the fields with its subpatterns.
/// In the following example `Fields::wildcards` returns `[_, _, _, _]`. Then in
/// `extract_pattern_arguments` we fill some of the entries, and the result is
/// `[Some(0), _, _, _]`.
/// ```rust
/// let x: [Option<u8>; 4] = foo();
/// match x {
///     [Some(0), ..] => {}
/// }
/// ```
///
/// Note that the number of fields of a constructor may not match the fields declared in the
/// original struct/variant. This happens if a private or `non_exhaustive` field is uninhabited,
/// because the code mustn't observe that it is uninhabited. In that case that field is not
/// included in `fields`. For that reason, when you have a `mir::Field` you must use
/// `index_with_declared_idx`.
1098
#[derive(Debug, Clone)]
N
Nadrieril 已提交
1099 1100
pub(super) struct Fields<'p, 'tcx> {
    fields: SmallVec<[&'p Pat<'tcx>; 2]>,
1101 1102 1103
}

impl<'p, 'tcx> Fields<'p, 'tcx> {
N
Nadrieril 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
    fn empty() -> Self {
        Fields { fields: SmallVec::new() }
    }

    fn from_iter(
        cx: &MatchCheckCtxt<'p, 'tcx>,
        fields: impl IntoIterator<Item = Pat<'tcx>>,
    ) -> Self {
        let fields: &_ = cx.pattern_arena.alloc_from_iter(fields);
        Fields { fields: fields.iter().collect() }
1114 1115 1116 1117 1118 1119
    }

    fn wildcards_from_tys(
        cx: &MatchCheckCtxt<'p, 'tcx>,
        tys: impl IntoIterator<Item = Ty<'tcx>>,
    ) -> Self {
N
Nadrieril 已提交
1120
        Fields::from_iter(cx, tys.into_iter().map(Pat::wildcard_from_ty))
1121 1122
    }

N
Nadrieril 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
    // In the cases of either a `#[non_exhaustive]` field list or a non-public field, we hide
    // uninhabited fields in order not to reveal the uninhabitedness of the whole variant.
    // This lists the fields we keep along with their types.
    fn list_variant_nonhidden_fields<'a>(
        cx: &'a MatchCheckCtxt<'p, 'tcx>,
        ty: Ty<'tcx>,
        variant: &'a VariantDef,
    ) -> impl Iterator<Item = (Field, Ty<'tcx>)> + Captures<'a> + Captures<'p> {
        let (adt, substs) = match ty.kind() {
            ty::Adt(adt, substs) => (adt, substs),
            _ => bug!(),
        };
        // Whether we must not match the fields of this variant exhaustively.
        let is_non_exhaustive = variant.is_field_list_non_exhaustive() && !adt.did.is_local();

        variant.fields.iter().enumerate().filter_map(move |(i, field)| {
            let ty = field.ty(cx.tcx, substs);
            let is_visible = adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx);
            let is_uninhabited = cx.is_uninhabited(ty);
1142

N
Nadrieril 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
            if is_uninhabited && (!is_visible || is_non_exhaustive) {
                None
            } else {
                Some((Field::new(i), ty))
            }
        })
    }

    /// Creates a new list of wildcard fields for a given constructor.
    pub(super) fn wildcards(
        cx: &MatchCheckCtxt<'p, 'tcx>,
        ty: Ty<'tcx>,
        constructor: &Constructor<'tcx>,
    ) -> Self {
1157 1158 1159 1160 1161
        let ret = match constructor {
            Single | Variant(_) => match ty.kind() {
                ty::Tuple(ref fs) => {
                    Fields::wildcards_from_tys(cx, fs.into_iter().map(|ty| ty.expect_ty()))
                }
N
Nadrieril 已提交
1162
                ty::Ref(_, rty, _) => Fields::wildcards_from_tys(cx, once(*rty)),
1163 1164 1165
                ty::Adt(adt, substs) => {
                    if adt.is_box() {
                        // Use T as the sub pattern type of Box<T>.
N
Nadrieril 已提交
1166 1167 1168
                        // FIXME(Nadrieril): This is to make box-patterns work even though `Box` is
                        // actually a struct with 2 private fields. Hacky.
                        Fields::wildcards_from_tys(cx, once(substs.type_at(0)))
1169 1170
                    } else {
                        let variant = &adt.variants[constructor.variant_index_for_adt(adt)];
N
Nadrieril 已提交
1171 1172 1173
                        let tys = Fields::list_variant_nonhidden_fields(cx, ty, variant)
                            .map(|(_, ty)| ty);
                        Fields::wildcards_from_tys(cx, tys)
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
                    }
                }
                _ => bug!("Unexpected type for `Single` constructor: {:?}", ty),
            },
            Slice(slice) => match *ty.kind() {
                ty::Slice(ty) | ty::Array(ty, _) => {
                    let arity = slice.arity();
                    Fields::wildcards_from_tys(cx, (0..arity).map(|_| ty))
                }
                _ => bug!("bad slice pattern {:?} {:?}", constructor, ty),
            },
1185 1186 1187 1188 1189 1190
            Str(..)
            | FloatRange(..)
            | IntRange(..)
            | NonExhaustive
            | Opaque
            | Missing { .. }
N
Nadrieril 已提交
1191
            | Wildcard => Fields::empty(),
1192 1193 1194 1195 1196
        };
        debug!("Fields::wildcards({:?}, {:?}) = {:#?}", constructor, ty, ret);
        ret
    }

N
Nadrieril 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
    /// Returns the number of patterns. This is the same as the arity of the constructor used to
    /// construct `self`.
    pub(super) fn len(&self) -> usize {
        self.fields.len()
    }

    /// Returns the list of patterns.
    pub(super) fn iter_patterns<'a>(
        &'a self,
    ) -> impl Iterator<Item = &'p Pat<'tcx>> + Captures<'a> {
        self.fields.iter().copied()
    }

1210 1211 1212 1213 1214 1215
    /// Apply a constructor to a list of patterns, yielding a new pattern. `self`
    /// must have as many elements as this constructor's arity.
    ///
    /// This is roughly the inverse of `specialize_constructor`.
    ///
    /// Examples:
1216 1217 1218 1219 1220
    ///
    /// ```text
    /// ctor: `Constructor::Single`
    /// ty: `Foo(u32, u32, u32)`
    /// self: `[10, 20, _]`
1221 1222
    /// returns `Foo(10, 20, _)`
    ///
1223 1224 1225
    /// ctor: `Constructor::Variant(Option::Some)`
    /// ty: `Option<bool>`
    /// self: `[false]`
1226
    /// returns `Some(false)`
1227
    /// ```
1228
    pub(super) fn apply(self, pcx: PatCtxt<'_, 'p, 'tcx>, ctor: &Constructor<'tcx>) -> Pat<'tcx> {
N
Nadrieril 已提交
1229
        let mut subpatterns = self.iter_patterns().cloned();
1230 1231 1232

        let pat = match ctor {
            Single | Variant(_) => match pcx.ty.kind() {
N
Nadrieril 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
                ty::Tuple(..) => PatKind::Leaf {
                    subpatterns: subpatterns
                        .enumerate()
                        .map(|(i, p)| FieldPat { field: Field::new(i), pattern: p })
                        .collect(),
                },
                ty::Adt(adt_def, _) if adt_def.is_box() => {
                    // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
                    // of `std`). So this branch is only reachable when the feature is enabled and
                    // the pattern is a box pattern.
                    PatKind::Deref { subpattern: subpatterns.next().unwrap() }
                }
                ty::Adt(adt, substs) => {
                    let variant_index = ctor.variant_index_for_adt(adt);
                    let variant = &adt.variants[variant_index];
                    let subpatterns =
                        Fields::list_variant_nonhidden_fields(pcx.cx, pcx.ty, variant)
                            .zip(subpatterns)
                            .map(|((field, _ty), pattern)| FieldPat { field, pattern })
                            .collect();

                    if adt.is_enum() {
                        PatKind::Variant {
                            adt_def: adt,
                            substs,
                            variant_index: ctor.variant_index_for_adt(adt),
                            subpatterns,
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
                        }
                    } else {
                        PatKind::Leaf { subpatterns }
                    }
                }
                // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
                // be careful to reconstruct the correct constant pattern here. However a string
                // literal pattern will never be reported as a non-exhaustiveness witness, so we
                // can ignore this issue.
                ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
N
Nadrieril 已提交
1270
                _ => bug!("unexpected ctor for type {:?} {:?}", ctor, pcx.ty),
1271 1272 1273 1274 1275 1276
            },
            Slice(slice) => match slice.kind {
                FixedLen(_) => {
                    PatKind::Slice { prefix: subpatterns.collect(), slice: None, suffix: vec![] }
                }
                VarLen(prefix, _) => {
N
Nadrieril 已提交
1277
                    let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix).collect();
1278 1279 1280 1281 1282
                    if slice.array_len.is_some() {
                        // Improves diagnostics a bit: if the type is a known-size array, instead
                        // of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
                        // This is incorrect if the size is not known, since `[_, ..]` captures
                        // arrays of lengths `>= 1` whereas `[..]` captures any length.
1283
                        while !prefix.is_empty() && is_wildcard(prefix.last().unwrap()) {
1284 1285 1286 1287 1288
                            prefix.pop();
                        }
                    }
                    let suffix: Vec<_> = if slice.array_len.is_some() {
                        // Same as above.
1289
                        subpatterns.skip_while(is_wildcard).collect()
1290 1291 1292 1293 1294 1295 1296 1297 1298
                    } else {
                        subpatterns.collect()
                    };
                    let wild = Pat::wildcard_from_ty(pcx.ty);
                    PatKind::Slice { prefix, slice: Some(wild), suffix }
                }
            },
            &Str(value) => PatKind::Constant { value },
            &FloatRange(lo, hi, end) => PatKind::Range(PatRange { lo, hi, end }),
1299
            IntRange(range) => return range.to_pat(pcx.cx.tcx, pcx.ty),
1300
            NonExhaustive => PatKind::Wild,
1301
            Wildcard => return Pat::wildcard_from_ty(pcx.ty),
1302
            Opaque => bug!("we should not try to apply an opaque constructor"),
1303
            Missing { .. } => bug!(
1304
                "trying to apply the `Missing` constructor; this should have been done in `apply_constructors`"
1305 1306 1307 1308 1309 1310
            ),
        };

        Pat { ty: pcx.ty, span: DUMMY_SP, kind: Box::new(pat) }
    }

N
Nadrieril 已提交
1311 1312
    /// Replaces contained fields with the given list of patterns. There must be `len()` patterns
    /// in `pats`.
1313
    pub(super) fn replace_fields(
N
Nadrieril 已提交
1314
        self,
1315 1316 1317
        cx: &MatchCheckCtxt<'p, 'tcx>,
        pats: impl IntoIterator<Item = Pat<'tcx>>,
    ) -> Self {
N
Nadrieril 已提交
1318
        Self::from_iter(cx, pats)
1319 1320 1321 1322
    }

    /// Replaces contained fields with the arguments of the given pattern. Only use on a pattern
    /// that is compatible with the constructor used to build `self`.
N
Nadrieril 已提交
1323 1324
    /// This is meant to be used on the result of `Fields::wildcards()`. See the comment above
    /// `Fields` for details
1325
    /// This is guaranteed to preserve the number of patterns in `self`.
N
Nadrieril 已提交
1326 1327 1328 1329 1330
    pub(super) fn extract_pattern_arguments(
        mut self,
        cx: &MatchCheckCtxt<'p, 'tcx>,
        pat: &'p Pat<'tcx>,
    ) -> Self {
1331 1332 1333
        match pat.kind.as_ref() {
            PatKind::Deref { subpattern } => {
                assert_eq!(self.len(), 1);
N
Nadrieril 已提交
1334
                self.fields[0] = subpattern;
1335 1336
            }
            PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
N
Nadrieril 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
                match pat.ty.kind() {
                    ty::Adt(adt, _) if adt.is_box() => {
                        // FIXME(Nadrieril): A `Box` can in theory be matched either with `Box(_,
                        // _)` or a box pattern. As a hack to avoid an ICE with the former, we
                        // ignore other fields than the first one. This will trigger an error later
                        // anyway.
                        // See https://github.com/rust-lang/rust/issues/82772 ,
                        // explanation: https://github.com/rust-lang/rust/pull/82789#issuecomment-796921977
                        // The problem is that we can't know from the type whether we'll match
                        // normally or through box-patterns. We'll have to figure out a proper
                        // solution when we introduce generalized deref patterns. Also need to
                        // prevent mixing of those two options.
                        assert_eq!(self.len(), 1);
                        let pat = subpatterns.into_iter().find(|pat| pat.field.index() == 0);
                        if let Some(pat) = pat {
                            self.fields[0] = &pat.pattern;
                        }
                    }
                    ty::Adt(adt, _) => {
                        let variant_index = match pat.kind.as_ref() {
                            PatKind::Leaf { .. } => VariantIdx::new(0),
                            PatKind::Variant { variant_index, .. } => *variant_index,
                            _ => bug!(),
                        };
                        let variant = &adt.variants[variant_index];
                        // For each field in the variant, we store the relevant index into `self.fields` if any.
                        let mut field_id_to_id: Vec<Option<usize>> =
                            (0..variant.fields.len()).map(|_| None).collect();
                        for (i, (field, _ty)) in
                            Fields::list_variant_nonhidden_fields(cx, pat.ty, variant).enumerate()
                        {
                            field_id_to_id[field.index()] = Some(i);
                        }
                        for pat in subpatterns {
                            if let Some(i) = field_id_to_id[pat.field.index()] {
                                self.fields[i] = &pat.pattern;
                            }
                        }
                    }
                    _ => {
                        for pat in subpatterns {
                            self.fields[pat.field.index()] = &pat.pattern;
                        }
                    }
                }
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
            }
            PatKind::Array { prefix, suffix, .. } | PatKind::Slice { prefix, suffix, .. } => {
                // Number of subpatterns for the constructor
                let ctor_arity = self.len();

                // Replace the prefix and the suffix with the given patterns, leaving wildcards in
                // the middle if there was a subslice pattern `..`.
                let prefix = prefix.iter().enumerate();
                let suffix =
                    suffix.iter().enumerate().map(|(i, p)| (ctor_arity - suffix.len() + i, p));
N
Nadrieril 已提交
1392 1393 1394 1395

                for (i, pat) in prefix.chain(suffix) {
                    self.fields[i] = pat
                }
1396
            }
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
            PatKind::Constant { .. } => match pat.ty.kind() {
                ty::Ref(_, t, _) if t.is_str() => {
                    assert_eq!(self.len(), 1);
                    // We want a `&str` constant to behave like a `Deref` pattern, to be compatible
                    // with other `Deref` patterns. This could have been done in `const_to_pat`,
                    // but that causes issues with the rest of the matching code.
                    // The outer constructor is `&`, and the inner one carries the str value.
                    let mut new_pat = pat.clone();
                    new_pat.ty = t; // `t` is `str`, not `&str`
                    self.fields[0] = &*cx.pattern_arena.alloc(new_pat);
                }
                _ => {}
            },
N
Nadrieril 已提交
1410 1411 1412
            _ => {}
        };
        self
1413 1414
    }
}