fs-writeback.c 67.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
11
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
12 13 14 15 16
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
17
#include <linux/export.h>
L
Linus Torvalds 已提交
18
#include <linux/spinlock.h>
19
#include <linux/slab.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
23
#include <linux/pagemap.h>
24
#include <linux/kthread.h>
L
Linus Torvalds 已提交
25 26 27
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
28
#include <linux/tracepoint.h>
29
#include <linux/device.h>
30
#include <linux/memcontrol.h>
31
#include "internal.h"
L
Linus Torvalds 已提交
32

33 34 35 36 37
/*
 * 4MB minimal write chunk size
 */
#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))

38 39 40 41
struct wb_completion {
	atomic_t		cnt;
};

42 43 44
/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
45
struct wb_writeback_work {
46 47
	long nr_pages;
	struct super_block *sb;
48
	unsigned long *older_than_this;
49
	enum writeback_sync_modes sync_mode;
50
	unsigned int tagged_writepages:1;
51 52 53
	unsigned int for_kupdate:1;
	unsigned int range_cyclic:1;
	unsigned int for_background:1;
54
	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55
	unsigned int auto_free:1;	/* free on completion */
56 57
	unsigned int single_wait:1;
	unsigned int single_done:1;
58
	enum wb_reason reason;		/* why was writeback initiated? */
59

60
	struct list_head list;		/* pending work list */
61
	struct wb_completion *done;	/* set if the caller waits */
62 63
};

64 65 66 67 68 69 70 71 72 73 74 75 76
/*
 * If one wants to wait for one or more wb_writeback_works, each work's
 * ->done should be set to a wb_completion defined using the following
 * macro.  Once all work items are issued with wb_queue_work(), the caller
 * can wait for the completion of all using wb_wait_for_completion().  Work
 * items which are waited upon aren't freed automatically on completion.
 */
#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
	struct wb_completion cmpl = {					\
		.cnt		= ATOMIC_INIT(1),			\
	}


77 78 79 80 81 82 83 84 85 86 87 88
/*
 * If an inode is constantly having its pages dirtied, but then the
 * updates stop dirtytime_expire_interval seconds in the past, it's
 * possible for the worst case time between when an inode has its
 * timestamps updated and when they finally get written out to be two
 * dirtytime_expire_intervals.  We set the default to 12 hours (in
 * seconds), which means most of the time inodes will have their
 * timestamps written to disk after 12 hours, but in the worst case a
 * few inodes might not their timestamps updated for 24 hours.
 */
unsigned int dirtytime_expire_interval = 12 * 60 * 60;

N
Nick Piggin 已提交
89 90 91 92 93
static inline struct inode *wb_inode(struct list_head *head)
{
	return list_entry(head, struct inode, i_wb_list);
}

94 95 96 97 98 99 100 101
/*
 * Include the creation of the trace points after defining the
 * wb_writeback_work structure and inline functions so that the definition
 * remains local to this file.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/writeback.h>

102 103
EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);

104 105 106 107 108 109
static bool wb_io_lists_populated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb)) {
		return false;
	} else {
		set_bit(WB_has_dirty_io, &wb->state);
110
		WARN_ON_ONCE(!wb->avg_write_bandwidth);
111 112
		atomic_long_add(wb->avg_write_bandwidth,
				&wb->bdi->tot_write_bandwidth);
113 114 115 116 117 118 119
		return true;
	}
}

static void wb_io_lists_depopulated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
120
	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
121
		clear_bit(WB_has_dirty_io, &wb->state);
122 123
		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
					&wb->bdi->tot_write_bandwidth) < 0);
124
	}
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
}

/**
 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
 * @inode: inode to be moved
 * @wb: target bdi_writeback
 * @head: one of @wb->b_{dirty|io|more_io}
 *
 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
 * Returns %true if @inode is the first occupant of the !dirty_time IO
 * lists; otherwise, %false.
 */
static bool inode_wb_list_move_locked(struct inode *inode,
				      struct bdi_writeback *wb,
				      struct list_head *head)
{
	assert_spin_locked(&wb->list_lock);

	list_move(&inode->i_wb_list, head);

	/* dirty_time doesn't count as dirty_io until expiration */
	if (head != &wb->b_dirty_time)
		return wb_io_lists_populated(wb);

	wb_io_lists_depopulated(wb);
	return false;
}

/**
 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
 * @inode: inode to be removed
 * @wb: bdi_writeback @inode is being removed from
 *
 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 * clear %WB_has_dirty_io if all are empty afterwards.
 */
static void inode_wb_list_del_locked(struct inode *inode,
				     struct bdi_writeback *wb)
{
	assert_spin_locked(&wb->list_lock);

	list_del_init(&inode->i_wb_list);
	wb_io_lists_depopulated(wb);
}

170
static void wb_wakeup(struct bdi_writeback *wb)
J
Jan Kara 已提交
171
{
172 173 174 175
	spin_lock_bh(&wb->work_lock);
	if (test_bit(WB_registered, &wb->state))
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	spin_unlock_bh(&wb->work_lock);
J
Jan Kara 已提交
176 177
}

178 179
static void wb_queue_work(struct bdi_writeback *wb,
			  struct wb_writeback_work *work)
180
{
181
	trace_writeback_queue(wb->bdi, work);
182

183
	spin_lock_bh(&wb->work_lock);
184 185 186
	if (!test_bit(WB_registered, &wb->state)) {
		if (work->single_wait)
			work->single_done = 1;
J
Jan Kara 已提交
187
		goto out_unlock;
188
	}
189 190
	if (work->done)
		atomic_inc(&work->done->cnt);
191 192
	list_add_tail(&work->list, &wb->work_list);
	mod_delayed_work(bdi_wq, &wb->dwork, 0);
J
Jan Kara 已提交
193
out_unlock:
194
	spin_unlock_bh(&wb->work_lock);
L
Linus Torvalds 已提交
195 196
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/**
 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 * @bdi: bdi work items were issued to
 * @done: target wb_completion
 *
 * Wait for one or more work items issued to @bdi with their ->done field
 * set to @done, which should have been defined with
 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 * work items are completed.  Work items which are waited upon aren't freed
 * automatically on completion.
 */
static void wb_wait_for_completion(struct backing_dev_info *bdi,
				   struct wb_completion *done)
{
	atomic_dec(&done->cnt);		/* put down the initial count */
	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
}

215 216
#ifdef CONFIG_CGROUP_WRITEBACK

217 218 219 220 221 222 223 224 225 226 227 228 229 230
/* parameters for foreign inode detection, see wb_detach_inode() */
#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */

#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
					/* each slot's duration is 2s / 16 */
#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
					/* if foreign slots >= 8, switch */
#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
					/* one round can affect upto 5 slots */

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
void __inode_attach_wb(struct inode *inode, struct page *page)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;

	if (inode_cgwb_enabled(inode)) {
		struct cgroup_subsys_state *memcg_css;

		if (page) {
			memcg_css = mem_cgroup_css_from_page(page);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
		} else {
			/* must pin memcg_css, see wb_get_create() */
			memcg_css = task_get_css(current, memory_cgrp_id);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
			css_put(memcg_css);
		}
	}

	if (!wb)
		wb = &bdi->wb;

	/*
	 * There may be multiple instances of this function racing to
	 * update the same inode.  Use cmpxchg() to tell the winner.
	 */
	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
		wb_put(wb);
}

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
/**
 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 * @inode: inode of interest with i_lock held
 *
 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 * held on entry and is released on return.  The returned wb is guaranteed
 * to stay @inode's associated wb until its list_lock is released.
 */
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	while (true) {
		struct bdi_writeback *wb = inode_to_wb(inode);

		/*
		 * inode_to_wb() association is protected by both
		 * @inode->i_lock and @wb->list_lock but list_lock nests
		 * outside i_lock.  Drop i_lock and verify that the
		 * association hasn't changed after acquiring list_lock.
		 */
		wb_get(wb);
		spin_unlock(&inode->i_lock);
		spin_lock(&wb->list_lock);
		wb_put(wb);		/* not gonna deref it anymore */

288 289
		/* i_wb may have changed inbetween, can't use inode_to_wb() */
		if (likely(wb == inode->i_wb))
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
			return wb;	/* @inode already has ref */

		spin_unlock(&wb->list_lock);
		cpu_relax();
		spin_lock(&inode->i_lock);
	}
}

/**
 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 * @inode: inode of interest
 *
 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 * on entry.
 */
static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	spin_lock(&inode->i_lock);
	return locked_inode_to_wb_and_lock_list(inode);
}

312 313 314 315 316 317 318 319 320 321 322 323 324
struct inode_switch_wbs_context {
	struct inode		*inode;
	struct bdi_writeback	*new_wb;

	struct rcu_head		rcu_head;
	struct work_struct	work;
};

static void inode_switch_wbs_work_fn(struct work_struct *work)
{
	struct inode_switch_wbs_context *isw =
		container_of(work, struct inode_switch_wbs_context, work);
	struct inode *inode = isw->inode;
325 326
	struct address_space *mapping = inode->i_mapping;
	struct bdi_writeback *old_wb = inode->i_wb;
327
	struct bdi_writeback *new_wb = isw->new_wb;
328 329 330
	struct radix_tree_iter iter;
	bool switched = false;
	void **slot;
331 332 333 334 335 336

	/*
	 * By the time control reaches here, RCU grace period has passed
	 * since I_WB_SWITCH assertion and all wb stat update transactions
	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
	 * synchronizing against mapping->tree_lock.
337 338 339 340
	 *
	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
	 * gives us exclusion against all wb related operations on @inode
	 * including IO list manipulations and stat updates.
341
	 */
342 343 344 345 346 347 348
	if (old_wb < new_wb) {
		spin_lock(&old_wb->list_lock);
		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
	} else {
		spin_lock(&new_wb->list_lock);
		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
	}
349
	spin_lock(&inode->i_lock);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
	spin_lock_irq(&mapping->tree_lock);

	/*
	 * Once I_FREEING is visible under i_lock, the eviction path owns
	 * the inode and we shouldn't modify ->i_wb_list.
	 */
	if (unlikely(inode->i_state & I_FREEING))
		goto skip_switch;

	/*
	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
	 * pages actually under underwriteback.
	 */
	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
				   PAGECACHE_TAG_DIRTY) {
		struct page *page = radix_tree_deref_slot_protected(slot,
							&mapping->tree_lock);
		if (likely(page) && PageDirty(page)) {
			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
		}
	}

	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
				   PAGECACHE_TAG_WRITEBACK) {
		struct page *page = radix_tree_deref_slot_protected(slot,
							&mapping->tree_lock);
		if (likely(page)) {
			WARN_ON_ONCE(!PageWriteback(page));
			__dec_wb_stat(old_wb, WB_WRITEBACK);
			__inc_wb_stat(new_wb, WB_WRITEBACK);
		}
	}

	wb_get(new_wb);

	/*
	 * Transfer to @new_wb's IO list if necessary.  The specific list
	 * @inode was on is ignored and the inode is put on ->b_dirty which
	 * is always correct including from ->b_dirty_time.  The transfer
	 * preserves @inode->dirtied_when ordering.
	 */
	if (!list_empty(&inode->i_wb_list)) {
		struct inode *pos;

		inode_wb_list_del_locked(inode, old_wb);
		inode->i_wb = new_wb;
		list_for_each_entry(pos, &new_wb->b_dirty, i_wb_list)
			if (time_after_eq(inode->dirtied_when,
					  pos->dirtied_when))
				break;
		inode_wb_list_move_locked(inode, new_wb, pos->i_wb_list.prev);
	} else {
		inode->i_wb = new_wb;
	}
406

407
	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
408 409 410
	inode->i_wb_frn_winner = 0;
	inode->i_wb_frn_avg_time = 0;
	inode->i_wb_frn_history = 0;
411 412
	switched = true;
skip_switch:
413 414 415 416 417 418
	/*
	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
	 */
	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);

419
	spin_unlock_irq(&mapping->tree_lock);
420
	spin_unlock(&inode->i_lock);
421 422
	spin_unlock(&new_wb->list_lock);
	spin_unlock(&old_wb->list_lock);
423

424 425 426 427
	if (switched) {
		wb_wakeup(new_wb);
		wb_put(old_wb);
	}
428
	wb_put(new_wb);
429 430

	iput(inode);
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	kfree(isw);
}

static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
{
	struct inode_switch_wbs_context *isw = container_of(rcu_head,
				struct inode_switch_wbs_context, rcu_head);

	/* needs to grab bh-unsafe locks, bounce to work item */
	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
	schedule_work(&isw->work);
}

/**
 * inode_switch_wbs - change the wb association of an inode
 * @inode: target inode
 * @new_wb_id: ID of the new wb
 *
 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 * switching is performed asynchronously and may fail silently.
 */
static void inode_switch_wbs(struct inode *inode, int new_wb_id)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct cgroup_subsys_state *memcg_css;
	struct inode_switch_wbs_context *isw;

	/* noop if seems to be already in progress */
	if (inode->i_state & I_WB_SWITCH)
		return;

	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
	if (!isw)
		return;

	/* find and pin the new wb */
	rcu_read_lock();
	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
	if (memcg_css)
		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
	rcu_read_unlock();
	if (!isw->new_wb)
		goto out_free;

	/* while holding I_WB_SWITCH, no one else can update the association */
	spin_lock(&inode->i_lock);
	if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
	    inode_to_wb(inode) == isw->new_wb) {
		spin_unlock(&inode->i_lock);
		goto out_free;
	}
	inode->i_state |= I_WB_SWITCH;
	spin_unlock(&inode->i_lock);

	ihold(inode);
	isw->inode = inode;

	/*
	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
	 * the RCU protected stat update paths to grab the mapping's
	 * tree_lock so that stat transfer can synchronize against them.
	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
	 */
	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
	return;

out_free:
	if (isw->new_wb)
		wb_put(isw->new_wb);
	kfree(isw);
}

503 504 505 506 507 508 509 510 511 512 513 514 515 516
/**
 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 * @wbc: writeback_control of interest
 * @inode: target inode
 *
 * @inode is locked and about to be written back under the control of @wbc.
 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 * writeback completion, wbc_detach_inode() should be called.  This is used
 * to track the cgroup writeback context.
 */
void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
				 struct inode *inode)
{
	wbc->wb = inode_to_wb(inode);
517 518 519 520 521 522 523 524 525
	wbc->inode = inode;

	wbc->wb_id = wbc->wb->memcg_css->id;
	wbc->wb_lcand_id = inode->i_wb_frn_winner;
	wbc->wb_tcand_id = 0;
	wbc->wb_bytes = 0;
	wbc->wb_lcand_bytes = 0;
	wbc->wb_tcand_bytes = 0;

526 527
	wb_get(wbc->wb);
	spin_unlock(&inode->i_lock);
528 529 530 531 532 533 534

	/*
	 * A dying wb indicates that the memcg-blkcg mapping has changed
	 * and a new wb is already serving the memcg.  Switch immediately.
	 */
	if (unlikely(wb_dying(wbc->wb)))
		inode_switch_wbs(inode, wbc->wb_id);
535 536 537
}

/**
538 539
 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 * @wbc: writeback_control of the just finished writeback
540 541 542
 *
 * To be called after a writeback attempt of an inode finishes and undoes
 * wbc_attach_and_unlock_inode().  Can be called under any context.
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
 *
 * As concurrent write sharing of an inode is expected to be very rare and
 * memcg only tracks page ownership on first-use basis severely confining
 * the usefulness of such sharing, cgroup writeback tracks ownership
 * per-inode.  While the support for concurrent write sharing of an inode
 * is deemed unnecessary, an inode being written to by different cgroups at
 * different points in time is a lot more common, and, more importantly,
 * charging only by first-use can too readily lead to grossly incorrect
 * behaviors (single foreign page can lead to gigabytes of writeback to be
 * incorrectly attributed).
 *
 * To resolve this issue, cgroup writeback detects the majority dirtier of
 * an inode and transfers the ownership to it.  To avoid unnnecessary
 * oscillation, the detection mechanism keeps track of history and gives
 * out the switch verdict only if the foreign usage pattern is stable over
 * a certain amount of time and/or writeback attempts.
 *
 * On each writeback attempt, @wbc tries to detect the majority writer
 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 * count from the majority voting, it also counts the bytes written for the
 * current wb and the last round's winner wb (max of last round's current
 * wb, the winner from two rounds ago, and the last round's majority
 * candidate).  Keeping track of the historical winner helps the algorithm
 * to semi-reliably detect the most active writer even when it's not the
 * absolute majority.
 *
 * Once the winner of the round is determined, whether the winner is
 * foreign or not and how much IO time the round consumed is recorded in
 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 * over a certain threshold, the switch verdict is given.
573 574 575
 */
void wbc_detach_inode(struct writeback_control *wbc)
{
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
	struct bdi_writeback *wb = wbc->wb;
	struct inode *inode = wbc->inode;
	u16 history = inode->i_wb_frn_history;
	unsigned long avg_time = inode->i_wb_frn_avg_time;
	unsigned long max_bytes, max_time;
	int max_id;

	/* pick the winner of this round */
	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_id;
		max_bytes = wbc->wb_bytes;
	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_lcand_id;
		max_bytes = wbc->wb_lcand_bytes;
	} else {
		max_id = wbc->wb_tcand_id;
		max_bytes = wbc->wb_tcand_bytes;
	}

	/*
	 * Calculate the amount of IO time the winner consumed and fold it
	 * into the running average kept per inode.  If the consumed IO
	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
	 * deciding whether to switch or not.  This is to prevent one-off
	 * small dirtiers from skewing the verdict.
	 */
	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
				wb->avg_write_bandwidth);
	if (avg_time)
		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
	else
		avg_time = max_time;	/* immediate catch up on first run */

	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
		int slots;

		/*
		 * The switch verdict is reached if foreign wb's consume
		 * more than a certain proportion of IO time in a
		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
		 * history mask where each bit represents one sixteenth of
		 * the period.  Determine the number of slots to shift into
		 * history from @max_time.
		 */
		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
		history <<= slots;
		if (wbc->wb_id != max_id)
			history |= (1U << slots) - 1;

		/*
		 * Switch if the current wb isn't the consistent winner.
		 * If there are multiple closely competing dirtiers, the
		 * inode may switch across them repeatedly over time, which
		 * is okay.  The main goal is avoiding keeping an inode on
		 * the wrong wb for an extended period of time.
		 */
635 636
		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
			inode_switch_wbs(inode, max_id);
637 638 639 640 641 642 643 644 645 646
	}

	/*
	 * Multiple instances of this function may race to update the
	 * following fields but we don't mind occassional inaccuracies.
	 */
	inode->i_wb_frn_winner = max_id;
	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
	inode->i_wb_frn_history = history;

647 648 649 650
	wb_put(wbc->wb);
	wbc->wb = NULL;
}

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
/**
 * wbc_account_io - account IO issued during writeback
 * @wbc: writeback_control of the writeback in progress
 * @page: page being written out
 * @bytes: number of bytes being written out
 *
 * @bytes from @page are about to written out during the writeback
 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 * wbc_detach_inode().
 */
void wbc_account_io(struct writeback_control *wbc, struct page *page,
		    size_t bytes)
{
	int id;

	/*
	 * pageout() path doesn't attach @wbc to the inode being written
	 * out.  This is intentional as we don't want the function to block
	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
	 * regular writeback instead of writing things out itself.
	 */
	if (!wbc->wb)
		return;

	rcu_read_lock();
	id = mem_cgroup_css_from_page(page)->id;
	rcu_read_unlock();

	if (id == wbc->wb_id) {
		wbc->wb_bytes += bytes;
		return;
	}

	if (id == wbc->wb_lcand_id)
		wbc->wb_lcand_bytes += bytes;

	/* Boyer-Moore majority vote algorithm */
	if (!wbc->wb_tcand_bytes)
		wbc->wb_tcand_id = id;
	if (id == wbc->wb_tcand_id)
		wbc->wb_tcand_bytes += bytes;
	else
		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
}

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
/**
 * inode_congested - test whether an inode is congested
 * @inode: inode to test for congestion
 * @cong_bits: mask of WB_[a]sync_congested bits to test
 *
 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 * bits to test and the return value is the mask of set bits.
 *
 * If cgroup writeback is enabled for @inode, the congestion state is
 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 * associated with @inode is congested; otherwise, the root wb's congestion
 * state is used.
 */
int inode_congested(struct inode *inode, int cong_bits)
{
711 712 713 714
	/*
	 * Once set, ->i_wb never becomes NULL while the inode is alive.
	 * Start transaction iff ->i_wb is visible.
	 */
715
	if (inode && inode_to_wb_is_valid(inode)) {
716 717 718 719 720 721 722
		struct bdi_writeback *wb;
		bool locked, congested;

		wb = unlocked_inode_to_wb_begin(inode, &locked);
		congested = wb_congested(wb, cong_bits);
		unlocked_inode_to_wb_end(inode, locked);
		return congested;
723 724 725 726 727 728
	}

	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
}
EXPORT_SYMBOL_GPL(inode_congested);

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
/**
 * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
 * @bdi: bdi the work item was issued to
 * @work: work item to wait for
 *
 * Wait for the completion of @work which was issued to one of @bdi's
 * bdi_writeback's.  The caller must have set @work->single_wait before
 * issuing it.  This wait operates independently fo
 * wb_wait_for_completion() and also disables automatic freeing of @work.
 */
static void wb_wait_for_single_work(struct backing_dev_info *bdi,
				    struct wb_writeback_work *work)
{
	if (WARN_ON_ONCE(!work->single_wait))
		return;

	wait_event(bdi->wb_waitq, work->single_done);

	/*
	 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
	 * modifications to @work prior to assertion of ->single_done is
	 * visible to the caller once this function returns.
	 */
	smp_rmb();
}

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
/**
 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 * @wb: target bdi_writeback to split @nr_pages to
 * @nr_pages: number of pages to write for the whole bdi
 *
 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 * @wb->bdi.
 */
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);

	if (nr_pages == LONG_MAX)
		return LONG_MAX;

	/*
	 * This may be called on clean wb's and proportional distribution
	 * may not make sense, just use the original @nr_pages in those
	 * cases.  In general, we wanna err on the side of writing more.
	 */
	if (!tot_bw || this_bw >= tot_bw)
		return nr_pages;
	else
		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
/**
 * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
 * @wb: target bdi_writeback
 * @base_work: source wb_writeback_work
 *
 * Try to make a clone of @base_work and issue it to @wb.  If cloning
 * succeeds, %true is returned; otherwise, @base_work is issued directly
 * and %false is returned.  In the latter case, the caller is required to
 * wait for @base_work's completion using wb_wait_for_single_work().
 *
 * A clone is auto-freed on completion.  @base_work never is.
 */
static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
				    struct wb_writeback_work *base_work)
{
	struct wb_writeback_work *work;

	work = kmalloc(sizeof(*work), GFP_ATOMIC);
	if (work) {
		*work = *base_work;
		work->auto_free = 1;
		work->single_wait = 0;
	} else {
		work = base_work;
		work->auto_free = 0;
		work->single_wait = 1;
	}
	work->single_done = 0;
	wb_queue_work(wb, work);
	return work != base_work;
}

/**
 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 * @bdi: target backing_dev_info
 * @base_work: wb_writeback_work to issue
 * @skip_if_busy: skip wb's which already have writeback in progress
 *
 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 * distributed to the busy wbs according to each wb's proportion in the
 * total active write bandwidth of @bdi.
 */
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	long nr_pages = base_work->nr_pages;
	int next_blkcg_id = 0;
	struct bdi_writeback *wb;
	struct wb_iter iter;

	might_sleep();

	if (!bdi_has_dirty_io(bdi))
		return;
restart:
	rcu_read_lock();
	bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
		if (!wb_has_dirty_io(wb) ||
		    (skip_if_busy && writeback_in_progress(wb)))
			continue;

		base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
		if (!wb_clone_and_queue_work(wb, base_work)) {
			next_blkcg_id = wb->blkcg_css->id + 1;
			rcu_read_unlock();
			wb_wait_for_single_work(bdi, base_work);
			goto restart;
		}
	}
	rcu_read_unlock();
}

857 858
#else	/* CONFIG_CGROUP_WRITEBACK */

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_unlock(&inode->i_lock);
	spin_lock(&wb->list_lock);
	return wb;
}

static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_lock(&wb->list_lock);
	return wb;
}

880 881 882 883 884
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	return nr_pages;
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	might_sleep();

	if (bdi_has_dirty_io(bdi) &&
	    (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
		base_work->auto_free = 0;
		base_work->single_wait = 0;
		base_work->single_done = 0;
		wb_queue_work(&bdi->wb, base_work);
	}
}

900 901
#endif	/* CONFIG_CGROUP_WRITEBACK */

902 903
void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
			bool range_cyclic, enum wb_reason reason)
904
{
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
	struct wb_writeback_work *work;

	if (!wb_has_dirty_io(wb))
		return;

	/*
	 * This is WB_SYNC_NONE writeback, so if allocation fails just
	 * wakeup the thread for old dirty data writeback
	 */
	work = kzalloc(sizeof(*work), GFP_ATOMIC);
	if (!work) {
		trace_writeback_nowork(wb->bdi);
		wb_wakeup(wb);
		return;
	}

	work->sync_mode	= WB_SYNC_NONE;
	work->nr_pages	= nr_pages;
	work->range_cyclic = range_cyclic;
	work->reason	= reason;
925
	work->auto_free	= 1;
926 927

	wb_queue_work(wb, work);
928
}
929

930
/**
931 932
 * wb_start_background_writeback - start background writeback
 * @wb: bdi_writback to write from
933 934
 *
 * Description:
935
 *   This makes sure WB_SYNC_NONE background writeback happens. When
936
 *   this function returns, it is only guaranteed that for given wb
937 938
 *   some IO is happening if we are over background dirty threshold.
 *   Caller need not hold sb s_umount semaphore.
939
 */
940
void wb_start_background_writeback(struct bdi_writeback *wb)
941
{
942 943 944 945
	/*
	 * We just wake up the flusher thread. It will perform background
	 * writeback as soon as there is no other work to do.
	 */
946 947
	trace_writeback_wake_background(wb->bdi);
	wb_wakeup(wb);
L
Linus Torvalds 已提交
948 949
}

950 951 952 953 954
/*
 * Remove the inode from the writeback list it is on.
 */
void inode_wb_list_del(struct inode *inode)
{
955
	struct bdi_writeback *wb;
956

957
	wb = inode_to_wb_and_lock_list(inode);
958
	inode_wb_list_del_locked(inode, wb);
959
	spin_unlock(&wb->list_lock);
960 961
}

962 963 964 965 966
/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
967
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
968 969 970
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
971
static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
972
{
973
	if (!list_empty(&wb->b_dirty)) {
974
		struct inode *tail;
975

N
Nick Piggin 已提交
976
		tail = wb_inode(wb->b_dirty.next);
977
		if (time_before(inode->dirtied_when, tail->dirtied_when))
978 979
			inode->dirtied_when = jiffies;
	}
980
	inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
981 982
}

983
/*
984
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
985
 */
986
static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
987
{
988
	inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
989 990
}

J
Joern Engel 已提交
991 992
static void inode_sync_complete(struct inode *inode)
{
993
	inode->i_state &= ~I_SYNC;
994 995
	/* If inode is clean an unused, put it into LRU now... */
	inode_add_lru(inode);
996
	/* Waiters must see I_SYNC cleared before being woken up */
J
Joern Engel 已提交
997 998 999 1000
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

1001 1002 1003 1004 1005 1006 1007 1008
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
1009
	 * from permanently stopping the whole bdi writeback.
1010 1011 1012 1013 1014 1015
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

1016 1017
#define EXPIRE_DIRTY_ATIME 0x0001

1018
/*
1019
 * Move expired (dirtied before work->older_than_this) dirty inodes from
J
Jan Kara 已提交
1020
 * @delaying_queue to @dispatch_queue.
1021
 */
1022
static int move_expired_inodes(struct list_head *delaying_queue,
1023
			       struct list_head *dispatch_queue,
1024
			       int flags,
1025
			       struct wb_writeback_work *work)
1026
{
1027 1028
	unsigned long *older_than_this = NULL;
	unsigned long expire_time;
1029 1030
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
1031
	struct super_block *sb = NULL;
1032
	struct inode *inode;
1033
	int do_sb_sort = 0;
1034
	int moved = 0;
1035

1036 1037
	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
		older_than_this = work->older_than_this;
1038 1039
	else if (!work->for_sync) {
		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1040 1041
		older_than_this = &expire_time;
	}
1042
	while (!list_empty(delaying_queue)) {
N
Nick Piggin 已提交
1043
		inode = wb_inode(delaying_queue->prev);
1044 1045
		if (older_than_this &&
		    inode_dirtied_after(inode, *older_than_this))
1046
			break;
1047 1048
		list_move(&inode->i_wb_list, &tmp);
		moved++;
1049 1050
		if (flags & EXPIRE_DIRTY_ATIME)
			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1051 1052
		if (sb_is_blkdev_sb(inode->i_sb))
			continue;
1053 1054 1055
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
1056 1057
	}

1058 1059 1060
	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
1061
		goto out;
1062 1063
	}

1064 1065
	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
N
Nick Piggin 已提交
1066
		sb = wb_inode(tmp.prev)->i_sb;
1067
		list_for_each_prev_safe(pos, node, &tmp) {
N
Nick Piggin 已提交
1068
			inode = wb_inode(pos);
1069
			if (inode->i_sb == sb)
N
Nick Piggin 已提交
1070
				list_move(&inode->i_wb_list, dispatch_queue);
1071
		}
1072
	}
1073 1074
out:
	return moved;
1075 1076 1077 1078
}

/*
 * Queue all expired dirty inodes for io, eldest first.
1079 1080 1081 1082 1083 1084 1085 1086
 * Before
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    gf         edc     BA
 * After
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    g          fBAedc
 *                                           |
 *                                           +--> dequeue for IO
1087
 */
1088
static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1089
{
1090
	int moved;
1091

1092
	assert_spin_locked(&wb->list_lock);
1093
	list_splice_init(&wb->b_more_io, &wb->b_io);
1094 1095 1096
	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
				     EXPIRE_DIRTY_ATIME, work);
1097 1098
	if (moved)
		wb_io_lists_populated(wb);
1099
	trace_writeback_queue_io(wb, work, moved);
1100 1101
}

1102
static int write_inode(struct inode *inode, struct writeback_control *wbc)
1103
{
T
Tejun Heo 已提交
1104 1105 1106 1107 1108 1109 1110 1111
	int ret;

	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
		trace_writeback_write_inode_start(inode, wbc);
		ret = inode->i_sb->s_op->write_inode(inode, wbc);
		trace_writeback_write_inode(inode, wbc);
		return ret;
	}
1112
	return 0;
1113 1114
}

L
Linus Torvalds 已提交
1115
/*
1116 1117
 * Wait for writeback on an inode to complete. Called with i_lock held.
 * Caller must make sure inode cannot go away when we drop i_lock.
1118
 */
1119 1120 1121
static void __inode_wait_for_writeback(struct inode *inode)
	__releases(inode->i_lock)
	__acquires(inode->i_lock)
1122 1123 1124 1125 1126
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1127 1128
	while (inode->i_state & I_SYNC) {
		spin_unlock(&inode->i_lock);
1129 1130
		__wait_on_bit(wqh, &wq, bit_wait,
			      TASK_UNINTERRUPTIBLE);
1131
		spin_lock(&inode->i_lock);
1132
	}
1133 1134
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
/*
 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 */
void inode_wait_for_writeback(struct inode *inode)
{
	spin_lock(&inode->i_lock);
	__inode_wait_for_writeback(inode);
	spin_unlock(&inode->i_lock);
}

/*
 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 * held and drops it. It is aimed for callers not holding any inode reference
 * so once i_lock is dropped, inode can go away.
 */
static void inode_sleep_on_writeback(struct inode *inode)
	__releases(inode->i_lock)
{
	DEFINE_WAIT(wait);
	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	int sleep;

	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
	sleep = inode->i_state & I_SYNC;
	spin_unlock(&inode->i_lock);
	if (sleep)
		schedule();
	finish_wait(wqh, &wait);
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
/*
 * Find proper writeback list for the inode depending on its current state and
 * possibly also change of its state while we were doing writeback.  Here we
 * handle things such as livelock prevention or fairness of writeback among
 * inodes. This function can be called only by flusher thread - noone else
 * processes all inodes in writeback lists and requeueing inodes behind flusher
 * thread's back can have unexpected consequences.
 */
static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
			  struct writeback_control *wbc)
{
	if (inode->i_state & I_FREEING)
		return;

	/*
	 * Sync livelock prevention. Each inode is tagged and synced in one
	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
	 * the dirty time to prevent enqueue and sync it again.
	 */
	if ((inode->i_state & I_DIRTY) &&
	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
		inode->dirtied_when = jiffies;

1188 1189 1190 1191 1192 1193 1194 1195 1196
	if (wbc->pages_skipped) {
		/*
		 * writeback is not making progress due to locked
		 * buffers. Skip this inode for now.
		 */
		redirty_tail(inode, wb);
		return;
	}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		/*
		 * We didn't write back all the pages.  nfs_writepages()
		 * sometimes bales out without doing anything.
		 */
		if (wbc->nr_to_write <= 0) {
			/* Slice used up. Queue for next turn. */
			requeue_io(inode, wb);
		} else {
			/*
			 * Writeback blocked by something other than
			 * congestion. Delay the inode for some time to
			 * avoid spinning on the CPU (100% iowait)
			 * retrying writeback of the dirty page/inode
			 * that cannot be performed immediately.
			 */
			redirty_tail(inode, wb);
		}
	} else if (inode->i_state & I_DIRTY) {
		/*
		 * Filesystems can dirty the inode during writeback operations,
		 * such as delayed allocation during submission or metadata
		 * updates after data IO completion.
		 */
		redirty_tail(inode, wb);
1222
	} else if (inode->i_state & I_DIRTY_TIME) {
1223
		inode->dirtied_when = jiffies;
1224
		inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
1225 1226
	} else {
		/* The inode is clean. Remove from writeback lists. */
1227
		inode_wb_list_del_locked(inode, wb);
1228 1229 1230
	}
}

1231
/*
1232 1233 1234
 * Write out an inode and its dirty pages. Do not update the writeback list
 * linkage. That is left to the caller. The caller is also responsible for
 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
L
Linus Torvalds 已提交
1235 1236
 */
static int
1237
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
L
Linus Torvalds 已提交
1238 1239
{
	struct address_space *mapping = inode->i_mapping;
1240
	long nr_to_write = wbc->nr_to_write;
1241
	unsigned dirty;
L
Linus Torvalds 已提交
1242 1243
	int ret;

1244
	WARN_ON(!(inode->i_state & I_SYNC));
L
Linus Torvalds 已提交
1245

T
Tejun Heo 已提交
1246 1247
	trace_writeback_single_inode_start(inode, wbc, nr_to_write);

L
Linus Torvalds 已提交
1248 1249
	ret = do_writepages(mapping, wbc);

1250 1251 1252
	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
1253 1254 1255
	 * I/O completion. We don't do it for sync(2) writeback because it has a
	 * separate, external IO completion path and ->sync_fs for guaranteeing
	 * inode metadata is written back correctly.
1256
	 */
1257
	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1258
		int err = filemap_fdatawait(mapping);
L
Linus Torvalds 已提交
1259 1260 1261 1262
		if (ret == 0)
			ret = err;
	}

1263 1264 1265 1266 1267
	/*
	 * Some filesystems may redirty the inode during the writeback
	 * due to delalloc, clear dirty metadata flags right before
	 * write_inode()
	 */
1268
	spin_lock(&inode->i_lock);
1269

1270
	dirty = inode->i_state & I_DIRTY;
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	if (inode->i_state & I_DIRTY_TIME) {
		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
		    unlikely(time_after(jiffies,
					(inode->dirtied_time_when +
					 dirtytime_expire_interval * HZ)))) {
			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
			trace_writeback_lazytime(inode);
		}
	} else
		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1282
	inode->i_state &= ~dirty;
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

	/*
	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
	 * either they see the I_DIRTY bits cleared or we see the dirtied
	 * inode.
	 *
	 * I_DIRTY_PAGES is always cleared together above even if @mapping
	 * still has dirty pages.  The flag is reinstated after smp_mb() if
	 * necessary.  This guarantees that either __mark_inode_dirty()
	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
	 */
	smp_mb();

	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		inode->i_state |= I_DIRTY_PAGES;

1300
	spin_unlock(&inode->i_lock);
1301

1302 1303
	if (dirty & I_DIRTY_TIME)
		mark_inode_dirty_sync(inode);
1304
	/* Don't write the inode if only I_DIRTY_PAGES was set */
1305
	if (dirty & ~I_DIRTY_PAGES) {
1306
		int err = write_inode(inode, wbc);
L
Linus Torvalds 已提交
1307 1308 1309
		if (ret == 0)
			ret = err;
	}
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	trace_writeback_single_inode(inode, wbc, nr_to_write);
	return ret;
}

/*
 * Write out an inode's dirty pages. Either the caller has an active reference
 * on the inode or the inode has I_WILL_FREE set.
 *
 * This function is designed to be called for writing back one inode which
 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 * and does more profound writeback list handling in writeback_sb_inodes().
 */
static int
writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
		       struct writeback_control *wbc)
{
	int ret = 0;

	spin_lock(&inode->i_lock);
	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		if (wbc->sync_mode != WB_SYNC_ALL)
			goto out;
		/*
1338 1339 1340
		 * It's a data-integrity sync. We must wait. Since callers hold
		 * inode reference or inode has I_WILL_FREE set, it cannot go
		 * away under us.
1341
		 */
1342
		__inode_wait_for_writeback(inode);
1343 1344 1345
	}
	WARN_ON(inode->i_state & I_SYNC);
	/*
J
Jan Kara 已提交
1346 1347 1348 1349 1350 1351
	 * Skip inode if it is clean and we have no outstanding writeback in
	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
	 * function since flusher thread may be doing for example sync in
	 * parallel and if we move the inode, it could get skipped. So here we
	 * make sure inode is on some writeback list and leave it there unless
	 * we have completely cleaned the inode.
1352
	 */
1353
	if (!(inode->i_state & I_DIRTY_ALL) &&
J
Jan Kara 已提交
1354 1355
	    (wbc->sync_mode != WB_SYNC_ALL ||
	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1356 1357
		goto out;
	inode->i_state |= I_SYNC;
1358
	wbc_attach_and_unlock_inode(wbc, inode);
1359

1360
	ret = __writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
1361

1362
	wbc_detach_inode(wbc);
1363
	spin_lock(&wb->list_lock);
1364
	spin_lock(&inode->i_lock);
1365 1366 1367 1368
	/*
	 * If inode is clean, remove it from writeback lists. Otherwise don't
	 * touch it. See comment above for explanation.
	 */
1369
	if (!(inode->i_state & I_DIRTY_ALL))
1370
		inode_wb_list_del_locked(inode, wb);
1371
	spin_unlock(&wb->list_lock);
J
Joern Engel 已提交
1372
	inode_sync_complete(inode);
1373 1374
out:
	spin_unlock(&inode->i_lock);
L
Linus Torvalds 已提交
1375 1376 1377
	return ret;
}

1378
static long writeback_chunk_size(struct bdi_writeback *wb,
1379
				 struct wb_writeback_work *work)
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
{
	long pages;

	/*
	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
	 * here avoids calling into writeback_inodes_wb() more than once.
	 *
	 * The intended call sequence for WB_SYNC_ALL writeback is:
	 *
	 *      wb_writeback()
	 *          writeback_sb_inodes()       <== called only once
	 *              write_cache_pages()     <== called once for each inode
	 *                   (quickly) tag currently dirty pages
	 *                   (maybe slowly) sync all tagged pages
	 */
	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
		pages = LONG_MAX;
1398
	else {
1399
		pages = min(wb->avg_write_bandwidth / 2,
1400
			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1401 1402 1403 1404
		pages = min(pages, work->nr_pages);
		pages = round_down(pages + MIN_WRITEBACK_PAGES,
				   MIN_WRITEBACK_PAGES);
	}
1405 1406 1407 1408

	return pages;
}

1409 1410
/*
 * Write a portion of b_io inodes which belong to @sb.
1411
 *
1412
 * Return the number of pages and/or inodes written.
1413
 */
1414 1415 1416
static long writeback_sb_inodes(struct super_block *sb,
				struct bdi_writeback *wb,
				struct wb_writeback_work *work)
L
Linus Torvalds 已提交
1417
{
1418 1419 1420 1421 1422
	struct writeback_control wbc = {
		.sync_mode		= work->sync_mode,
		.tagged_writepages	= work->tagged_writepages,
		.for_kupdate		= work->for_kupdate,
		.for_background		= work->for_background,
1423
		.for_sync		= work->for_sync,
1424 1425 1426 1427 1428 1429 1430 1431
		.range_cyclic		= work->range_cyclic,
		.range_start		= 0,
		.range_end		= LLONG_MAX,
	};
	unsigned long start_time = jiffies;
	long write_chunk;
	long wrote = 0;  /* count both pages and inodes */

1432
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1433
		struct inode *inode = wb_inode(wb->b_io.prev);
1434 1435

		if (inode->i_sb != sb) {
1436
			if (work->sb) {
1437 1438 1439 1440 1441
				/*
				 * We only want to write back data for this
				 * superblock, move all inodes not belonging
				 * to it back onto the dirty list.
				 */
1442
				redirty_tail(inode, wb);
1443 1444 1445 1446 1447 1448 1449 1450
				continue;
			}

			/*
			 * The inode belongs to a different superblock.
			 * Bounce back to the caller to unpin this and
			 * pin the next superblock.
			 */
1451
			break;
1452 1453
		}

1454
		/*
W
Wanpeng Li 已提交
1455 1456
		 * Don't bother with new inodes or inodes being freed, first
		 * kind does not need periodic writeout yet, and for the latter
1457 1458
		 * kind writeout is handled by the freer.
		 */
1459
		spin_lock(&inode->i_lock);
1460
		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1461
			spin_unlock(&inode->i_lock);
1462
			redirty_tail(inode, wb);
1463 1464
			continue;
		}
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
			/*
			 * If this inode is locked for writeback and we are not
			 * doing writeback-for-data-integrity, move it to
			 * b_more_io so that writeback can proceed with the
			 * other inodes on s_io.
			 *
			 * We'll have another go at writing back this inode
			 * when we completed a full scan of b_io.
			 */
			spin_unlock(&inode->i_lock);
			requeue_io(inode, wb);
			trace_writeback_sb_inodes_requeue(inode);
			continue;
		}
1480 1481
		spin_unlock(&wb->list_lock);

1482 1483 1484 1485 1486
		/*
		 * We already requeued the inode if it had I_SYNC set and we
		 * are doing WB_SYNC_NONE writeback. So this catches only the
		 * WB_SYNC_ALL case.
		 */
1487 1488 1489 1490
		if (inode->i_state & I_SYNC) {
			/* Wait for I_SYNC. This function drops i_lock... */
			inode_sleep_on_writeback(inode);
			/* Inode may be gone, start again */
1491
			spin_lock(&wb->list_lock);
1492 1493
			continue;
		}
1494
		inode->i_state |= I_SYNC;
1495
		wbc_attach_and_unlock_inode(&wbc, inode);
1496

1497
		write_chunk = writeback_chunk_size(wb, work);
1498 1499
		wbc.nr_to_write = write_chunk;
		wbc.pages_skipped = 0;
1500

1501 1502 1503 1504
		/*
		 * We use I_SYNC to pin the inode in memory. While it is set
		 * evict_inode() will wait so the inode cannot be freed.
		 */
1505
		__writeback_single_inode(inode, &wbc);
1506

1507
		wbc_detach_inode(&wbc);
1508 1509
		work->nr_pages -= write_chunk - wbc.nr_to_write;
		wrote += write_chunk - wbc.nr_to_write;
1510 1511
		spin_lock(&wb->list_lock);
		spin_lock(&inode->i_lock);
1512
		if (!(inode->i_state & I_DIRTY_ALL))
1513
			wrote++;
1514 1515
		requeue_inode(inode, wb, &wbc);
		inode_sync_complete(inode);
1516
		spin_unlock(&inode->i_lock);
1517
		cond_resched_lock(&wb->list_lock);
1518 1519 1520 1521 1522 1523 1524 1525 1526
		/*
		 * bail out to wb_writeback() often enough to check
		 * background threshold and other termination conditions.
		 */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
1527
		}
L
Linus Torvalds 已提交
1528
	}
1529
	return wrote;
1530 1531
}

1532 1533
static long __writeback_inodes_wb(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
1534
{
1535 1536
	unsigned long start_time = jiffies;
	long wrote = 0;
N
Nick Piggin 已提交
1537

1538
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1539
		struct inode *inode = wb_inode(wb->b_io.prev);
1540
		struct super_block *sb = inode->i_sb;
1541

1542
		if (!trylock_super(sb)) {
1543
			/*
1544
			 * trylock_super() may fail consistently due to
1545 1546 1547 1548
			 * s_umount being grabbed by someone else. Don't use
			 * requeue_io() to avoid busy retrying the inode/sb.
			 */
			redirty_tail(inode, wb);
1549
			continue;
1550
		}
1551
		wrote += writeback_sb_inodes(sb, wb, work);
1552
		up_read(&sb->s_umount);
1553

1554 1555 1556 1557 1558 1559 1560
		/* refer to the same tests at the end of writeback_sb_inodes */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
		}
1561
	}
1562
	/* Leave any unwritten inodes on b_io */
1563
	return wrote;
1564 1565
}

1566
static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1567
				enum wb_reason reason)
1568
{
1569 1570 1571 1572
	struct wb_writeback_work work = {
		.nr_pages	= nr_pages,
		.sync_mode	= WB_SYNC_NONE,
		.range_cyclic	= 1,
1573
		.reason		= reason,
1574
	};
1575

1576
	spin_lock(&wb->list_lock);
W
Wu Fengguang 已提交
1577
	if (list_empty(&wb->b_io))
1578
		queue_io(wb, &work);
1579
	__writeback_inodes_wb(wb, &work);
1580
	spin_unlock(&wb->list_lock);
1581

1582 1583
	return nr_pages - work.nr_pages;
}
1584 1585 1586

/*
 * Explicit flushing or periodic writeback of "old" data.
1587
 *
1588 1589 1590 1591
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
1592
 *
1593 1594 1595
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
1596
 *
1597 1598
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
1599
 */
1600
static long wb_writeback(struct bdi_writeback *wb,
1601
			 struct wb_writeback_work *work)
1602
{
1603
	unsigned long wb_start = jiffies;
1604
	long nr_pages = work->nr_pages;
1605
	unsigned long oldest_jif;
J
Jan Kara 已提交
1606
	struct inode *inode;
1607
	long progress;
1608

1609 1610
	oldest_jif = jiffies;
	work->older_than_this = &oldest_jif;
N
Nick Piggin 已提交
1611

1612
	spin_lock(&wb->list_lock);
1613 1614
	for (;;) {
		/*
1615
		 * Stop writeback when nr_pages has been consumed
1616
		 */
1617
		if (work->nr_pages <= 0)
1618
			break;
1619

1620 1621 1622 1623 1624 1625 1626
		/*
		 * Background writeout and kupdate-style writeback may
		 * run forever. Stop them if there is other work to do
		 * so that e.g. sync can proceed. They'll be restarted
		 * after the other works are all done.
		 */
		if ((work->for_background || work->for_kupdate) &&
1627
		    !list_empty(&wb->work_list))
1628 1629
			break;

N
Nick Piggin 已提交
1630
		/*
1631 1632
		 * For background writeout, stop when we are below the
		 * background dirty threshold
N
Nick Piggin 已提交
1633
		 */
1634
		if (work->for_background && !wb_over_bg_thresh(wb))
1635
			break;
N
Nick Piggin 已提交
1636

1637 1638 1639 1640 1641 1642
		/*
		 * Kupdate and background works are special and we want to
		 * include all inodes that need writing. Livelock avoidance is
		 * handled by these works yielding to any other work so we are
		 * safe.
		 */
1643
		if (work->for_kupdate) {
1644
			oldest_jif = jiffies -
1645
				msecs_to_jiffies(dirty_expire_interval * 10);
1646
		} else if (work->for_background)
1647
			oldest_jif = jiffies;
1648

1649
		trace_writeback_start(wb->bdi, work);
1650
		if (list_empty(&wb->b_io))
1651
			queue_io(wb, work);
1652
		if (work->sb)
1653
			progress = writeback_sb_inodes(work->sb, wb, work);
1654
		else
1655 1656
			progress = __writeback_inodes_wb(wb, work);
		trace_writeback_written(wb->bdi, work);
1657

1658
		wb_update_bandwidth(wb, wb_start);
1659 1660

		/*
1661 1662 1663 1664 1665 1666
		 * Did we write something? Try for more
		 *
		 * Dirty inodes are moved to b_io for writeback in batches.
		 * The completion of the current batch does not necessarily
		 * mean the overall work is done. So we keep looping as long
		 * as made some progress on cleaning pages or inodes.
1667
		 */
1668
		if (progress)
1669 1670
			continue;
		/*
1671
		 * No more inodes for IO, bail
1672
		 */
1673
		if (list_empty(&wb->b_more_io))
1674
			break;
1675 1676 1677 1678 1679 1680
		/*
		 * Nothing written. Wait for some inode to
		 * become available for writeback. Otherwise
		 * we'll just busyloop.
		 */
		if (!list_empty(&wb->b_more_io))  {
1681
			trace_writeback_wait(wb->bdi, work);
N
Nick Piggin 已提交
1682
			inode = wb_inode(wb->b_more_io.prev);
1683
			spin_lock(&inode->i_lock);
1684
			spin_unlock(&wb->list_lock);
1685 1686
			/* This function drops i_lock... */
			inode_sleep_on_writeback(inode);
1687
			spin_lock(&wb->list_lock);
1688 1689
		}
	}
1690
	spin_unlock(&wb->list_lock);
1691

1692
	return nr_pages - work->nr_pages;
1693 1694 1695
}

/*
1696
 * Return the next wb_writeback_work struct that hasn't been processed yet.
1697
 */
1698
static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1699
{
1700
	struct wb_writeback_work *work = NULL;
1701

1702 1703 1704
	spin_lock_bh(&wb->work_lock);
	if (!list_empty(&wb->work_list)) {
		work = list_entry(wb->work_list.next,
1705 1706
				  struct wb_writeback_work, list);
		list_del_init(&work->list);
1707
	}
1708
	spin_unlock_bh(&wb->work_lock);
1709
	return work;
1710 1711
}

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
/*
 * Add in the number of potentially dirty inodes, because each inode
 * write can dirty pagecache in the underlying blockdev.
 */
static unsigned long get_nr_dirty_pages(void)
{
	return global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS) +
		get_nr_dirty_inodes();
}

1723 1724
static long wb_check_background_flush(struct bdi_writeback *wb)
{
1725
	if (wb_over_bg_thresh(wb)) {
1726 1727 1728 1729 1730 1731

		struct wb_writeback_work work = {
			.nr_pages	= LONG_MAX,
			.sync_mode	= WB_SYNC_NONE,
			.for_background	= 1,
			.range_cyclic	= 1,
1732
			.reason		= WB_REASON_BACKGROUND,
1733 1734 1735 1736 1737 1738 1739 1740
		};

		return wb_writeback(wb, &work);
	}

	return 0;
}

1741 1742 1743 1744 1745
static long wb_check_old_data_flush(struct bdi_writeback *wb)
{
	unsigned long expired;
	long nr_pages;

1746 1747 1748 1749 1750 1751
	/*
	 * When set to zero, disable periodic writeback
	 */
	if (!dirty_writeback_interval)
		return 0;

1752 1753 1754 1755 1756 1757
	expired = wb->last_old_flush +
			msecs_to_jiffies(dirty_writeback_interval * 10);
	if (time_before(jiffies, expired))
		return 0;

	wb->last_old_flush = jiffies;
1758
	nr_pages = get_nr_dirty_pages();
1759

1760
	if (nr_pages) {
1761
		struct wb_writeback_work work = {
1762 1763 1764 1765
			.nr_pages	= nr_pages,
			.sync_mode	= WB_SYNC_NONE,
			.for_kupdate	= 1,
			.range_cyclic	= 1,
1766
			.reason		= WB_REASON_PERIODIC,
1767 1768
		};

1769
		return wb_writeback(wb, &work);
1770
	}
1771 1772 1773 1774 1775 1776 1777

	return 0;
}

/*
 * Retrieve work items and do the writeback they describe
 */
1778
static long wb_do_writeback(struct bdi_writeback *wb)
1779
{
1780
	struct wb_writeback_work *work;
1781
	long wrote = 0;
1782

1783
	set_bit(WB_writeback_running, &wb->state);
1784
	while ((work = get_next_work_item(wb)) != NULL) {
1785
		struct wb_completion *done = work->done;
1786
		bool need_wake_up = false;
1787

1788
		trace_writeback_exec(wb->bdi, work);
1789

1790
		wrote += wb_writeback(wb, work);
1791

1792 1793 1794 1795 1796 1797 1798
		if (work->single_wait) {
			WARN_ON_ONCE(work->auto_free);
			/* paired w/ rmb in wb_wait_for_single_work() */
			smp_wmb();
			work->single_done = 1;
			need_wake_up = true;
		} else if (work->auto_free) {
1799
			kfree(work);
1800 1801
		}

1802
		if (done && atomic_dec_and_test(&done->cnt))
1803 1804 1805
			need_wake_up = true;

		if (need_wake_up)
1806
			wake_up_all(&wb->bdi->wb_waitq);
1807 1808 1809 1810 1811 1812
	}

	/*
	 * Check for periodic writeback, kupdated() style
	 */
	wrote += wb_check_old_data_flush(wb);
1813
	wrote += wb_check_background_flush(wb);
1814
	clear_bit(WB_writeback_running, &wb->state);
1815 1816 1817 1818 1819 1820

	return wrote;
}

/*
 * Handle writeback of dirty data for the device backed by this bdi. Also
1821
 * reschedules periodically and does kupdated style flushing.
1822
 */
1823
void wb_workfn(struct work_struct *work)
1824
{
1825 1826
	struct bdi_writeback *wb = container_of(to_delayed_work(work),
						struct bdi_writeback, dwork);
1827 1828
	long pages_written;

1829
	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
P
Peter Zijlstra 已提交
1830
	current->flags |= PF_SWAPWRITE;
1831

1832
	if (likely(!current_is_workqueue_rescuer() ||
1833
		   !test_bit(WB_registered, &wb->state))) {
1834
		/*
1835
		 * The normal path.  Keep writing back @wb until its
1836
		 * work_list is empty.  Note that this path is also taken
1837
		 * if @wb is shutting down even when we're running off the
1838
		 * rescuer as work_list needs to be drained.
1839
		 */
1840
		do {
1841
			pages_written = wb_do_writeback(wb);
1842
			trace_writeback_pages_written(pages_written);
1843
		} while (!list_empty(&wb->work_list));
1844 1845 1846 1847 1848 1849
	} else {
		/*
		 * bdi_wq can't get enough workers and we're running off
		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
		 * enough for efficient IO.
		 */
1850
		pages_written = writeback_inodes_wb(wb, 1024,
1851
						    WB_REASON_FORKER_THREAD);
1852
		trace_writeback_pages_written(pages_written);
1853 1854
	}

1855
	if (!list_empty(&wb->work_list))
1856 1857
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1858
		wb_wakeup_delayed(wb);
1859

1860
	current->flags &= ~PF_SWAPWRITE;
1861 1862 1863
}

/*
1864 1865
 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
 * the whole world.
1866
 */
1867
void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1868
{
1869
	struct backing_dev_info *bdi;
1870

1871 1872
	if (!nr_pages)
		nr_pages = get_nr_dirty_pages();
1873

1874
	rcu_read_lock();
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
		struct bdi_writeback *wb;
		struct wb_iter iter;

		if (!bdi_has_dirty_io(bdi))
			continue;

		bdi_for_each_wb(wb, bdi, &iter, 0)
			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
					   false, reason);
	}
1886
	rcu_read_unlock();
L
Linus Torvalds 已提交
1887 1888
}

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
/*
 * Wake up bdi's periodically to make sure dirtytime inodes gets
 * written back periodically.  We deliberately do *not* check the
 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
 * kernel to be constantly waking up once there are any dirtytime
 * inodes on the system.  So instead we define a separate delayed work
 * function which gets called much more rarely.  (By default, only
 * once every 12 hours.)
 *
 * If there is any other write activity going on in the file system,
 * this function won't be necessary.  But if the only thing that has
 * happened on the file system is a dirtytime inode caused by an atime
 * update, we need this infrastructure below to make sure that inode
 * eventually gets pushed out to disk.
 */
static void wakeup_dirtytime_writeback(struct work_struct *w);
static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);

static void wakeup_dirtytime_writeback(struct work_struct *w)
{
	struct backing_dev_info *bdi;

	rcu_read_lock();
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1913 1914 1915 1916 1917 1918
		struct bdi_writeback *wb;
		struct wb_iter iter;

		bdi_for_each_wb(wb, bdi, &iter, 0)
			if (!list_empty(&bdi->wb.b_dirty_time))
				wb_wakeup(&bdi->wb);
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	}
	rcu_read_unlock();
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
}

static int __init start_dirtytime_writeback(void)
{
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
	return 0;
}
__initcall(start_dirtytime_writeback);

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
int dirtytime_interval_handler(struct ctl_table *table, int write,
			       void __user *buffer, size_t *lenp, loff_t *ppos)
{
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		mod_delayed_work(system_wq, &dirtytime_work, 0);
	return ret;
}

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
static noinline void block_dump___mark_inode_dirty(struct inode *inode)
{
	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
		struct dentry *dentry;
		const char *name = "?";

		dentry = d_find_alias(inode);
		if (dentry) {
			spin_lock(&dentry->d_lock);
			name = (const char *) dentry->d_name.name;
		}
		printk(KERN_DEBUG
		       "%s(%d): dirtied inode %lu (%s) on %s\n",
		       current->comm, task_pid_nr(current), inode->i_ino,
		       name, inode->i_sb->s_id);
		if (dentry) {
			spin_unlock(&dentry->d_lock);
			dput(dentry);
		}
	}
}

/**
 *	__mark_inode_dirty -	internal function
 *	@inode: inode to mark
 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
 *  	mark_inode_dirty_sync.
L
Linus Torvalds 已提交
1970
 *
1971 1972 1973 1974 1975 1976 1977 1978 1979
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 * dirty list only if it is hashed or if it refers to a blockdev.
 * If it was not hashed, it will never be added to the dirty list
 * even if it is later hashed, as it will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_ you start marking
 * them dirty.
L
Linus Torvalds 已提交
1980
 *
1981 1982 1983 1984 1985 1986
 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 * the kernel-internal blockdev inode represents the dirtying time of the
 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 * page->mapping->host, so the page-dirtying time is recorded in the internal
 * blockdev inode.
L
Linus Torvalds 已提交
1987
 */
1988
#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1989
void __mark_inode_dirty(struct inode *inode, int flags)
L
Linus Torvalds 已提交
1990
{
1991
	struct super_block *sb = inode->i_sb;
1992 1993 1994
	int dirtytime;

	trace_writeback_mark_inode_dirty(inode, flags);
L
Linus Torvalds 已提交
1995

1996 1997 1998 1999
	/*
	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
	 * dirty the inode itself
	 */
2000
	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
T
Tejun Heo 已提交
2001 2002
		trace_writeback_dirty_inode_start(inode, flags);

2003
		if (sb->s_op->dirty_inode)
2004
			sb->s_op->dirty_inode(inode, flags);
T
Tejun Heo 已提交
2005 2006

		trace_writeback_dirty_inode(inode, flags);
2007
	}
2008 2009 2010
	if (flags & I_DIRTY_INODE)
		flags &= ~I_DIRTY_TIME;
	dirtytime = flags & I_DIRTY_TIME;
2011 2012

	/*
2013 2014
	 * Paired with smp_mb() in __writeback_single_inode() for the
	 * following lockless i_state test.  See there for details.
2015 2016 2017
	 */
	smp_mb();

2018 2019
	if (((inode->i_state & flags) == flags) ||
	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2020 2021 2022 2023 2024
		return;

	if (unlikely(block_dump))
		block_dump___mark_inode_dirty(inode);

2025
	spin_lock(&inode->i_lock);
2026 2027
	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
		goto out_unlock_inode;
2028 2029 2030
	if ((inode->i_state & flags) != flags) {
		const int was_dirty = inode->i_state & I_DIRTY;

2031 2032
		inode_attach_wb(inode, NULL);

2033 2034
		if (flags & I_DIRTY_INODE)
			inode->i_state &= ~I_DIRTY_TIME;
2035 2036 2037 2038 2039 2040 2041 2042
		inode->i_state |= flags;

		/*
		 * If the inode is being synced, just update its dirty state.
		 * The unlocker will place the inode on the appropriate
		 * superblock list, based upon its state.
		 */
		if (inode->i_state & I_SYNC)
2043
			goto out_unlock_inode;
2044 2045 2046 2047 2048 2049

		/*
		 * Only add valid (hashed) inodes to the superblock's
		 * dirty list.  Add blockdev inodes as well.
		 */
		if (!S_ISBLK(inode->i_mode)) {
A
Al Viro 已提交
2050
			if (inode_unhashed(inode))
2051
				goto out_unlock_inode;
2052
		}
A
Al Viro 已提交
2053
		if (inode->i_state & I_FREEING)
2054
			goto out_unlock_inode;
2055 2056 2057 2058 2059 2060

		/*
		 * If the inode was already on b_dirty/b_io/b_more_io, don't
		 * reposition it (that would break b_dirty time-ordering).
		 */
		if (!was_dirty) {
2061
			struct bdi_writeback *wb;
2062
			struct list_head *dirty_list;
2063
			bool wakeup_bdi = false;
2064

2065
			wb = locked_inode_to_wb_and_lock_list(inode);
2066

2067 2068 2069
			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
			     !test_bit(WB_registered, &wb->state),
			     "bdi-%s not registered\n", wb->bdi->name);
2070 2071

			inode->dirtied_when = jiffies;
2072 2073
			if (dirtytime)
				inode->dirtied_time_when = jiffies;
2074

2075
			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2076
				dirty_list = &wb->b_dirty;
2077
			else
2078
				dirty_list = &wb->b_dirty_time;
2079

2080
			wakeup_bdi = inode_wb_list_move_locked(inode, wb,
2081 2082
							       dirty_list);

2083
			spin_unlock(&wb->list_lock);
2084
			trace_writeback_dirty_inode_enqueue(inode);
2085

2086 2087 2088 2089 2090 2091
			/*
			 * If this is the first dirty inode for this bdi,
			 * we have to wake-up the corresponding bdi thread
			 * to make sure background write-back happens
			 * later.
			 */
2092 2093
			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
				wb_wakeup_delayed(wb);
2094
			return;
L
Linus Torvalds 已提交
2095 2096
		}
	}
2097 2098
out_unlock_inode:
	spin_unlock(&inode->i_lock);
2099

2100 2101 2102
}
EXPORT_SYMBOL(__mark_inode_dirty);

2103
static void wait_sb_inodes(struct super_block *sb)
2104 2105 2106 2107 2108 2109 2110
{
	struct inode *inode, *old_inode = NULL;

	/*
	 * We need to be protected against the filesystem going from
	 * r/o to r/w or vice versa.
	 */
2111
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2112

2113
	spin_lock(&inode_sb_list_lock);
2114 2115 2116 2117 2118 2119 2120 2121

	/*
	 * Data integrity sync. Must wait for all pages under writeback,
	 * because there may have been pages dirtied before our sync
	 * call, but which had writeout started before we write it out.
	 * In which case, the inode may not be on the dirty list, but
	 * we still have to wait for that writeout.
	 */
2122
	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2123
		struct address_space *mapping = inode->i_mapping;
2124

2125 2126 2127 2128
		spin_lock(&inode->i_lock);
		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
		    (mapping->nrpages == 0)) {
			spin_unlock(&inode->i_lock);
2129
			continue;
2130
		}
2131
		__iget(inode);
2132
		spin_unlock(&inode->i_lock);
2133 2134
		spin_unlock(&inode_sb_list_lock);

2135
		/*
2136 2137 2138 2139 2140 2141
		 * We hold a reference to 'inode' so it couldn't have been
		 * removed from s_inodes list while we dropped the
		 * inode_sb_list_lock.  We cannot iput the inode now as we can
		 * be holding the last reference and we cannot iput it under
		 * inode_sb_list_lock. So we keep the reference and iput it
		 * later.
2142 2143 2144 2145 2146 2147 2148 2149
		 */
		iput(old_inode);
		old_inode = inode;

		filemap_fdatawait(mapping);

		cond_resched();

2150
		spin_lock(&inode_sb_list_lock);
2151
	}
2152
	spin_unlock(&inode_sb_list_lock);
2153
	iput(old_inode);
L
Linus Torvalds 已提交
2154 2155
}

2156 2157
static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				     enum wb_reason reason, bool skip_if_busy)
L
Linus Torvalds 已提交
2158
{
2159
	DEFINE_WB_COMPLETION_ONSTACK(done);
2160
	struct wb_writeback_work work = {
2161 2162 2163 2164 2165
		.sb			= sb,
		.sync_mode		= WB_SYNC_NONE,
		.tagged_writepages	= 1,
		.done			= &done,
		.nr_pages		= nr,
2166
		.reason			= reason,
2167
	};
2168
	struct backing_dev_info *bdi = sb->s_bdi;
2169

2170
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2171
		return;
2172
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2173

2174
	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2175
	wb_wait_for_completion(bdi, &done);
2176
}
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193

/**
 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
 * @sb: the superblock
 * @nr: the number of pages to write
 * @reason: reason why some writeback work initiated
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
void writeback_inodes_sb_nr(struct super_block *sb,
			    unsigned long nr,
			    enum wb_reason reason)
{
	__writeback_inodes_sb_nr(sb, nr, reason, false);
}
2194 2195 2196 2197 2198
EXPORT_SYMBOL(writeback_inodes_sb_nr);

/**
 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
 * @sb: the superblock
2199
 * @reason: reason why some writeback work was initiated
2200 2201 2202 2203 2204
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
2205
void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2206
{
2207
	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2208
}
2209
EXPORT_SYMBOL(writeback_inodes_sb);
2210

2211
/**
2212
 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2213
 * @sb: the superblock
2214 2215
 * @nr: the number of pages to write
 * @reason: the reason of writeback
2216
 *
2217
 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2218 2219
 * Returns 1 if writeback was started, 0 if not.
 */
2220 2221
bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				   enum wb_reason reason)
2222
{
2223
	if (!down_read_trylock(&sb->s_umount))
2224
		return false;
2225

2226
	__writeback_inodes_sb_nr(sb, nr, reason, true);
2227
	up_read(&sb->s_umount);
2228
	return true;
2229
}
2230
EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2231

2232
/**
2233
 * try_to_writeback_inodes_sb - try to start writeback if none underway
2234
 * @sb: the superblock
2235
 * @reason: reason why some writeback work was initiated
2236
 *
2237
 * Implement by try_to_writeback_inodes_sb_nr()
2238 2239
 * Returns 1 if writeback was started, 0 if not.
 */
2240
bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2241
{
2242
	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2243
}
2244
EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2245

2246 2247
/**
 * sync_inodes_sb	-	sync sb inode pages
2248
 * @sb: the superblock
2249 2250
 *
 * This function writes and waits on any dirty inode belonging to this
2251
 * super_block.
2252
 */
2253
void sync_inodes_sb(struct super_block *sb)
2254
{
2255
	DEFINE_WB_COMPLETION_ONSTACK(done);
2256
	struct wb_writeback_work work = {
2257 2258 2259 2260
		.sb		= sb,
		.sync_mode	= WB_SYNC_ALL,
		.nr_pages	= LONG_MAX,
		.range_cyclic	= 0,
2261
		.done		= &done,
2262
		.reason		= WB_REASON_SYNC,
2263
		.for_sync	= 1,
2264
	};
2265
	struct backing_dev_info *bdi = sb->s_bdi;
2266

2267
	/* Nothing to do? */
2268
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2269
		return;
2270 2271
	WARN_ON(!rwsem_is_locked(&sb->s_umount));

2272
	bdi_split_work_to_wbs(bdi, &work, false);
2273
	wb_wait_for_completion(bdi, &done);
2274

2275
	wait_sb_inodes(sb);
L
Linus Torvalds 已提交
2276
}
2277
EXPORT_SYMBOL(sync_inodes_sb);
L
Linus Torvalds 已提交
2278 2279

/**
2280 2281 2282 2283 2284 2285
 * write_inode_now	-	write an inode to disk
 * @inode: inode to write to disk
 * @sync: whether the write should be synchronous or not
 *
 * This function commits an inode to disk immediately if it is dirty. This is
 * primarily needed by knfsd.
L
Linus Torvalds 已提交
2286
 *
2287
 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
L
Linus Torvalds 已提交
2288 2289 2290
 */
int write_inode_now(struct inode *inode, int sync)
{
2291
	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
L
Linus Torvalds 已提交
2292 2293
	struct writeback_control wbc = {
		.nr_to_write = LONG_MAX,
2294
		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2295 2296
		.range_start = 0,
		.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
2297 2298 2299
	};

	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2300
		wbc.nr_to_write = 0;
L
Linus Torvalds 已提交
2301 2302

	might_sleep();
2303
	return writeback_single_inode(inode, wb, &wbc);
L
Linus Torvalds 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
}
EXPORT_SYMBOL(write_inode_now);

/**
 * sync_inode - write an inode and its pages to disk.
 * @inode: the inode to sync
 * @wbc: controls the writeback mode
 *
 * sync_inode() will write an inode and its pages to disk.  It will also
 * correctly update the inode on its superblock's dirty inode lists and will
 * update inode->i_state.
 *
 * The caller must have a ref on the inode.
 */
int sync_inode(struct inode *inode, struct writeback_control *wbc)
{
2320
	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
L
Linus Torvalds 已提交
2321 2322
}
EXPORT_SYMBOL(sync_inode);
C
Christoph Hellwig 已提交
2323 2324

/**
A
Andrew Morton 已提交
2325
 * sync_inode_metadata - write an inode to disk
C
Christoph Hellwig 已提交
2326 2327 2328
 * @inode: the inode to sync
 * @wait: wait for I/O to complete.
 *
A
Andrew Morton 已提交
2329
 * Write an inode to disk and adjust its dirty state after completion.
C
Christoph Hellwig 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
 *
 * Note: only writes the actual inode, no associated data or other metadata.
 */
int sync_inode_metadata(struct inode *inode, int wait)
{
	struct writeback_control wbc = {
		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
		.nr_to_write = 0, /* metadata-only */
	};

	return sync_inode(inode, &wbc);
}
EXPORT_SYMBOL(sync_inode_metadata);