fs-writeback.c 61.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
11
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
12 13 14 15 16
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
17
#include <linux/export.h>
L
Linus Torvalds 已提交
18
#include <linux/spinlock.h>
19
#include <linux/slab.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
23
#include <linux/pagemap.h>
24
#include <linux/kthread.h>
L
Linus Torvalds 已提交
25 26 27
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
28
#include <linux/tracepoint.h>
29
#include <linux/device.h>
30
#include <linux/memcontrol.h>
31
#include "internal.h"
L
Linus Torvalds 已提交
32

33 34 35 36 37
/*
 * 4MB minimal write chunk size
 */
#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))

38 39 40 41
struct wb_completion {
	atomic_t		cnt;
};

42 43 44
/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
45
struct wb_writeback_work {
46 47
	long nr_pages;
	struct super_block *sb;
48
	unsigned long *older_than_this;
49
	enum writeback_sync_modes sync_mode;
50
	unsigned int tagged_writepages:1;
51 52 53
	unsigned int for_kupdate:1;
	unsigned int range_cyclic:1;
	unsigned int for_background:1;
54
	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55
	unsigned int auto_free:1;	/* free on completion */
56 57
	unsigned int single_wait:1;
	unsigned int single_done:1;
58
	enum wb_reason reason;		/* why was writeback initiated? */
59

60
	struct list_head list;		/* pending work list */
61
	struct wb_completion *done;	/* set if the caller waits */
62 63
};

64 65 66 67 68 69 70 71 72 73 74 75 76
/*
 * If one wants to wait for one or more wb_writeback_works, each work's
 * ->done should be set to a wb_completion defined using the following
 * macro.  Once all work items are issued with wb_queue_work(), the caller
 * can wait for the completion of all using wb_wait_for_completion().  Work
 * items which are waited upon aren't freed automatically on completion.
 */
#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
	struct wb_completion cmpl = {					\
		.cnt		= ATOMIC_INIT(1),			\
	}


77 78 79 80 81 82 83 84 85 86 87 88
/*
 * If an inode is constantly having its pages dirtied, but then the
 * updates stop dirtytime_expire_interval seconds in the past, it's
 * possible for the worst case time between when an inode has its
 * timestamps updated and when they finally get written out to be two
 * dirtytime_expire_intervals.  We set the default to 12 hours (in
 * seconds), which means most of the time inodes will have their
 * timestamps written to disk after 12 hours, but in the worst case a
 * few inodes might not their timestamps updated for 24 hours.
 */
unsigned int dirtytime_expire_interval = 12 * 60 * 60;

N
Nick Piggin 已提交
89 90 91 92 93
static inline struct inode *wb_inode(struct list_head *head)
{
	return list_entry(head, struct inode, i_wb_list);
}

94 95 96 97 98 99 100 101
/*
 * Include the creation of the trace points after defining the
 * wb_writeback_work structure and inline functions so that the definition
 * remains local to this file.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/writeback.h>

102 103
EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);

104 105 106 107 108 109
static bool wb_io_lists_populated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb)) {
		return false;
	} else {
		set_bit(WB_has_dirty_io, &wb->state);
110
		WARN_ON_ONCE(!wb->avg_write_bandwidth);
111 112
		atomic_long_add(wb->avg_write_bandwidth,
				&wb->bdi->tot_write_bandwidth);
113 114 115 116 117 118 119
		return true;
	}
}

static void wb_io_lists_depopulated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
120
	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
121
		clear_bit(WB_has_dirty_io, &wb->state);
122 123
		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
					&wb->bdi->tot_write_bandwidth) < 0);
124
	}
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
}

/**
 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
 * @inode: inode to be moved
 * @wb: target bdi_writeback
 * @head: one of @wb->b_{dirty|io|more_io}
 *
 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
 * Returns %true if @inode is the first occupant of the !dirty_time IO
 * lists; otherwise, %false.
 */
static bool inode_wb_list_move_locked(struct inode *inode,
				      struct bdi_writeback *wb,
				      struct list_head *head)
{
	assert_spin_locked(&wb->list_lock);

	list_move(&inode->i_wb_list, head);

	/* dirty_time doesn't count as dirty_io until expiration */
	if (head != &wb->b_dirty_time)
		return wb_io_lists_populated(wb);

	wb_io_lists_depopulated(wb);
	return false;
}

/**
 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
 * @inode: inode to be removed
 * @wb: bdi_writeback @inode is being removed from
 *
 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 * clear %WB_has_dirty_io if all are empty afterwards.
 */
static void inode_wb_list_del_locked(struct inode *inode,
				     struct bdi_writeback *wb)
{
	assert_spin_locked(&wb->list_lock);

	list_del_init(&inode->i_wb_list);
	wb_io_lists_depopulated(wb);
}

170
static void wb_wakeup(struct bdi_writeback *wb)
J
Jan Kara 已提交
171
{
172 173 174 175
	spin_lock_bh(&wb->work_lock);
	if (test_bit(WB_registered, &wb->state))
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	spin_unlock_bh(&wb->work_lock);
J
Jan Kara 已提交
176 177
}

178 179
static void wb_queue_work(struct bdi_writeback *wb,
			  struct wb_writeback_work *work)
180
{
181
	trace_writeback_queue(wb->bdi, work);
182

183
	spin_lock_bh(&wb->work_lock);
184 185 186
	if (!test_bit(WB_registered, &wb->state)) {
		if (work->single_wait)
			work->single_done = 1;
J
Jan Kara 已提交
187
		goto out_unlock;
188
	}
189 190
	if (work->done)
		atomic_inc(&work->done->cnt);
191 192
	list_add_tail(&work->list, &wb->work_list);
	mod_delayed_work(bdi_wq, &wb->dwork, 0);
J
Jan Kara 已提交
193
out_unlock:
194
	spin_unlock_bh(&wb->work_lock);
L
Linus Torvalds 已提交
195 196
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/**
 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 * @bdi: bdi work items were issued to
 * @done: target wb_completion
 *
 * Wait for one or more work items issued to @bdi with their ->done field
 * set to @done, which should have been defined with
 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 * work items are completed.  Work items which are waited upon aren't freed
 * automatically on completion.
 */
static void wb_wait_for_completion(struct backing_dev_info *bdi,
				   struct wb_completion *done)
{
	atomic_dec(&done->cnt);		/* put down the initial count */
	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
}

215 216
#ifdef CONFIG_CGROUP_WRITEBACK

217 218 219 220 221 222 223 224 225 226 227 228 229 230
/* parameters for foreign inode detection, see wb_detach_inode() */
#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */

#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
					/* each slot's duration is 2s / 16 */
#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
					/* if foreign slots >= 8, switch */
#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
					/* one round can affect upto 5 slots */

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
void __inode_attach_wb(struct inode *inode, struct page *page)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;

	if (inode_cgwb_enabled(inode)) {
		struct cgroup_subsys_state *memcg_css;

		if (page) {
			memcg_css = mem_cgroup_css_from_page(page);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
		} else {
			/* must pin memcg_css, see wb_get_create() */
			memcg_css = task_get_css(current, memory_cgrp_id);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
			css_put(memcg_css);
		}
	}

	if (!wb)
		wb = &bdi->wb;

	/*
	 * There may be multiple instances of this function racing to
	 * update the same inode.  Use cmpxchg() to tell the winner.
	 */
	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
		wb_put(wb);
}

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
/**
 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 * @inode: inode of interest with i_lock held
 *
 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 * held on entry and is released on return.  The returned wb is guaranteed
 * to stay @inode's associated wb until its list_lock is released.
 */
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	while (true) {
		struct bdi_writeback *wb = inode_to_wb(inode);

		/*
		 * inode_to_wb() association is protected by both
		 * @inode->i_lock and @wb->list_lock but list_lock nests
		 * outside i_lock.  Drop i_lock and verify that the
		 * association hasn't changed after acquiring list_lock.
		 */
		wb_get(wb);
		spin_unlock(&inode->i_lock);
		spin_lock(&wb->list_lock);
		wb_put(wb);		/* not gonna deref it anymore */

		if (likely(wb == inode_to_wb(inode)))
			return wb;	/* @inode already has ref */

		spin_unlock(&wb->list_lock);
		cpu_relax();
		spin_lock(&inode->i_lock);
	}
}

/**
 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 * @inode: inode of interest
 *
 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 * on entry.
 */
static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	spin_lock(&inode->i_lock);
	return locked_inode_to_wb_and_lock_list(inode);
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324
/**
 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 * @wbc: writeback_control of interest
 * @inode: target inode
 *
 * @inode is locked and about to be written back under the control of @wbc.
 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 * writeback completion, wbc_detach_inode() should be called.  This is used
 * to track the cgroup writeback context.
 */
void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
				 struct inode *inode)
{
	wbc->wb = inode_to_wb(inode);
325 326 327 328 329 330 331 332 333
	wbc->inode = inode;

	wbc->wb_id = wbc->wb->memcg_css->id;
	wbc->wb_lcand_id = inode->i_wb_frn_winner;
	wbc->wb_tcand_id = 0;
	wbc->wb_bytes = 0;
	wbc->wb_lcand_bytes = 0;
	wbc->wb_tcand_bytes = 0;

334 335 336 337 338
	wb_get(wbc->wb);
	spin_unlock(&inode->i_lock);
}

/**
339 340
 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 * @wbc: writeback_control of the just finished writeback
341 342 343
 *
 * To be called after a writeback attempt of an inode finishes and undoes
 * wbc_attach_and_unlock_inode().  Can be called under any context.
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
 *
 * As concurrent write sharing of an inode is expected to be very rare and
 * memcg only tracks page ownership on first-use basis severely confining
 * the usefulness of such sharing, cgroup writeback tracks ownership
 * per-inode.  While the support for concurrent write sharing of an inode
 * is deemed unnecessary, an inode being written to by different cgroups at
 * different points in time is a lot more common, and, more importantly,
 * charging only by first-use can too readily lead to grossly incorrect
 * behaviors (single foreign page can lead to gigabytes of writeback to be
 * incorrectly attributed).
 *
 * To resolve this issue, cgroup writeback detects the majority dirtier of
 * an inode and transfers the ownership to it.  To avoid unnnecessary
 * oscillation, the detection mechanism keeps track of history and gives
 * out the switch verdict only if the foreign usage pattern is stable over
 * a certain amount of time and/or writeback attempts.
 *
 * On each writeback attempt, @wbc tries to detect the majority writer
 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 * count from the majority voting, it also counts the bytes written for the
 * current wb and the last round's winner wb (max of last round's current
 * wb, the winner from two rounds ago, and the last round's majority
 * candidate).  Keeping track of the historical winner helps the algorithm
 * to semi-reliably detect the most active writer even when it's not the
 * absolute majority.
 *
 * Once the winner of the round is determined, whether the winner is
 * foreign or not and how much IO time the round consumed is recorded in
 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 * over a certain threshold, the switch verdict is given.
374 375 376
 */
void wbc_detach_inode(struct writeback_control *wbc)
{
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
	struct bdi_writeback *wb = wbc->wb;
	struct inode *inode = wbc->inode;
	u16 history = inode->i_wb_frn_history;
	unsigned long avg_time = inode->i_wb_frn_avg_time;
	unsigned long max_bytes, max_time;
	int max_id;

	/* pick the winner of this round */
	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_id;
		max_bytes = wbc->wb_bytes;
	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_lcand_id;
		max_bytes = wbc->wb_lcand_bytes;
	} else {
		max_id = wbc->wb_tcand_id;
		max_bytes = wbc->wb_tcand_bytes;
	}

	/*
	 * Calculate the amount of IO time the winner consumed and fold it
	 * into the running average kept per inode.  If the consumed IO
	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
	 * deciding whether to switch or not.  This is to prevent one-off
	 * small dirtiers from skewing the verdict.
	 */
	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
				wb->avg_write_bandwidth);
	if (avg_time)
		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
	else
		avg_time = max_time;	/* immediate catch up on first run */

	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
		int slots;

		/*
		 * The switch verdict is reached if foreign wb's consume
		 * more than a certain proportion of IO time in a
		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
		 * history mask where each bit represents one sixteenth of
		 * the period.  Determine the number of slots to shift into
		 * history from @max_time.
		 */
		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
		history <<= slots;
		if (wbc->wb_id != max_id)
			history |= (1U << slots) - 1;

		/*
		 * Switch if the current wb isn't the consistent winner.
		 * If there are multiple closely competing dirtiers, the
		 * inode may switch across them repeatedly over time, which
		 * is okay.  The main goal is avoiding keeping an inode on
		 * the wrong wb for an extended period of time.
		 */
		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) {
			/* switch */
			max_id = 0;
			avg_time = 0;
			history = 0;
		}
	}

	/*
	 * Multiple instances of this function may race to update the
	 * following fields but we don't mind occassional inaccuracies.
	 */
	inode->i_wb_frn_winner = max_id;
	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
	inode->i_wb_frn_history = history;

452 453 454 455
	wb_put(wbc->wb);
	wbc->wb = NULL;
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
/**
 * wbc_account_io - account IO issued during writeback
 * @wbc: writeback_control of the writeback in progress
 * @page: page being written out
 * @bytes: number of bytes being written out
 *
 * @bytes from @page are about to written out during the writeback
 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 * wbc_detach_inode().
 */
void wbc_account_io(struct writeback_control *wbc, struct page *page,
		    size_t bytes)
{
	int id;

	/*
	 * pageout() path doesn't attach @wbc to the inode being written
	 * out.  This is intentional as we don't want the function to block
	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
	 * regular writeback instead of writing things out itself.
	 */
	if (!wbc->wb)
		return;

	rcu_read_lock();
	id = mem_cgroup_css_from_page(page)->id;
	rcu_read_unlock();

	if (id == wbc->wb_id) {
		wbc->wb_bytes += bytes;
		return;
	}

	if (id == wbc->wb_lcand_id)
		wbc->wb_lcand_bytes += bytes;

	/* Boyer-Moore majority vote algorithm */
	if (!wbc->wb_tcand_bytes)
		wbc->wb_tcand_id = id;
	if (id == wbc->wb_tcand_id)
		wbc->wb_tcand_bytes += bytes;
	else
		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
}

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
/**
 * inode_congested - test whether an inode is congested
 * @inode: inode to test for congestion
 * @cong_bits: mask of WB_[a]sync_congested bits to test
 *
 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 * bits to test and the return value is the mask of set bits.
 *
 * If cgroup writeback is enabled for @inode, the congestion state is
 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 * associated with @inode is congested; otherwise, the root wb's congestion
 * state is used.
 */
int inode_congested(struct inode *inode, int cong_bits)
{
	if (inode) {
		struct bdi_writeback *wb = inode_to_wb(inode);
		if (wb)
			return wb_congested(wb, cong_bits);
	}

	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
}
EXPORT_SYMBOL_GPL(inode_congested);

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
/**
 * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
 * @bdi: bdi the work item was issued to
 * @work: work item to wait for
 *
 * Wait for the completion of @work which was issued to one of @bdi's
 * bdi_writeback's.  The caller must have set @work->single_wait before
 * issuing it.  This wait operates independently fo
 * wb_wait_for_completion() and also disables automatic freeing of @work.
 */
static void wb_wait_for_single_work(struct backing_dev_info *bdi,
				    struct wb_writeback_work *work)
{
	if (WARN_ON_ONCE(!work->single_wait))
		return;

	wait_event(bdi->wb_waitq, work->single_done);

	/*
	 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
	 * modifications to @work prior to assertion of ->single_done is
	 * visible to the caller once this function returns.
	 */
	smp_rmb();
}

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
/**
 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 * @wb: target bdi_writeback to split @nr_pages to
 * @nr_pages: number of pages to write for the whole bdi
 *
 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 * @wb->bdi.
 */
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);

	if (nr_pages == LONG_MAX)
		return LONG_MAX;

	/*
	 * This may be called on clean wb's and proportional distribution
	 * may not make sense, just use the original @nr_pages in those
	 * cases.  In general, we wanna err on the side of writing more.
	 */
	if (!tot_bw || this_bw >= tot_bw)
		return nr_pages;
	else
		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
/**
 * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
 * @wb: target bdi_writeback
 * @base_work: source wb_writeback_work
 *
 * Try to make a clone of @base_work and issue it to @wb.  If cloning
 * succeeds, %true is returned; otherwise, @base_work is issued directly
 * and %false is returned.  In the latter case, the caller is required to
 * wait for @base_work's completion using wb_wait_for_single_work().
 *
 * A clone is auto-freed on completion.  @base_work never is.
 */
static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
				    struct wb_writeback_work *base_work)
{
	struct wb_writeback_work *work;

	work = kmalloc(sizeof(*work), GFP_ATOMIC);
	if (work) {
		*work = *base_work;
		work->auto_free = 1;
		work->single_wait = 0;
	} else {
		work = base_work;
		work->auto_free = 0;
		work->single_wait = 1;
	}
	work->single_done = 0;
	wb_queue_work(wb, work);
	return work != base_work;
}

/**
 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 * @bdi: target backing_dev_info
 * @base_work: wb_writeback_work to issue
 * @skip_if_busy: skip wb's which already have writeback in progress
 *
 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 * distributed to the busy wbs according to each wb's proportion in the
 * total active write bandwidth of @bdi.
 */
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	long nr_pages = base_work->nr_pages;
	int next_blkcg_id = 0;
	struct bdi_writeback *wb;
	struct wb_iter iter;

	might_sleep();

	if (!bdi_has_dirty_io(bdi))
		return;
restart:
	rcu_read_lock();
	bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
		if (!wb_has_dirty_io(wb) ||
		    (skip_if_busy && writeback_in_progress(wb)))
			continue;

		base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
		if (!wb_clone_and_queue_work(wb, base_work)) {
			next_blkcg_id = wb->blkcg_css->id + 1;
			rcu_read_unlock();
			wb_wait_for_single_work(bdi, base_work);
			goto restart;
		}
	}
	rcu_read_unlock();
}

654 655
#else	/* CONFIG_CGROUP_WRITEBACK */

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_unlock(&inode->i_lock);
	spin_lock(&wb->list_lock);
	return wb;
}

static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_lock(&wb->list_lock);
	return wb;
}

677 678 679 680 681
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	return nr_pages;
}

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	might_sleep();

	if (bdi_has_dirty_io(bdi) &&
	    (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
		base_work->auto_free = 0;
		base_work->single_wait = 0;
		base_work->single_done = 0;
		wb_queue_work(&bdi->wb, base_work);
	}
}

697 698
#endif	/* CONFIG_CGROUP_WRITEBACK */

699 700
void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
			bool range_cyclic, enum wb_reason reason)
701
{
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	struct wb_writeback_work *work;

	if (!wb_has_dirty_io(wb))
		return;

	/*
	 * This is WB_SYNC_NONE writeback, so if allocation fails just
	 * wakeup the thread for old dirty data writeback
	 */
	work = kzalloc(sizeof(*work), GFP_ATOMIC);
	if (!work) {
		trace_writeback_nowork(wb->bdi);
		wb_wakeup(wb);
		return;
	}

	work->sync_mode	= WB_SYNC_NONE;
	work->nr_pages	= nr_pages;
	work->range_cyclic = range_cyclic;
	work->reason	= reason;
722
	work->auto_free	= 1;
723 724

	wb_queue_work(wb, work);
725
}
726

727
/**
728 729
 * wb_start_background_writeback - start background writeback
 * @wb: bdi_writback to write from
730 731
 *
 * Description:
732
 *   This makes sure WB_SYNC_NONE background writeback happens. When
733
 *   this function returns, it is only guaranteed that for given wb
734 735
 *   some IO is happening if we are over background dirty threshold.
 *   Caller need not hold sb s_umount semaphore.
736
 */
737
void wb_start_background_writeback(struct bdi_writeback *wb)
738
{
739 740 741 742
	/*
	 * We just wake up the flusher thread. It will perform background
	 * writeback as soon as there is no other work to do.
	 */
743 744
	trace_writeback_wake_background(wb->bdi);
	wb_wakeup(wb);
L
Linus Torvalds 已提交
745 746
}

747 748 749 750 751
/*
 * Remove the inode from the writeback list it is on.
 */
void inode_wb_list_del(struct inode *inode)
{
752
	struct bdi_writeback *wb;
753

754
	wb = inode_to_wb_and_lock_list(inode);
755
	inode_wb_list_del_locked(inode, wb);
756
	spin_unlock(&wb->list_lock);
757 758
}

759 760 761 762 763
/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
764
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
765 766 767
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
768
static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
769
{
770
	if (!list_empty(&wb->b_dirty)) {
771
		struct inode *tail;
772

N
Nick Piggin 已提交
773
		tail = wb_inode(wb->b_dirty.next);
774
		if (time_before(inode->dirtied_when, tail->dirtied_when))
775 776
			inode->dirtied_when = jiffies;
	}
777
	inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
778 779
}

780
/*
781
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
782
 */
783
static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
784
{
785
	inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
786 787
}

J
Joern Engel 已提交
788 789
static void inode_sync_complete(struct inode *inode)
{
790
	inode->i_state &= ~I_SYNC;
791 792
	/* If inode is clean an unused, put it into LRU now... */
	inode_add_lru(inode);
793
	/* Waiters must see I_SYNC cleared before being woken up */
J
Joern Engel 已提交
794 795 796 797
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

798 799 800 801 802 803 804 805
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
806
	 * from permanently stopping the whole bdi writeback.
807 808 809 810 811 812
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

813 814
#define EXPIRE_DIRTY_ATIME 0x0001

815
/*
816
 * Move expired (dirtied before work->older_than_this) dirty inodes from
J
Jan Kara 已提交
817
 * @delaying_queue to @dispatch_queue.
818
 */
819
static int move_expired_inodes(struct list_head *delaying_queue,
820
			       struct list_head *dispatch_queue,
821
			       int flags,
822
			       struct wb_writeback_work *work)
823
{
824 825
	unsigned long *older_than_this = NULL;
	unsigned long expire_time;
826 827
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
828
	struct super_block *sb = NULL;
829
	struct inode *inode;
830
	int do_sb_sort = 0;
831
	int moved = 0;
832

833 834
	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
		older_than_this = work->older_than_this;
835 836
	else if (!work->for_sync) {
		expire_time = jiffies - (dirtytime_expire_interval * HZ);
837 838
		older_than_this = &expire_time;
	}
839
	while (!list_empty(delaying_queue)) {
N
Nick Piggin 已提交
840
		inode = wb_inode(delaying_queue->prev);
841 842
		if (older_than_this &&
		    inode_dirtied_after(inode, *older_than_this))
843
			break;
844 845
		list_move(&inode->i_wb_list, &tmp);
		moved++;
846 847
		if (flags & EXPIRE_DIRTY_ATIME)
			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
848 849
		if (sb_is_blkdev_sb(inode->i_sb))
			continue;
850 851 852
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
853 854
	}

855 856 857
	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
858
		goto out;
859 860
	}

861 862
	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
N
Nick Piggin 已提交
863
		sb = wb_inode(tmp.prev)->i_sb;
864
		list_for_each_prev_safe(pos, node, &tmp) {
N
Nick Piggin 已提交
865
			inode = wb_inode(pos);
866
			if (inode->i_sb == sb)
N
Nick Piggin 已提交
867
				list_move(&inode->i_wb_list, dispatch_queue);
868
		}
869
	}
870 871
out:
	return moved;
872 873 874 875
}

/*
 * Queue all expired dirty inodes for io, eldest first.
876 877 878 879 880 881 882 883
 * Before
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    gf         edc     BA
 * After
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    g          fBAedc
 *                                           |
 *                                           +--> dequeue for IO
884
 */
885
static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
886
{
887
	int moved;
888

889
	assert_spin_locked(&wb->list_lock);
890
	list_splice_init(&wb->b_more_io, &wb->b_io);
891 892 893
	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
				     EXPIRE_DIRTY_ATIME, work);
894 895
	if (moved)
		wb_io_lists_populated(wb);
896
	trace_writeback_queue_io(wb, work, moved);
897 898
}

899
static int write_inode(struct inode *inode, struct writeback_control *wbc)
900
{
T
Tejun Heo 已提交
901 902 903 904 905 906 907 908
	int ret;

	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
		trace_writeback_write_inode_start(inode, wbc);
		ret = inode->i_sb->s_op->write_inode(inode, wbc);
		trace_writeback_write_inode(inode, wbc);
		return ret;
	}
909
	return 0;
910 911
}

L
Linus Torvalds 已提交
912
/*
913 914
 * Wait for writeback on an inode to complete. Called with i_lock held.
 * Caller must make sure inode cannot go away when we drop i_lock.
915
 */
916 917 918
static void __inode_wait_for_writeback(struct inode *inode)
	__releases(inode->i_lock)
	__acquires(inode->i_lock)
919 920 921 922 923
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
924 925
	while (inode->i_state & I_SYNC) {
		spin_unlock(&inode->i_lock);
926 927
		__wait_on_bit(wqh, &wq, bit_wait,
			      TASK_UNINTERRUPTIBLE);
928
		spin_lock(&inode->i_lock);
929
	}
930 931
}

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
/*
 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 */
void inode_wait_for_writeback(struct inode *inode)
{
	spin_lock(&inode->i_lock);
	__inode_wait_for_writeback(inode);
	spin_unlock(&inode->i_lock);
}

/*
 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 * held and drops it. It is aimed for callers not holding any inode reference
 * so once i_lock is dropped, inode can go away.
 */
static void inode_sleep_on_writeback(struct inode *inode)
	__releases(inode->i_lock)
{
	DEFINE_WAIT(wait);
	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	int sleep;

	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
	sleep = inode->i_state & I_SYNC;
	spin_unlock(&inode->i_lock);
	if (sleep)
		schedule();
	finish_wait(wqh, &wait);
}

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
/*
 * Find proper writeback list for the inode depending on its current state and
 * possibly also change of its state while we were doing writeback.  Here we
 * handle things such as livelock prevention or fairness of writeback among
 * inodes. This function can be called only by flusher thread - noone else
 * processes all inodes in writeback lists and requeueing inodes behind flusher
 * thread's back can have unexpected consequences.
 */
static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
			  struct writeback_control *wbc)
{
	if (inode->i_state & I_FREEING)
		return;

	/*
	 * Sync livelock prevention. Each inode is tagged and synced in one
	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
	 * the dirty time to prevent enqueue and sync it again.
	 */
	if ((inode->i_state & I_DIRTY) &&
	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
		inode->dirtied_when = jiffies;

985 986 987 988 989 990 991 992 993
	if (wbc->pages_skipped) {
		/*
		 * writeback is not making progress due to locked
		 * buffers. Skip this inode for now.
		 */
		redirty_tail(inode, wb);
		return;
	}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		/*
		 * We didn't write back all the pages.  nfs_writepages()
		 * sometimes bales out without doing anything.
		 */
		if (wbc->nr_to_write <= 0) {
			/* Slice used up. Queue for next turn. */
			requeue_io(inode, wb);
		} else {
			/*
			 * Writeback blocked by something other than
			 * congestion. Delay the inode for some time to
			 * avoid spinning on the CPU (100% iowait)
			 * retrying writeback of the dirty page/inode
			 * that cannot be performed immediately.
			 */
			redirty_tail(inode, wb);
		}
	} else if (inode->i_state & I_DIRTY) {
		/*
		 * Filesystems can dirty the inode during writeback operations,
		 * such as delayed allocation during submission or metadata
		 * updates after data IO completion.
		 */
		redirty_tail(inode, wb);
1019
	} else if (inode->i_state & I_DIRTY_TIME) {
1020
		inode->dirtied_when = jiffies;
1021
		inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
1022 1023
	} else {
		/* The inode is clean. Remove from writeback lists. */
1024
		inode_wb_list_del_locked(inode, wb);
1025 1026 1027
	}
}

1028
/*
1029 1030 1031
 * Write out an inode and its dirty pages. Do not update the writeback list
 * linkage. That is left to the caller. The caller is also responsible for
 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
L
Linus Torvalds 已提交
1032 1033
 */
static int
1034
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
L
Linus Torvalds 已提交
1035 1036
{
	struct address_space *mapping = inode->i_mapping;
1037
	long nr_to_write = wbc->nr_to_write;
1038
	unsigned dirty;
L
Linus Torvalds 已提交
1039 1040
	int ret;

1041
	WARN_ON(!(inode->i_state & I_SYNC));
L
Linus Torvalds 已提交
1042

T
Tejun Heo 已提交
1043 1044
	trace_writeback_single_inode_start(inode, wbc, nr_to_write);

L
Linus Torvalds 已提交
1045 1046
	ret = do_writepages(mapping, wbc);

1047 1048 1049
	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
1050 1051 1052
	 * I/O completion. We don't do it for sync(2) writeback because it has a
	 * separate, external IO completion path and ->sync_fs for guaranteeing
	 * inode metadata is written back correctly.
1053
	 */
1054
	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1055
		int err = filemap_fdatawait(mapping);
L
Linus Torvalds 已提交
1056 1057 1058 1059
		if (ret == 0)
			ret = err;
	}

1060 1061 1062 1063 1064
	/*
	 * Some filesystems may redirty the inode during the writeback
	 * due to delalloc, clear dirty metadata flags right before
	 * write_inode()
	 */
1065
	spin_lock(&inode->i_lock);
1066

1067
	dirty = inode->i_state & I_DIRTY;
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	if (inode->i_state & I_DIRTY_TIME) {
		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
		    unlikely(time_after(jiffies,
					(inode->dirtied_time_when +
					 dirtytime_expire_interval * HZ)))) {
			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
			trace_writeback_lazytime(inode);
		}
	} else
		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1079
	inode->i_state &= ~dirty;
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

	/*
	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
	 * either they see the I_DIRTY bits cleared or we see the dirtied
	 * inode.
	 *
	 * I_DIRTY_PAGES is always cleared together above even if @mapping
	 * still has dirty pages.  The flag is reinstated after smp_mb() if
	 * necessary.  This guarantees that either __mark_inode_dirty()
	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
	 */
	smp_mb();

	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		inode->i_state |= I_DIRTY_PAGES;

1097
	spin_unlock(&inode->i_lock);
1098

1099 1100
	if (dirty & I_DIRTY_TIME)
		mark_inode_dirty_sync(inode);
1101
	/* Don't write the inode if only I_DIRTY_PAGES was set */
1102
	if (dirty & ~I_DIRTY_PAGES) {
1103
		int err = write_inode(inode, wbc);
L
Linus Torvalds 已提交
1104 1105 1106
		if (ret == 0)
			ret = err;
	}
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	trace_writeback_single_inode(inode, wbc, nr_to_write);
	return ret;
}

/*
 * Write out an inode's dirty pages. Either the caller has an active reference
 * on the inode or the inode has I_WILL_FREE set.
 *
 * This function is designed to be called for writing back one inode which
 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 * and does more profound writeback list handling in writeback_sb_inodes().
 */
static int
writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
		       struct writeback_control *wbc)
{
	int ret = 0;

	spin_lock(&inode->i_lock);
	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		if (wbc->sync_mode != WB_SYNC_ALL)
			goto out;
		/*
1135 1136 1137
		 * It's a data-integrity sync. We must wait. Since callers hold
		 * inode reference or inode has I_WILL_FREE set, it cannot go
		 * away under us.
1138
		 */
1139
		__inode_wait_for_writeback(inode);
1140 1141 1142
	}
	WARN_ON(inode->i_state & I_SYNC);
	/*
J
Jan Kara 已提交
1143 1144 1145 1146 1147 1148
	 * Skip inode if it is clean and we have no outstanding writeback in
	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
	 * function since flusher thread may be doing for example sync in
	 * parallel and if we move the inode, it could get skipped. So here we
	 * make sure inode is on some writeback list and leave it there unless
	 * we have completely cleaned the inode.
1149
	 */
1150
	if (!(inode->i_state & I_DIRTY_ALL) &&
J
Jan Kara 已提交
1151 1152
	    (wbc->sync_mode != WB_SYNC_ALL ||
	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1153 1154
		goto out;
	inode->i_state |= I_SYNC;
1155
	wbc_attach_and_unlock_inode(wbc, inode);
1156

1157
	ret = __writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
1158

1159
	wbc_detach_inode(wbc);
1160
	spin_lock(&wb->list_lock);
1161
	spin_lock(&inode->i_lock);
1162 1163 1164 1165
	/*
	 * If inode is clean, remove it from writeback lists. Otherwise don't
	 * touch it. See comment above for explanation.
	 */
1166
	if (!(inode->i_state & I_DIRTY_ALL))
1167
		inode_wb_list_del_locked(inode, wb);
1168
	spin_unlock(&wb->list_lock);
J
Joern Engel 已提交
1169
	inode_sync_complete(inode);
1170 1171
out:
	spin_unlock(&inode->i_lock);
L
Linus Torvalds 已提交
1172 1173 1174
	return ret;
}

1175
static long writeback_chunk_size(struct bdi_writeback *wb,
1176
				 struct wb_writeback_work *work)
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
{
	long pages;

	/*
	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
	 * here avoids calling into writeback_inodes_wb() more than once.
	 *
	 * The intended call sequence for WB_SYNC_ALL writeback is:
	 *
	 *      wb_writeback()
	 *          writeback_sb_inodes()       <== called only once
	 *              write_cache_pages()     <== called once for each inode
	 *                   (quickly) tag currently dirty pages
	 *                   (maybe slowly) sync all tagged pages
	 */
	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
		pages = LONG_MAX;
1195
	else {
1196
		pages = min(wb->avg_write_bandwidth / 2,
1197
			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1198 1199 1200 1201
		pages = min(pages, work->nr_pages);
		pages = round_down(pages + MIN_WRITEBACK_PAGES,
				   MIN_WRITEBACK_PAGES);
	}
1202 1203 1204 1205

	return pages;
}

1206 1207
/*
 * Write a portion of b_io inodes which belong to @sb.
1208
 *
1209
 * Return the number of pages and/or inodes written.
1210
 */
1211 1212 1213
static long writeback_sb_inodes(struct super_block *sb,
				struct bdi_writeback *wb,
				struct wb_writeback_work *work)
L
Linus Torvalds 已提交
1214
{
1215 1216 1217 1218 1219
	struct writeback_control wbc = {
		.sync_mode		= work->sync_mode,
		.tagged_writepages	= work->tagged_writepages,
		.for_kupdate		= work->for_kupdate,
		.for_background		= work->for_background,
1220
		.for_sync		= work->for_sync,
1221 1222 1223 1224 1225 1226 1227 1228
		.range_cyclic		= work->range_cyclic,
		.range_start		= 0,
		.range_end		= LLONG_MAX,
	};
	unsigned long start_time = jiffies;
	long write_chunk;
	long wrote = 0;  /* count both pages and inodes */

1229
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1230
		struct inode *inode = wb_inode(wb->b_io.prev);
1231 1232

		if (inode->i_sb != sb) {
1233
			if (work->sb) {
1234 1235 1236 1237 1238
				/*
				 * We only want to write back data for this
				 * superblock, move all inodes not belonging
				 * to it back onto the dirty list.
				 */
1239
				redirty_tail(inode, wb);
1240 1241 1242 1243 1244 1245 1246 1247
				continue;
			}

			/*
			 * The inode belongs to a different superblock.
			 * Bounce back to the caller to unpin this and
			 * pin the next superblock.
			 */
1248
			break;
1249 1250
		}

1251
		/*
W
Wanpeng Li 已提交
1252 1253
		 * Don't bother with new inodes or inodes being freed, first
		 * kind does not need periodic writeout yet, and for the latter
1254 1255
		 * kind writeout is handled by the freer.
		 */
1256
		spin_lock(&inode->i_lock);
1257
		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1258
			spin_unlock(&inode->i_lock);
1259
			redirty_tail(inode, wb);
1260 1261
			continue;
		}
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
			/*
			 * If this inode is locked for writeback and we are not
			 * doing writeback-for-data-integrity, move it to
			 * b_more_io so that writeback can proceed with the
			 * other inodes on s_io.
			 *
			 * We'll have another go at writing back this inode
			 * when we completed a full scan of b_io.
			 */
			spin_unlock(&inode->i_lock);
			requeue_io(inode, wb);
			trace_writeback_sb_inodes_requeue(inode);
			continue;
		}
1277 1278
		spin_unlock(&wb->list_lock);

1279 1280 1281 1282 1283
		/*
		 * We already requeued the inode if it had I_SYNC set and we
		 * are doing WB_SYNC_NONE writeback. So this catches only the
		 * WB_SYNC_ALL case.
		 */
1284 1285 1286 1287
		if (inode->i_state & I_SYNC) {
			/* Wait for I_SYNC. This function drops i_lock... */
			inode_sleep_on_writeback(inode);
			/* Inode may be gone, start again */
1288
			spin_lock(&wb->list_lock);
1289 1290
			continue;
		}
1291
		inode->i_state |= I_SYNC;
1292
		wbc_attach_and_unlock_inode(&wbc, inode);
1293

1294
		write_chunk = writeback_chunk_size(wb, work);
1295 1296
		wbc.nr_to_write = write_chunk;
		wbc.pages_skipped = 0;
1297

1298 1299 1300 1301
		/*
		 * We use I_SYNC to pin the inode in memory. While it is set
		 * evict_inode() will wait so the inode cannot be freed.
		 */
1302
		__writeback_single_inode(inode, &wbc);
1303

1304
		wbc_detach_inode(&wbc);
1305 1306
		work->nr_pages -= write_chunk - wbc.nr_to_write;
		wrote += write_chunk - wbc.nr_to_write;
1307 1308
		spin_lock(&wb->list_lock);
		spin_lock(&inode->i_lock);
1309
		if (!(inode->i_state & I_DIRTY_ALL))
1310
			wrote++;
1311 1312
		requeue_inode(inode, wb, &wbc);
		inode_sync_complete(inode);
1313
		spin_unlock(&inode->i_lock);
1314
		cond_resched_lock(&wb->list_lock);
1315 1316 1317 1318 1319 1320 1321 1322 1323
		/*
		 * bail out to wb_writeback() often enough to check
		 * background threshold and other termination conditions.
		 */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
1324
		}
L
Linus Torvalds 已提交
1325
	}
1326
	return wrote;
1327 1328
}

1329 1330
static long __writeback_inodes_wb(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
1331
{
1332 1333
	unsigned long start_time = jiffies;
	long wrote = 0;
N
Nick Piggin 已提交
1334

1335
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1336
		struct inode *inode = wb_inode(wb->b_io.prev);
1337
		struct super_block *sb = inode->i_sb;
1338

1339
		if (!trylock_super(sb)) {
1340
			/*
1341
			 * trylock_super() may fail consistently due to
1342 1343 1344 1345
			 * s_umount being grabbed by someone else. Don't use
			 * requeue_io() to avoid busy retrying the inode/sb.
			 */
			redirty_tail(inode, wb);
1346
			continue;
1347
		}
1348
		wrote += writeback_sb_inodes(sb, wb, work);
1349
		up_read(&sb->s_umount);
1350

1351 1352 1353 1354 1355 1356 1357
		/* refer to the same tests at the end of writeback_sb_inodes */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
		}
1358
	}
1359
	/* Leave any unwritten inodes on b_io */
1360
	return wrote;
1361 1362
}

1363
static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1364
				enum wb_reason reason)
1365
{
1366 1367 1368 1369
	struct wb_writeback_work work = {
		.nr_pages	= nr_pages,
		.sync_mode	= WB_SYNC_NONE,
		.range_cyclic	= 1,
1370
		.reason		= reason,
1371
	};
1372

1373
	spin_lock(&wb->list_lock);
W
Wu Fengguang 已提交
1374
	if (list_empty(&wb->b_io))
1375
		queue_io(wb, &work);
1376
	__writeback_inodes_wb(wb, &work);
1377
	spin_unlock(&wb->list_lock);
1378

1379 1380
	return nr_pages - work.nr_pages;
}
1381 1382 1383

/*
 * Explicit flushing or periodic writeback of "old" data.
1384
 *
1385 1386 1387 1388
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
1389
 *
1390 1391 1392
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
1393
 *
1394 1395
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
1396
 */
1397
static long wb_writeback(struct bdi_writeback *wb,
1398
			 struct wb_writeback_work *work)
1399
{
1400
	unsigned long wb_start = jiffies;
1401
	long nr_pages = work->nr_pages;
1402
	unsigned long oldest_jif;
J
Jan Kara 已提交
1403
	struct inode *inode;
1404
	long progress;
1405

1406 1407
	oldest_jif = jiffies;
	work->older_than_this = &oldest_jif;
N
Nick Piggin 已提交
1408

1409
	spin_lock(&wb->list_lock);
1410 1411
	for (;;) {
		/*
1412
		 * Stop writeback when nr_pages has been consumed
1413
		 */
1414
		if (work->nr_pages <= 0)
1415
			break;
1416

1417 1418 1419 1420 1421 1422 1423
		/*
		 * Background writeout and kupdate-style writeback may
		 * run forever. Stop them if there is other work to do
		 * so that e.g. sync can proceed. They'll be restarted
		 * after the other works are all done.
		 */
		if ((work->for_background || work->for_kupdate) &&
1424
		    !list_empty(&wb->work_list))
1425 1426
			break;

N
Nick Piggin 已提交
1427
		/*
1428 1429
		 * For background writeout, stop when we are below the
		 * background dirty threshold
N
Nick Piggin 已提交
1430
		 */
1431
		if (work->for_background && !wb_over_bg_thresh(wb))
1432
			break;
N
Nick Piggin 已提交
1433

1434 1435 1436 1437 1438 1439
		/*
		 * Kupdate and background works are special and we want to
		 * include all inodes that need writing. Livelock avoidance is
		 * handled by these works yielding to any other work so we are
		 * safe.
		 */
1440
		if (work->for_kupdate) {
1441
			oldest_jif = jiffies -
1442
				msecs_to_jiffies(dirty_expire_interval * 10);
1443
		} else if (work->for_background)
1444
			oldest_jif = jiffies;
1445

1446
		trace_writeback_start(wb->bdi, work);
1447
		if (list_empty(&wb->b_io))
1448
			queue_io(wb, work);
1449
		if (work->sb)
1450
			progress = writeback_sb_inodes(work->sb, wb, work);
1451
		else
1452 1453
			progress = __writeback_inodes_wb(wb, work);
		trace_writeback_written(wb->bdi, work);
1454

1455
		wb_update_bandwidth(wb, wb_start);
1456 1457

		/*
1458 1459 1460 1461 1462 1463
		 * Did we write something? Try for more
		 *
		 * Dirty inodes are moved to b_io for writeback in batches.
		 * The completion of the current batch does not necessarily
		 * mean the overall work is done. So we keep looping as long
		 * as made some progress on cleaning pages or inodes.
1464
		 */
1465
		if (progress)
1466 1467
			continue;
		/*
1468
		 * No more inodes for IO, bail
1469
		 */
1470
		if (list_empty(&wb->b_more_io))
1471
			break;
1472 1473 1474 1475 1476 1477
		/*
		 * Nothing written. Wait for some inode to
		 * become available for writeback. Otherwise
		 * we'll just busyloop.
		 */
		if (!list_empty(&wb->b_more_io))  {
1478
			trace_writeback_wait(wb->bdi, work);
N
Nick Piggin 已提交
1479
			inode = wb_inode(wb->b_more_io.prev);
1480
			spin_lock(&inode->i_lock);
1481
			spin_unlock(&wb->list_lock);
1482 1483
			/* This function drops i_lock... */
			inode_sleep_on_writeback(inode);
1484
			spin_lock(&wb->list_lock);
1485 1486
		}
	}
1487
	spin_unlock(&wb->list_lock);
1488

1489
	return nr_pages - work->nr_pages;
1490 1491 1492
}

/*
1493
 * Return the next wb_writeback_work struct that hasn't been processed yet.
1494
 */
1495
static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1496
{
1497
	struct wb_writeback_work *work = NULL;
1498

1499 1500 1501
	spin_lock_bh(&wb->work_lock);
	if (!list_empty(&wb->work_list)) {
		work = list_entry(wb->work_list.next,
1502 1503
				  struct wb_writeback_work, list);
		list_del_init(&work->list);
1504
	}
1505
	spin_unlock_bh(&wb->work_lock);
1506
	return work;
1507 1508
}

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
/*
 * Add in the number of potentially dirty inodes, because each inode
 * write can dirty pagecache in the underlying blockdev.
 */
static unsigned long get_nr_dirty_pages(void)
{
	return global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS) +
		get_nr_dirty_inodes();
}

1520 1521
static long wb_check_background_flush(struct bdi_writeback *wb)
{
1522
	if (wb_over_bg_thresh(wb)) {
1523 1524 1525 1526 1527 1528

		struct wb_writeback_work work = {
			.nr_pages	= LONG_MAX,
			.sync_mode	= WB_SYNC_NONE,
			.for_background	= 1,
			.range_cyclic	= 1,
1529
			.reason		= WB_REASON_BACKGROUND,
1530 1531 1532 1533 1534 1535 1536 1537
		};

		return wb_writeback(wb, &work);
	}

	return 0;
}

1538 1539 1540 1541 1542
static long wb_check_old_data_flush(struct bdi_writeback *wb)
{
	unsigned long expired;
	long nr_pages;

1543 1544 1545 1546 1547 1548
	/*
	 * When set to zero, disable periodic writeback
	 */
	if (!dirty_writeback_interval)
		return 0;

1549 1550 1551 1552 1553 1554
	expired = wb->last_old_flush +
			msecs_to_jiffies(dirty_writeback_interval * 10);
	if (time_before(jiffies, expired))
		return 0;

	wb->last_old_flush = jiffies;
1555
	nr_pages = get_nr_dirty_pages();
1556

1557
	if (nr_pages) {
1558
		struct wb_writeback_work work = {
1559 1560 1561 1562
			.nr_pages	= nr_pages,
			.sync_mode	= WB_SYNC_NONE,
			.for_kupdate	= 1,
			.range_cyclic	= 1,
1563
			.reason		= WB_REASON_PERIODIC,
1564 1565
		};

1566
		return wb_writeback(wb, &work);
1567
	}
1568 1569 1570 1571 1572 1573 1574

	return 0;
}

/*
 * Retrieve work items and do the writeback they describe
 */
1575
static long wb_do_writeback(struct bdi_writeback *wb)
1576
{
1577
	struct wb_writeback_work *work;
1578
	long wrote = 0;
1579

1580
	set_bit(WB_writeback_running, &wb->state);
1581
	while ((work = get_next_work_item(wb)) != NULL) {
1582
		struct wb_completion *done = work->done;
1583
		bool need_wake_up = false;
1584

1585
		trace_writeback_exec(wb->bdi, work);
1586

1587
		wrote += wb_writeback(wb, work);
1588

1589 1590 1591 1592 1593 1594 1595
		if (work->single_wait) {
			WARN_ON_ONCE(work->auto_free);
			/* paired w/ rmb in wb_wait_for_single_work() */
			smp_wmb();
			work->single_done = 1;
			need_wake_up = true;
		} else if (work->auto_free) {
1596
			kfree(work);
1597 1598
		}

1599
		if (done && atomic_dec_and_test(&done->cnt))
1600 1601 1602
			need_wake_up = true;

		if (need_wake_up)
1603
			wake_up_all(&wb->bdi->wb_waitq);
1604 1605 1606 1607 1608 1609
	}

	/*
	 * Check for periodic writeback, kupdated() style
	 */
	wrote += wb_check_old_data_flush(wb);
1610
	wrote += wb_check_background_flush(wb);
1611
	clear_bit(WB_writeback_running, &wb->state);
1612 1613 1614 1615 1616 1617

	return wrote;
}

/*
 * Handle writeback of dirty data for the device backed by this bdi. Also
1618
 * reschedules periodically and does kupdated style flushing.
1619
 */
1620
void wb_workfn(struct work_struct *work)
1621
{
1622 1623
	struct bdi_writeback *wb = container_of(to_delayed_work(work),
						struct bdi_writeback, dwork);
1624 1625
	long pages_written;

1626
	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
P
Peter Zijlstra 已提交
1627
	current->flags |= PF_SWAPWRITE;
1628

1629
	if (likely(!current_is_workqueue_rescuer() ||
1630
		   !test_bit(WB_registered, &wb->state))) {
1631
		/*
1632
		 * The normal path.  Keep writing back @wb until its
1633
		 * work_list is empty.  Note that this path is also taken
1634
		 * if @wb is shutting down even when we're running off the
1635
		 * rescuer as work_list needs to be drained.
1636
		 */
1637
		do {
1638
			pages_written = wb_do_writeback(wb);
1639
			trace_writeback_pages_written(pages_written);
1640
		} while (!list_empty(&wb->work_list));
1641 1642 1643 1644 1645 1646
	} else {
		/*
		 * bdi_wq can't get enough workers and we're running off
		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
		 * enough for efficient IO.
		 */
1647
		pages_written = writeback_inodes_wb(wb, 1024,
1648
						    WB_REASON_FORKER_THREAD);
1649
		trace_writeback_pages_written(pages_written);
1650 1651
	}

1652
	if (!list_empty(&wb->work_list))
1653 1654
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1655
		wb_wakeup_delayed(wb);
1656

1657
	current->flags &= ~PF_SWAPWRITE;
1658 1659 1660
}

/*
1661 1662
 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
 * the whole world.
1663
 */
1664
void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1665
{
1666
	struct backing_dev_info *bdi;
1667

1668 1669
	if (!nr_pages)
		nr_pages = get_nr_dirty_pages();
1670

1671
	rcu_read_lock();
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
		struct bdi_writeback *wb;
		struct wb_iter iter;

		if (!bdi_has_dirty_io(bdi))
			continue;

		bdi_for_each_wb(wb, bdi, &iter, 0)
			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
					   false, reason);
	}
1683
	rcu_read_unlock();
L
Linus Torvalds 已提交
1684 1685
}

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
/*
 * Wake up bdi's periodically to make sure dirtytime inodes gets
 * written back periodically.  We deliberately do *not* check the
 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
 * kernel to be constantly waking up once there are any dirtytime
 * inodes on the system.  So instead we define a separate delayed work
 * function which gets called much more rarely.  (By default, only
 * once every 12 hours.)
 *
 * If there is any other write activity going on in the file system,
 * this function won't be necessary.  But if the only thing that has
 * happened on the file system is a dirtytime inode caused by an atime
 * update, we need this infrastructure below to make sure that inode
 * eventually gets pushed out to disk.
 */
static void wakeup_dirtytime_writeback(struct work_struct *w);
static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);

static void wakeup_dirtytime_writeback(struct work_struct *w)
{
	struct backing_dev_info *bdi;

	rcu_read_lock();
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1710 1711 1712 1713 1714 1715
		struct bdi_writeback *wb;
		struct wb_iter iter;

		bdi_for_each_wb(wb, bdi, &iter, 0)
			if (!list_empty(&bdi->wb.b_dirty_time))
				wb_wakeup(&bdi->wb);
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	}
	rcu_read_unlock();
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
}

static int __init start_dirtytime_writeback(void)
{
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
	return 0;
}
__initcall(start_dirtytime_writeback);

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
int dirtytime_interval_handler(struct ctl_table *table, int write,
			       void __user *buffer, size_t *lenp, loff_t *ppos)
{
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		mod_delayed_work(system_wq, &dirtytime_work, 0);
	return ret;
}

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
static noinline void block_dump___mark_inode_dirty(struct inode *inode)
{
	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
		struct dentry *dentry;
		const char *name = "?";

		dentry = d_find_alias(inode);
		if (dentry) {
			spin_lock(&dentry->d_lock);
			name = (const char *) dentry->d_name.name;
		}
		printk(KERN_DEBUG
		       "%s(%d): dirtied inode %lu (%s) on %s\n",
		       current->comm, task_pid_nr(current), inode->i_ino,
		       name, inode->i_sb->s_id);
		if (dentry) {
			spin_unlock(&dentry->d_lock);
			dput(dentry);
		}
	}
}

/**
 *	__mark_inode_dirty -	internal function
 *	@inode: inode to mark
 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
 *  	mark_inode_dirty_sync.
L
Linus Torvalds 已提交
1767
 *
1768 1769 1770 1771 1772 1773 1774 1775 1776
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 * dirty list only if it is hashed or if it refers to a blockdev.
 * If it was not hashed, it will never be added to the dirty list
 * even if it is later hashed, as it will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_ you start marking
 * them dirty.
L
Linus Torvalds 已提交
1777
 *
1778 1779 1780 1781 1782 1783
 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 * the kernel-internal blockdev inode represents the dirtying time of the
 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 * page->mapping->host, so the page-dirtying time is recorded in the internal
 * blockdev inode.
L
Linus Torvalds 已提交
1784
 */
1785
#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1786
void __mark_inode_dirty(struct inode *inode, int flags)
L
Linus Torvalds 已提交
1787
{
1788
	struct super_block *sb = inode->i_sb;
1789 1790 1791
	int dirtytime;

	trace_writeback_mark_inode_dirty(inode, flags);
L
Linus Torvalds 已提交
1792

1793 1794 1795 1796
	/*
	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
	 * dirty the inode itself
	 */
1797
	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
T
Tejun Heo 已提交
1798 1799
		trace_writeback_dirty_inode_start(inode, flags);

1800
		if (sb->s_op->dirty_inode)
1801
			sb->s_op->dirty_inode(inode, flags);
T
Tejun Heo 已提交
1802 1803

		trace_writeback_dirty_inode(inode, flags);
1804
	}
1805 1806 1807
	if (flags & I_DIRTY_INODE)
		flags &= ~I_DIRTY_TIME;
	dirtytime = flags & I_DIRTY_TIME;
1808 1809

	/*
1810 1811
	 * Paired with smp_mb() in __writeback_single_inode() for the
	 * following lockless i_state test.  See there for details.
1812 1813 1814
	 */
	smp_mb();

1815 1816
	if (((inode->i_state & flags) == flags) ||
	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1817 1818 1819 1820 1821
		return;

	if (unlikely(block_dump))
		block_dump___mark_inode_dirty(inode);

1822
	spin_lock(&inode->i_lock);
1823 1824
	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
		goto out_unlock_inode;
1825 1826 1827
	if ((inode->i_state & flags) != flags) {
		const int was_dirty = inode->i_state & I_DIRTY;

1828 1829
		inode_attach_wb(inode, NULL);

1830 1831
		if (flags & I_DIRTY_INODE)
			inode->i_state &= ~I_DIRTY_TIME;
1832 1833 1834 1835 1836 1837 1838 1839
		inode->i_state |= flags;

		/*
		 * If the inode is being synced, just update its dirty state.
		 * The unlocker will place the inode on the appropriate
		 * superblock list, based upon its state.
		 */
		if (inode->i_state & I_SYNC)
1840
			goto out_unlock_inode;
1841 1842 1843 1844 1845 1846

		/*
		 * Only add valid (hashed) inodes to the superblock's
		 * dirty list.  Add blockdev inodes as well.
		 */
		if (!S_ISBLK(inode->i_mode)) {
A
Al Viro 已提交
1847
			if (inode_unhashed(inode))
1848
				goto out_unlock_inode;
1849
		}
A
Al Viro 已提交
1850
		if (inode->i_state & I_FREEING)
1851
			goto out_unlock_inode;
1852 1853 1854 1855 1856 1857

		/*
		 * If the inode was already on b_dirty/b_io/b_more_io, don't
		 * reposition it (that would break b_dirty time-ordering).
		 */
		if (!was_dirty) {
1858
			struct bdi_writeback *wb;
1859
			struct list_head *dirty_list;
1860
			bool wakeup_bdi = false;
1861

1862
			wb = locked_inode_to_wb_and_lock_list(inode);
1863

1864 1865 1866
			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
			     !test_bit(WB_registered, &wb->state),
			     "bdi-%s not registered\n", wb->bdi->name);
1867 1868

			inode->dirtied_when = jiffies;
1869 1870
			if (dirtytime)
				inode->dirtied_time_when = jiffies;
1871

1872
			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1873
				dirty_list = &wb->b_dirty;
1874
			else
1875
				dirty_list = &wb->b_dirty_time;
1876

1877
			wakeup_bdi = inode_wb_list_move_locked(inode, wb,
1878 1879
							       dirty_list);

1880
			spin_unlock(&wb->list_lock);
1881
			trace_writeback_dirty_inode_enqueue(inode);
1882

1883 1884 1885 1886 1887 1888
			/*
			 * If this is the first dirty inode for this bdi,
			 * we have to wake-up the corresponding bdi thread
			 * to make sure background write-back happens
			 * later.
			 */
1889 1890
			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
				wb_wakeup_delayed(wb);
1891
			return;
L
Linus Torvalds 已提交
1892 1893
		}
	}
1894 1895
out_unlock_inode:
	spin_unlock(&inode->i_lock);
1896

1897 1898 1899
}
EXPORT_SYMBOL(__mark_inode_dirty);

1900
static void wait_sb_inodes(struct super_block *sb)
1901 1902 1903 1904 1905 1906 1907
{
	struct inode *inode, *old_inode = NULL;

	/*
	 * We need to be protected against the filesystem going from
	 * r/o to r/w or vice versa.
	 */
1908
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1909

1910
	spin_lock(&inode_sb_list_lock);
1911 1912 1913 1914 1915 1916 1917 1918

	/*
	 * Data integrity sync. Must wait for all pages under writeback,
	 * because there may have been pages dirtied before our sync
	 * call, but which had writeout started before we write it out.
	 * In which case, the inode may not be on the dirty list, but
	 * we still have to wait for that writeout.
	 */
1919
	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1920
		struct address_space *mapping = inode->i_mapping;
1921

1922 1923 1924 1925
		spin_lock(&inode->i_lock);
		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
		    (mapping->nrpages == 0)) {
			spin_unlock(&inode->i_lock);
1926
			continue;
1927
		}
1928
		__iget(inode);
1929
		spin_unlock(&inode->i_lock);
1930 1931
		spin_unlock(&inode_sb_list_lock);

1932
		/*
1933 1934 1935 1936 1937 1938
		 * We hold a reference to 'inode' so it couldn't have been
		 * removed from s_inodes list while we dropped the
		 * inode_sb_list_lock.  We cannot iput the inode now as we can
		 * be holding the last reference and we cannot iput it under
		 * inode_sb_list_lock. So we keep the reference and iput it
		 * later.
1939 1940 1941 1942 1943 1944 1945 1946
		 */
		iput(old_inode);
		old_inode = inode;

		filemap_fdatawait(mapping);

		cond_resched();

1947
		spin_lock(&inode_sb_list_lock);
1948
	}
1949
	spin_unlock(&inode_sb_list_lock);
1950
	iput(old_inode);
L
Linus Torvalds 已提交
1951 1952
}

1953 1954
static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				     enum wb_reason reason, bool skip_if_busy)
L
Linus Torvalds 已提交
1955
{
1956
	DEFINE_WB_COMPLETION_ONSTACK(done);
1957
	struct wb_writeback_work work = {
1958 1959 1960 1961 1962
		.sb			= sb,
		.sync_mode		= WB_SYNC_NONE,
		.tagged_writepages	= 1,
		.done			= &done,
		.nr_pages		= nr,
1963
		.reason			= reason,
1964
	};
1965
	struct backing_dev_info *bdi = sb->s_bdi;
1966

1967
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
1968
		return;
1969
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1970

1971
	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
1972
	wb_wait_for_completion(bdi, &done);
1973
}
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

/**
 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
 * @sb: the superblock
 * @nr: the number of pages to write
 * @reason: reason why some writeback work initiated
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
void writeback_inodes_sb_nr(struct super_block *sb,
			    unsigned long nr,
			    enum wb_reason reason)
{
	__writeback_inodes_sb_nr(sb, nr, reason, false);
}
1991 1992 1993 1994 1995
EXPORT_SYMBOL(writeback_inodes_sb_nr);

/**
 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
 * @sb: the superblock
1996
 * @reason: reason why some writeback work was initiated
1997 1998 1999 2000 2001
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
2002
void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2003
{
2004
	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2005
}
2006
EXPORT_SYMBOL(writeback_inodes_sb);
2007

2008
/**
2009
 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2010
 * @sb: the superblock
2011 2012
 * @nr: the number of pages to write
 * @reason: the reason of writeback
2013
 *
2014
 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2015 2016
 * Returns 1 if writeback was started, 0 if not.
 */
2017 2018
bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				   enum wb_reason reason)
2019
{
2020
	if (!down_read_trylock(&sb->s_umount))
2021
		return false;
2022

2023
	__writeback_inodes_sb_nr(sb, nr, reason, true);
2024
	up_read(&sb->s_umount);
2025
	return true;
2026
}
2027
EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2028

2029
/**
2030
 * try_to_writeback_inodes_sb - try to start writeback if none underway
2031
 * @sb: the superblock
2032
 * @reason: reason why some writeback work was initiated
2033
 *
2034
 * Implement by try_to_writeback_inodes_sb_nr()
2035 2036
 * Returns 1 if writeback was started, 0 if not.
 */
2037
bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2038
{
2039
	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2040
}
2041
EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2042

2043 2044
/**
 * sync_inodes_sb	-	sync sb inode pages
2045
 * @sb: the superblock
2046 2047
 *
 * This function writes and waits on any dirty inode belonging to this
2048
 * super_block.
2049
 */
2050
void sync_inodes_sb(struct super_block *sb)
2051
{
2052
	DEFINE_WB_COMPLETION_ONSTACK(done);
2053
	struct wb_writeback_work work = {
2054 2055 2056 2057
		.sb		= sb,
		.sync_mode	= WB_SYNC_ALL,
		.nr_pages	= LONG_MAX,
		.range_cyclic	= 0,
2058
		.done		= &done,
2059
		.reason		= WB_REASON_SYNC,
2060
		.for_sync	= 1,
2061
	};
2062
	struct backing_dev_info *bdi = sb->s_bdi;
2063

2064
	/* Nothing to do? */
2065
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2066
		return;
2067 2068
	WARN_ON(!rwsem_is_locked(&sb->s_umount));

2069
	bdi_split_work_to_wbs(bdi, &work, false);
2070
	wb_wait_for_completion(bdi, &done);
2071

2072
	wait_sb_inodes(sb);
L
Linus Torvalds 已提交
2073
}
2074
EXPORT_SYMBOL(sync_inodes_sb);
L
Linus Torvalds 已提交
2075 2076

/**
2077 2078 2079 2080 2081 2082
 * write_inode_now	-	write an inode to disk
 * @inode: inode to write to disk
 * @sync: whether the write should be synchronous or not
 *
 * This function commits an inode to disk immediately if it is dirty. This is
 * primarily needed by knfsd.
L
Linus Torvalds 已提交
2083
 *
2084
 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
L
Linus Torvalds 已提交
2085 2086 2087
 */
int write_inode_now(struct inode *inode, int sync)
{
2088
	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
L
Linus Torvalds 已提交
2089 2090
	struct writeback_control wbc = {
		.nr_to_write = LONG_MAX,
2091
		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2092 2093
		.range_start = 0,
		.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
2094 2095 2096
	};

	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2097
		wbc.nr_to_write = 0;
L
Linus Torvalds 已提交
2098 2099

	might_sleep();
2100
	return writeback_single_inode(inode, wb, &wbc);
L
Linus Torvalds 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
}
EXPORT_SYMBOL(write_inode_now);

/**
 * sync_inode - write an inode and its pages to disk.
 * @inode: the inode to sync
 * @wbc: controls the writeback mode
 *
 * sync_inode() will write an inode and its pages to disk.  It will also
 * correctly update the inode on its superblock's dirty inode lists and will
 * update inode->i_state.
 *
 * The caller must have a ref on the inode.
 */
int sync_inode(struct inode *inode, struct writeback_control *wbc)
{
2117
	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
L
Linus Torvalds 已提交
2118 2119
}
EXPORT_SYMBOL(sync_inode);
C
Christoph Hellwig 已提交
2120 2121

/**
A
Andrew Morton 已提交
2122
 * sync_inode_metadata - write an inode to disk
C
Christoph Hellwig 已提交
2123 2124 2125
 * @inode: the inode to sync
 * @wait: wait for I/O to complete.
 *
A
Andrew Morton 已提交
2126
 * Write an inode to disk and adjust its dirty state after completion.
C
Christoph Hellwig 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
 *
 * Note: only writes the actual inode, no associated data or other metadata.
 */
int sync_inode_metadata(struct inode *inode, int wait)
{
	struct writeback_control wbc = {
		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
		.nr_to_write = 0, /* metadata-only */
	};

	return sync_inode(inode, &wbc);
}
EXPORT_SYMBOL(sync_inode_metadata);