perf_event.c 121.6 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
L
Li Zefan 已提交
31
#include <linux/ftrace_event.h>
32
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
33

34 35
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
36
/*
37
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
38
 */
39
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
40

41
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
42 43 44
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

45 46 47 48
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
49

50
/*
51
 * perf event paranoia level:
52 53
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
54
 *   1 - disallow cpu events for unpriv
55
 *   2 - disallow kernel profiling for unpriv
56
 */
57
int sysctl_perf_event_paranoid __read_mostly = 1;
58

59 60
static inline bool perf_paranoid_tracepoint_raw(void)
{
61
	return sysctl_perf_event_paranoid > -1;
62 63
}

64 65
static inline bool perf_paranoid_cpu(void)
{
66
	return sysctl_perf_event_paranoid > 0;
67 68 69 70
}

static inline bool perf_paranoid_kernel(void)
{
71
	return sysctl_perf_event_paranoid > 1;
72 73
}

74
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75 76

/*
77
 * max perf event sample rate
78
 */
79
int sysctl_perf_event_sample_rate __read_mostly = 100000;
80

81
static atomic64_t perf_event_id;
82

T
Thomas Gleixner 已提交
83
/*
84
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
85
 */
86
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
87 88 89 90

/*
 * Architecture provided APIs - weak aliases:
 */
91
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
92
{
93
	return NULL;
T
Thomas Gleixner 已提交
94 95
}

96 97 98
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

99 100
void __weak hw_perf_event_setup(int cpu)	{ barrier(); }
void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); }
101 102

int __weak
103
hw_perf_group_sched_in(struct perf_event *group_leader,
104
	       struct perf_cpu_context *cpuctx,
105
	       struct perf_event_context *ctx, int cpu)
106 107 108
{
	return 0;
}
T
Thomas Gleixner 已提交
109

110
void __weak perf_event_print_debug(void)	{ }
111

112
static DEFINE_PER_CPU(int, perf_disable_count);
113 114 115

void __perf_disable(void)
{
116
	__get_cpu_var(perf_disable_count)++;
117 118 119 120
}

bool __perf_enable(void)
{
121
	return !--__get_cpu_var(perf_disable_count);
122 123 124 125 126 127 128 129 130 131 132 133 134 135
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

136
static void get_ctx(struct perf_event_context *ctx)
137
{
138
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 140
}

141 142
static void free_ctx(struct rcu_head *head)
{
143
	struct perf_event_context *ctx;
144

145
	ctx = container_of(head, struct perf_event_context, rcu_head);
146 147 148
	kfree(ctx);
}

149
static void put_ctx(struct perf_event_context *ctx)
150
{
151 152 153
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
154 155 156
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
157
	}
158 159
}

160
static void unclone_ctx(struct perf_event_context *ctx)
161 162 163 164 165 166 167
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

168
/*
169
 * If we inherit events we want to return the parent event id
170 171
 * to userspace.
 */
172
static u64 primary_event_id(struct perf_event *event)
173
{
174
	u64 id = event->id;
175

176 177
	if (event->parent)
		id = event->parent->id;
178 179 180 181

	return id;
}

182
/*
183
 * Get the perf_event_context for a task and lock it.
184 185 186
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
187
static struct perf_event_context *
188
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189
{
190
	struct perf_event_context *ctx;
191 192 193

	rcu_read_lock();
 retry:
194
	ctx = rcu_dereference(task->perf_event_ctxp);
195 196 197 198
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
199
		 * perf_event_task_sched_out, though the
200 201 202 203 204 205
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
206
		raw_spin_lock_irqsave(&ctx->lock, *flags);
207
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
209 210
			goto retry;
		}
211 212

		if (!atomic_inc_not_zero(&ctx->refcount)) {
213
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
214 215
			ctx = NULL;
		}
216 217 218 219 220 221 222 223 224 225
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
226
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227
{
228
	struct perf_event_context *ctx;
229 230 231 232 233
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
234
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
235 236 237 238
	}
	return ctx;
}

239
static void perf_unpin_context(struct perf_event_context *ctx)
240 241 242
{
	unsigned long flags;

243
	raw_spin_lock_irqsave(&ctx->lock, flags);
244
	--ctx->pin_count;
245
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
246 247 248
	put_ctx(ctx);
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static inline u64 perf_clock(void)
{
	return cpu_clock(smp_processor_id());
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

277 278 279 280 281 282
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
283 284 285 286 287 288 289 290 291

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

292
/*
293
 * Add a event from the lists for its context.
294 295
 * Must be called with ctx->mutex and ctx->lock held.
 */
296
static void
297
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
298
{
299
	struct perf_event *group_leader = event->group_leader;
300 301

	/*
302 303
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
304 305
	 * leader's sibling list:
	 */
306 307
	if (group_leader == event)
		list_add_tail(&event->group_entry, &ctx->group_list);
P
Peter Zijlstra 已提交
308
	else {
309
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
310 311
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
312

313 314 315
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
316
		ctx->nr_stat++;
317 318
}

319
/*
320
 * Remove a event from the lists for its context.
321
 * Must be called with ctx->mutex and ctx->lock held.
322
 */
323
static void
324
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
325
{
326
	struct perf_event *sibling, *tmp;
327

328
	if (list_empty(&event->group_entry))
329
		return;
330 331
	ctx->nr_events--;
	if (event->attr.inherit_stat)
332
		ctx->nr_stat--;
333

334 335
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
336

337 338
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
339

340
	update_event_times(event);
341 342 343 344 345 346 347 348 349 350

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
351

352
	/*
353 354
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
355 356
	 * to the context list directly:
	 */
357
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
358

359
		list_move_tail(&sibling->group_entry, &ctx->group_list);
360 361 362 363
		sibling->group_leader = sibling;
	}
}

364
static void
365
event_sched_out(struct perf_event *event,
366
		  struct perf_cpu_context *cpuctx,
367
		  struct perf_event_context *ctx)
368
{
369
	if (event->state != PERF_EVENT_STATE_ACTIVE)
370 371
		return;

372 373 374 375
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
376
	}
377 378 379
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
380

381
	if (!is_software_event(event))
382 383
		cpuctx->active_oncpu--;
	ctx->nr_active--;
384
	if (event->attr.exclusive || !cpuctx->active_oncpu)
385 386 387
		cpuctx->exclusive = 0;
}

388
static void
389
group_sched_out(struct perf_event *group_event,
390
		struct perf_cpu_context *cpuctx,
391
		struct perf_event_context *ctx)
392
{
393
	struct perf_event *event;
394

395
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
396 397
		return;

398
	event_sched_out(group_event, cpuctx, ctx);
399 400 401 402

	/*
	 * Schedule out siblings (if any):
	 */
403 404
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
405

406
	if (group_event->attr.exclusive)
407 408 409
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
410
/*
411
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
412
 *
413
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
414 415
 * remove it from the context list.
 */
416
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
417 418
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
419 420
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
421 422 423 424 425 426

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
427
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
428 429
		return;

430
	raw_spin_lock(&ctx->lock);
431 432
	/*
	 * Protect the list operation against NMI by disabling the
433
	 * events on a global level.
434 435
	 */
	perf_disable();
T
Thomas Gleixner 已提交
436

437
	event_sched_out(event, cpuctx, ctx);
438

439
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
440 441 442

	if (!ctx->task) {
		/*
443
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
444 445 446
		 * reservation:
		 */
		cpuctx->max_pertask =
447 448
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
449 450
	}

451
	perf_enable();
452
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
453 454 455 456
}


/*
457
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
458
 *
459
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
460
 *
461
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
462
 * call when the task is on a CPU.
463
 *
464 465
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
466 467
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
468
 * When called from perf_event_exit_task, it's OK because the
469
 * context has been detached from its task.
T
Thomas Gleixner 已提交
470
 */
471
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
472
{
473
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
474 475 476 477
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
478
		 * Per cpu events are removed via an smp call and
479
		 * the removal is always successful.
T
Thomas Gleixner 已提交
480
		 */
481 482 483
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
484 485 486 487
		return;
	}

retry:
488 489
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
490

491
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
492 493 494
	/*
	 * If the context is active we need to retry the smp call.
	 */
495
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
496
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
497 498 499 500 501
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
502
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
503 504
	 * succeed.
	 */
P
Peter Zijlstra 已提交
505
	if (!list_empty(&event->group_entry))
506
		list_del_event(event, ctx);
507
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
508 509
}

510
/*
511
 * Update total_time_enabled and total_time_running for all events in a group.
512
 */
513
static void update_group_times(struct perf_event *leader)
514
{
515
	struct perf_event *event;
516

517 518 519
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
520 521
}

522
/*
523
 * Cross CPU call to disable a performance event
524
 */
525
static void __perf_event_disable(void *info)
526
{
527
	struct perf_event *event = info;
528
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
529
	struct perf_event_context *ctx = event->ctx;
530 531

	/*
532 533
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
534
	 */
535
	if (ctx->task && cpuctx->task_ctx != ctx)
536 537
		return;

538
	raw_spin_lock(&ctx->lock);
539 540

	/*
541
	 * If the event is on, turn it off.
542 543
	 * If it is in error state, leave it in error state.
	 */
544
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
545
		update_context_time(ctx);
546 547 548
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
549
		else
550 551
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
552 553
	}

554
	raw_spin_unlock(&ctx->lock);
555 556 557
}

/*
558
 * Disable a event.
559
 *
560 561
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
562
 * remains valid.  This condition is satisifed when called through
563 564 565 566
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
567
 * is the current context on this CPU and preemption is disabled,
568
 * hence we can't get into perf_event_task_sched_out for this context.
569
 */
570
void perf_event_disable(struct perf_event *event)
571
{
572
	struct perf_event_context *ctx = event->ctx;
573 574 575 576
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
577
		 * Disable the event on the cpu that it's on
578
		 */
579 580
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
581 582 583 584
		return;
	}

 retry:
585
	task_oncpu_function_call(task, __perf_event_disable, event);
586

587
	raw_spin_lock_irq(&ctx->lock);
588
	/*
589
	 * If the event is still active, we need to retry the cross-call.
590
	 */
591
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
592
		raw_spin_unlock_irq(&ctx->lock);
593 594 595 596 597 598 599
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
600 601 602
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
603
	}
604

605
	raw_spin_unlock_irq(&ctx->lock);
606 607
}

608
static int
609
event_sched_in(struct perf_event *event,
610
		 struct perf_cpu_context *cpuctx,
611
		 struct perf_event_context *ctx,
612 613
		 int cpu)
{
614
	if (event->state <= PERF_EVENT_STATE_OFF)
615 616
		return 0;

617 618
	event->state = PERF_EVENT_STATE_ACTIVE;
	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
619 620 621 622 623
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

624 625 626
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
627 628 629
		return -EAGAIN;
	}

630
	event->tstamp_running += ctx->time - event->tstamp_stopped;
631

632
	if (!is_software_event(event))
633
		cpuctx->active_oncpu++;
634 635
	ctx->nr_active++;

636
	if (event->attr.exclusive)
637 638
		cpuctx->exclusive = 1;

639 640 641
	return 0;
}

642
static int
643
group_sched_in(struct perf_event *group_event,
644
	       struct perf_cpu_context *cpuctx,
645
	       struct perf_event_context *ctx,
646 647
	       int cpu)
{
648
	struct perf_event *event, *partial_group;
649 650
	int ret;

651
	if (group_event->state == PERF_EVENT_STATE_OFF)
652 653
		return 0;

654
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
655 656 657
	if (ret)
		return ret < 0 ? ret : 0;

658
	if (event_sched_in(group_event, cpuctx, ctx, cpu))
659 660 661 662 663
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
664 665 666
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event_sched_in(event, cpuctx, ctx, cpu)) {
			partial_group = event;
667 668 669 670 671 672 673 674 675 676 677
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
678 679
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
680
			break;
681
		event_sched_out(event, cpuctx, ctx);
682
	}
683
	event_sched_out(group_event, cpuctx, ctx);
684 685 686 687

	return -EAGAIN;
}

688
/*
689 690
 * Return 1 for a group consisting entirely of software events,
 * 0 if the group contains any hardware events.
691
 */
692
static int is_software_only_group(struct perf_event *leader)
693
{
694
	struct perf_event *event;
695

696
	if (!is_software_event(leader))
697
		return 0;
P
Peter Zijlstra 已提交
698

699 700
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		if (!is_software_event(event))
701
			return 0;
P
Peter Zijlstra 已提交
702

703 704 705 706
	return 1;
}

/*
707
 * Work out whether we can put this event group on the CPU now.
708
 */
709
static int group_can_go_on(struct perf_event *event,
710 711 712 713
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
714
	 * Groups consisting entirely of software events can always go on.
715
	 */
716
	if (is_software_only_group(event))
717 718 719
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
720
	 * events can go on.
721 722 723 724 725
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
726
	 * events on the CPU, it can't go on.
727
	 */
728
	if (event->attr.exclusive && cpuctx->active_oncpu)
729 730 731 732 733 734 735 736
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

737 738
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
739
{
740 741 742 743
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
744 745
}

T
Thomas Gleixner 已提交
746
/*
747
 * Cross CPU call to install and enable a performance event
748 749
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
750 751 752 753
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
754 755 756
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
T
Thomas Gleixner 已提交
757
	int cpu = smp_processor_id();
758
	int err;
T
Thomas Gleixner 已提交
759 760 761 762 763

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
764
	 * Or possibly this is the right context but it isn't
765
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
766
	 */
767
	if (ctx->task && cpuctx->task_ctx != ctx) {
768
		if (cpuctx->task_ctx || ctx->task != current)
769 770 771
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
772

773
	raw_spin_lock(&ctx->lock);
774
	ctx->is_active = 1;
775
	update_context_time(ctx);
T
Thomas Gleixner 已提交
776 777 778

	/*
	 * Protect the list operation against NMI by disabling the
779
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
780
	 */
781
	perf_disable();
T
Thomas Gleixner 已提交
782

783
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
784

785 786 787
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

788
	/*
789
	 * Don't put the event on if it is disabled or if
790 791
	 * it is in a group and the group isn't on.
	 */
792 793
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
794 795
		goto unlock;

796
	/*
797 798 799
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
800
	 */
801
	if (!group_can_go_on(event, cpuctx, 1))
802 803
		err = -EEXIST;
	else
804
		err = event_sched_in(event, cpuctx, ctx, cpu);
805

806 807
	if (err) {
		/*
808
		 * This event couldn't go on.  If it is in a group
809
		 * then we have to pull the whole group off.
810
		 * If the event group is pinned then put it in error state.
811
		 */
812
		if (leader != event)
813
			group_sched_out(leader, cpuctx, ctx);
814
		if (leader->attr.pinned) {
815
			update_group_times(leader);
816
			leader->state = PERF_EVENT_STATE_ERROR;
817
		}
818
	}
T
Thomas Gleixner 已提交
819

820
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
821 822
		cpuctx->max_pertask--;

823
 unlock:
824
	perf_enable();
825

826
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
827 828 829
}

/*
830
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
831
 *
832 833
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
834
 *
835
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
836 837
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
838 839
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
840 841
 */
static void
842 843
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
844 845 846 847 848 849
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
850
		 * Per cpu events are installed via an smp call and
851
		 * the install is always successful.
T
Thomas Gleixner 已提交
852 853
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
854
					 event, 1);
T
Thomas Gleixner 已提交
855 856 857 858 859
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
860
				 event);
T
Thomas Gleixner 已提交
861

862
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
863 864 865
	/*
	 * we need to retry the smp call.
	 */
866
	if (ctx->is_active && list_empty(&event->group_entry)) {
867
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
868 869 870 871 872
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
873
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
874 875
	 * succeed.
	 */
876 877
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
878
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
879 880
}

881
/*
882
 * Put a event into inactive state and update time fields.
883 884 885 886 887 888
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
889 890
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
891
{
892
	struct perf_event *sub;
893

894 895 896 897
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
898 899 900 901
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

902
/*
903
 * Cross CPU call to enable a performance event
904
 */
905
static void __perf_event_enable(void *info)
906
{
907
	struct perf_event *event = info;
908
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
909 910
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
911
	int err;
912

913
	/*
914 915
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
916
	 */
917
	if (ctx->task && cpuctx->task_ctx != ctx) {
918
		if (cpuctx->task_ctx || ctx->task != current)
919 920 921
			return;
		cpuctx->task_ctx = ctx;
	}
922

923
	raw_spin_lock(&ctx->lock);
924
	ctx->is_active = 1;
925
	update_context_time(ctx);
926

927
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
928
		goto unlock;
929
	__perf_event_mark_enabled(event, ctx);
930

931 932 933
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

934
	/*
935
	 * If the event is in a group and isn't the group leader,
936
	 * then don't put it on unless the group is on.
937
	 */
938
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
939
		goto unlock;
940

941
	if (!group_can_go_on(event, cpuctx, 1)) {
942
		err = -EEXIST;
943
	} else {
944
		perf_disable();
945 946
		if (event == leader)
			err = group_sched_in(event, cpuctx, ctx,
947 948
					     smp_processor_id());
		else
949
			err = event_sched_in(event, cpuctx, ctx,
950
					       smp_processor_id());
951
		perf_enable();
952
	}
953 954 955

	if (err) {
		/*
956
		 * If this event can't go on and it's part of a
957 958
		 * group, then the whole group has to come off.
		 */
959
		if (leader != event)
960
			group_sched_out(leader, cpuctx, ctx);
961
		if (leader->attr.pinned) {
962
			update_group_times(leader);
963
			leader->state = PERF_EVENT_STATE_ERROR;
964
		}
965 966 967
	}

 unlock:
968
	raw_spin_unlock(&ctx->lock);
969 970 971
}

/*
972
 * Enable a event.
973
 *
974 975
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
976
 * remains valid.  This condition is satisfied when called through
977 978
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
979
 */
980
void perf_event_enable(struct perf_event *event)
981
{
982
	struct perf_event_context *ctx = event->ctx;
983 984 985 986
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
987
		 * Enable the event on the cpu that it's on
988
		 */
989 990
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
991 992 993
		return;
	}

994
	raw_spin_lock_irq(&ctx->lock);
995
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
996 997 998
		goto out;

	/*
999 1000
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1001 1002 1003 1004
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1005 1006
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1007 1008

 retry:
1009
	raw_spin_unlock_irq(&ctx->lock);
1010
	task_oncpu_function_call(task, __perf_event_enable, event);
1011

1012
	raw_spin_lock_irq(&ctx->lock);
1013 1014

	/*
1015
	 * If the context is active and the event is still off,
1016 1017
	 * we need to retry the cross-call.
	 */
1018
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1019 1020 1021 1022 1023 1024
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1025 1026
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1027

1028
 out:
1029
	raw_spin_unlock_irq(&ctx->lock);
1030 1031
}

1032
static int perf_event_refresh(struct perf_event *event, int refresh)
1033
{
1034
	/*
1035
	 * not supported on inherited events
1036
	 */
1037
	if (event->attr.inherit)
1038 1039
		return -EINVAL;

1040 1041
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1042 1043

	return 0;
1044 1045
}

1046
void __perf_event_sched_out(struct perf_event_context *ctx,
1047 1048
			      struct perf_cpu_context *cpuctx)
{
1049
	struct perf_event *event;
1050

1051
	raw_spin_lock(&ctx->lock);
1052
	ctx->is_active = 0;
1053
	if (likely(!ctx->nr_events))
1054
		goto out;
1055
	update_context_time(ctx);
1056

1057
	perf_disable();
P
Peter Zijlstra 已提交
1058
	if (ctx->nr_active) {
1059 1060
		list_for_each_entry(event, &ctx->group_list, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1061
	}
1062
	perf_enable();
1063
 out:
1064
	raw_spin_unlock(&ctx->lock);
1065 1066
}

1067 1068 1069
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1070 1071 1072 1073
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1074
 * in them directly with an fd; we can only enable/disable all
1075
 * events via prctl, or enable/disable all events in a family
1076 1077
 * via ioctl, which will have the same effect on both contexts.
 */
1078 1079
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1080 1081
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1082
		&& ctx1->parent_gen == ctx2->parent_gen
1083
		&& !ctx1->pin_count && !ctx2->pin_count;
1084 1085
}

1086 1087
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1088 1089 1090
{
	u64 value;

1091
	if (!event->attr.inherit_stat)
1092 1093 1094
		return;

	/*
1095
	 * Update the event value, we cannot use perf_event_read()
1096 1097
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1098
	 * we know the event must be on the current CPU, therefore we
1099 1100
	 * don't need to use it.
	 */
1101 1102
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1103 1104
		event->pmu->read(event);
		/* fall-through */
1105

1106 1107
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1108 1109 1110 1111 1112 1113 1114
		break;

	default:
		break;
	}

	/*
1115
	 * In order to keep per-task stats reliable we need to flip the event
1116 1117
	 * values when we flip the contexts.
	 */
1118 1119 1120
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1121

1122 1123
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1124

1125
	/*
1126
	 * Since we swizzled the values, update the user visible data too.
1127
	 */
1128 1129
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1130 1131 1132 1133 1134
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1135 1136
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1137
{
1138
	struct perf_event *event, *next_event;
1139 1140 1141 1142

	if (!ctx->nr_stat)
		return;

1143 1144
	update_context_time(ctx);

1145 1146
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1147

1148 1149
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1150

1151 1152
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1153

1154
		__perf_event_sync_stat(event, next_event);
1155

1156 1157
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1158 1159 1160
	}
}

T
Thomas Gleixner 已提交
1161
/*
1162
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1163 1164
 * with interrupts disabled.
 *
1165
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1166
 *
I
Ingo Molnar 已提交
1167
 * This does not protect us against NMI, but disable()
1168 1169 1170
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1171
 */
1172
void perf_event_task_sched_out(struct task_struct *task,
1173
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
1174 1175
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1176 1177 1178
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1179
	struct pt_regs *regs;
1180
	int do_switch = 1;
T
Thomas Gleixner 已提交
1181

1182
	regs = task_pt_regs(task);
1183
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1184

1185
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1186 1187
		return;

1188 1189
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1190
	next_ctx = next->perf_event_ctxp;
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1202 1203
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1204
		if (context_equiv(ctx, next_ctx)) {
1205 1206
			/*
			 * XXX do we need a memory barrier of sorts
1207
			 * wrt to rcu_dereference() of perf_event_ctxp
1208
			 */
1209 1210
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1211 1212 1213
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1214

1215
			perf_event_sync_stat(ctx, next_ctx);
1216
		}
1217 1218
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1219
	}
1220
	rcu_read_unlock();
1221

1222
	if (do_switch) {
1223
		__perf_event_sched_out(ctx, cpuctx);
1224 1225
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1226 1227
}

1228 1229 1230
/*
 * Called with IRQs disabled
 */
1231
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1232 1233 1234
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1235 1236
	if (!cpuctx->task_ctx)
		return;
1237 1238 1239 1240

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1241
	__perf_event_sched_out(ctx, cpuctx);
1242 1243 1244
	cpuctx->task_ctx = NULL;
}

1245 1246 1247
/*
 * Called with IRQs disabled
 */
1248
static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1249
{
1250
	__perf_event_sched_out(&cpuctx->ctx, cpuctx);
1251 1252
}

1253
static void
1254
__perf_event_sched_in(struct perf_event_context *ctx,
1255
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1256
{
1257
	struct perf_event *event;
1258
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1259

1260
	raw_spin_lock(&ctx->lock);
1261
	ctx->is_active = 1;
1262
	if (likely(!ctx->nr_events))
1263
		goto out;
T
Thomas Gleixner 已提交
1264

1265
	ctx->timestamp = perf_clock();
1266

1267
	perf_disable();
1268 1269 1270 1271 1272

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
1273 1274 1275
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    !event->attr.pinned)
1276
			continue;
1277
		if (event->cpu != -1 && event->cpu != cpu)
1278 1279
			continue;

1280 1281
		if (group_can_go_on(event, cpuctx, 1))
			group_sched_in(event, cpuctx, ctx, cpu);
1282 1283 1284 1285 1286

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1287 1288 1289
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1290
		}
1291 1292
	}

1293
	list_for_each_entry(event, &ctx->group_list, group_entry) {
1294
		/*
1295 1296
		 * Ignore events in OFF or ERROR state, and
		 * ignore pinned events since we did them already.
1297
		 */
1298 1299
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    event->attr.pinned)
1300 1301
			continue;

1302 1303
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1304
		 * of events:
1305
		 */
1306
		if (event->cpu != -1 && event->cpu != cpu)
T
Thomas Gleixner 已提交
1307 1308
			continue;

1309 1310
		if (group_can_go_on(event, cpuctx, can_add_hw))
			if (group_sched_in(event, cpuctx, ctx, cpu))
1311
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1312
	}
1313
	perf_enable();
1314
 out:
1315
	raw_spin_unlock(&ctx->lock);
1316 1317 1318
}

/*
1319
 * Called from scheduler to add the events of the current task
1320 1321
 * with interrupts disabled.
 *
1322
 * We restore the event value and then enable it.
1323 1324
 *
 * This does not protect us against NMI, but enable()
1325 1326 1327
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1328
 */
1329
void perf_event_task_sched_in(struct task_struct *task, int cpu)
1330 1331
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1332
	struct perf_event_context *ctx = task->perf_event_ctxp;
1333

1334 1335
	if (likely(!ctx))
		return;
1336 1337
	if (cpuctx->task_ctx == ctx)
		return;
1338
	__perf_event_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1339 1340 1341
	cpuctx->task_ctx = ctx;
}

1342
static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1343
{
1344
	struct perf_event_context *ctx = &cpuctx->ctx;
1345

1346
	__perf_event_sched_in(ctx, cpuctx, cpu);
1347 1348
}

1349 1350
#define MAX_INTERRUPTS (~0ULL)

1351
static void perf_log_throttle(struct perf_event *event, int enable);
1352

1353
static void perf_adjust_period(struct perf_event *event, u64 events)
1354
{
1355
	struct hw_perf_event *hwc = &event->hw;
1356 1357 1358 1359
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
1360
	period = div64_u64(events, event->attr.sample_freq);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
}

1373
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1374
{
1375 1376
	struct perf_event *event;
	struct hw_perf_event *hwc;
1377
	u64 interrupts, freq;
1378

1379
	raw_spin_lock(&ctx->lock);
1380
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1381
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1382 1383
			continue;

1384 1385 1386
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1387
		hwc = &event->hw;
1388 1389 1390

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1391

1392
		/*
1393
		 * unthrottle events on the tick
1394
		 */
1395
		if (interrupts == MAX_INTERRUPTS) {
1396 1397 1398
			perf_log_throttle(event, 1);
			event->pmu->unthrottle(event);
			interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1399 1400
		}

1401
		if (!event->attr.freq || !event->attr.sample_freq)
1402 1403
			continue;

1404 1405 1406
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1407 1408
		if (event->attr.sample_freq < HZ) {
			freq = event->attr.sample_freq;
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1422
		perf_adjust_period(event, freq * interrupts);
1423

1424 1425 1426 1427 1428 1429 1430
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
1431
			event->pmu->disable(event);
1432
			atomic64_set(&hwc->period_left, 0);
1433
			event->pmu->enable(event);
1434 1435
			perf_enable();
		}
1436
	}
1437
	raw_spin_unlock(&ctx->lock);
1438 1439
}

1440
/*
1441
 * Round-robin a context's events:
1442
 */
1443
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1444
{
1445
	struct perf_event *event;
T
Thomas Gleixner 已提交
1446

1447
	if (!ctx->nr_events)
T
Thomas Gleixner 已提交
1448 1449
		return;

1450
	raw_spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
1451
	/*
1452
	 * Rotate the first entry last (works just fine for group events too):
T
Thomas Gleixner 已提交
1453
	 */
1454
	perf_disable();
1455 1456
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		list_move_tail(&event->group_entry, &ctx->group_list);
T
Thomas Gleixner 已提交
1457 1458
		break;
	}
1459
	perf_enable();
T
Thomas Gleixner 已提交
1460

1461
	raw_spin_unlock(&ctx->lock);
1462 1463
}

1464
void perf_event_task_tick(struct task_struct *curr, int cpu)
1465
{
1466
	struct perf_cpu_context *cpuctx;
1467
	struct perf_event_context *ctx;
1468

1469
	if (!atomic_read(&nr_events))
1470 1471 1472
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1473
	ctx = curr->perf_event_ctxp;
1474

1475
	perf_ctx_adjust_freq(&cpuctx->ctx);
1476
	if (ctx)
1477
		perf_ctx_adjust_freq(ctx);
1478

1479
	perf_event_cpu_sched_out(cpuctx);
1480
	if (ctx)
1481
		__perf_event_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1482

1483
	rotate_ctx(&cpuctx->ctx);
1484 1485
	if (ctx)
		rotate_ctx(ctx);
1486

1487
	perf_event_cpu_sched_in(cpuctx, cpu);
1488
	if (ctx)
1489
		perf_event_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1490 1491
}

1492
/*
1493
 * Enable all of a task's events that have been marked enable-on-exec.
1494 1495
 * This expects task == current.
 */
1496
static void perf_event_enable_on_exec(struct task_struct *task)
1497
{
1498 1499
	struct perf_event_context *ctx;
	struct perf_event *event;
1500 1501 1502 1503
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
1504 1505
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1506 1507
		goto out;

1508
	__perf_event_task_sched_out(ctx);
1509

1510
	raw_spin_lock(&ctx->lock);
1511

1512 1513
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (!event->attr.enable_on_exec)
1514
			continue;
1515 1516
		event->attr.enable_on_exec = 0;
		if (event->state >= PERF_EVENT_STATE_INACTIVE)
1517
			continue;
1518
		__perf_event_mark_enabled(event, ctx);
1519 1520 1521 1522
		enabled = 1;
	}

	/*
1523
	 * Unclone this context if we enabled any event.
1524
	 */
1525 1526
	if (enabled)
		unclone_ctx(ctx);
1527

1528
	raw_spin_unlock(&ctx->lock);
1529

1530
	perf_event_task_sched_in(task, smp_processor_id());
1531 1532 1533 1534
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1535
/*
1536
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1537
 */
1538
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1539
{
1540
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1541 1542
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1543

1544 1545 1546 1547
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1548 1549
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1550 1551 1552 1553
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1554
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1555
	update_context_time(ctx);
1556
	update_event_times(event);
1557
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1558

P
Peter Zijlstra 已提交
1559
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1560 1561
}

1562
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1563 1564
{
	/*
1565 1566
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1567
	 */
1568 1569 1570 1571
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1572 1573 1574
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1575
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1576
		update_context_time(ctx);
1577
		update_event_times(event);
1578
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1579 1580
	}

1581
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1582 1583
}

1584
/*
1585
 * Initialize the perf_event context in a task_struct:
1586 1587
 */
static void
1588
__perf_event_init_context(struct perf_event_context *ctx,
1589 1590
			    struct task_struct *task)
{
1591
	raw_spin_lock_init(&ctx->lock);
1592
	mutex_init(&ctx->mutex);
1593
	INIT_LIST_HEAD(&ctx->group_list);
1594 1595 1596 1597 1598
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1599
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1600
{
1601
	struct perf_event_context *ctx;
1602
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1603
	struct task_struct *task;
1604
	unsigned long flags;
1605
	int err;
T
Thomas Gleixner 已提交
1606

1607
	if (pid == -1 && cpu != -1) {
1608
		/* Must be root to operate on a CPU event: */
1609
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1610 1611
			return ERR_PTR(-EACCES);

1612
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1613 1614 1615
			return ERR_PTR(-EINVAL);

		/*
1616
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1617 1618 1619
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1620
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1621 1622 1623 1624
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1625
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1642
	/*
1643
	 * Can't attach events to a dying task.
1644 1645 1646 1647 1648
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1649
	/* Reuse ptrace permission checks for now. */
1650 1651 1652 1653 1654
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1655
	ctx = perf_lock_task_context(task, &flags);
1656
	if (ctx) {
1657
		unclone_ctx(ctx);
1658
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1659 1660
	}

1661
	if (!ctx) {
1662
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1663 1664 1665
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1666
		__perf_event_init_context(ctx, task);
1667
		get_ctx(ctx);
1668
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1669 1670 1671 1672 1673
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1674
			goto retry;
1675
		}
1676
		get_task_struct(task);
1677 1678
	}

1679
	put_task_struct(task);
T
Thomas Gleixner 已提交
1680
	return ctx;
1681 1682 1683 1684

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1685 1686
}

L
Li Zefan 已提交
1687 1688
static void perf_event_free_filter(struct perf_event *event);

1689
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1690
{
1691
	struct perf_event *event;
P
Peter Zijlstra 已提交
1692

1693 1694 1695
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1696
	perf_event_free_filter(event);
1697
	kfree(event);
P
Peter Zijlstra 已提交
1698 1699
}

1700
static void perf_pending_sync(struct perf_event *event);
1701

1702
static void free_event(struct perf_event *event)
1703
{
1704
	perf_pending_sync(event);
1705

1706 1707 1708 1709 1710 1711 1712 1713
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1714
	}
1715

1716 1717 1718
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1719 1720
	}

1721 1722
	if (event->destroy)
		event->destroy(event);
1723

1724 1725
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1726 1727
}

1728
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1729
{
1730
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1731

1732
	WARN_ON_ONCE(ctx->parent_ctx);
1733
	mutex_lock(&ctx->mutex);
1734
	perf_event_remove_from_context(event);
1735
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1736

1737 1738 1739 1740
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1741

1742
	free_event(event);
T
Thomas Gleixner 已提交
1743 1744 1745

	return 0;
}
1746
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1747

1748 1749 1750 1751
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1752
{
1753
	struct perf_event *event = file->private_data;
1754

1755
	file->private_data = NULL;
1756

1757
	return perf_event_release_kernel(event);
1758 1759
}

1760
static int perf_event_read_size(struct perf_event *event)
1761 1762 1763 1764 1765
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1766
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1767 1768
		size += sizeof(u64);

1769
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1770 1771
		size += sizeof(u64);

1772
	if (event->attr.read_format & PERF_FORMAT_ID)
1773 1774
		entry += sizeof(u64);

1775 1776
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1777 1778 1779 1780 1781 1782 1783 1784
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1785
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1786
{
1787
	struct perf_event *child;
1788 1789
	u64 total = 0;

1790 1791 1792
	*enabled = 0;
	*running = 0;

1793
	mutex_lock(&event->child_mutex);
1794
	total += perf_event_read(event);
1795 1796 1797 1798 1799 1800
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1801
		total += perf_event_read(child);
1802 1803 1804
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1805
	mutex_unlock(&event->child_mutex);
1806 1807 1808

	return total;
}
1809
EXPORT_SYMBOL_GPL(perf_event_read_value);
1810

1811
static int perf_event_read_group(struct perf_event *event,
1812 1813
				   u64 read_format, char __user *buf)
{
1814
	struct perf_event *leader = event->group_leader, *sub;
1815 1816
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1817
	u64 values[5];
1818
	u64 count, enabled, running;
1819

1820
	mutex_lock(&ctx->mutex);
1821
	count = perf_event_read_value(leader, &enabled, &running);
1822 1823

	values[n++] = 1 + leader->nr_siblings;
1824 1825 1826 1827
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1828 1829 1830
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1831 1832 1833 1834

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
1835
		goto unlock;
1836

1837
	ret = size;
1838

1839
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1840
		n = 0;
1841

1842
		values[n++] = perf_event_read_value(sub, &enabled, &running);
1843 1844 1845 1846 1847
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

1848
		if (copy_to_user(buf + ret, values, size)) {
1849 1850 1851
			ret = -EFAULT;
			goto unlock;
		}
1852 1853

		ret += size;
1854
	}
1855 1856
unlock:
	mutex_unlock(&ctx->mutex);
1857

1858
	return ret;
1859 1860
}

1861
static int perf_event_read_one(struct perf_event *event,
1862 1863
				 u64 read_format, char __user *buf)
{
1864
	u64 enabled, running;
1865 1866 1867
	u64 values[4];
	int n = 0;

1868 1869 1870 1871 1872
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1873
	if (read_format & PERF_FORMAT_ID)
1874
		values[n++] = primary_event_id(event);
1875 1876 1877 1878 1879 1880 1881

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
1882
/*
1883
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
1884 1885
 */
static ssize_t
1886
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
1887
{
1888
	u64 read_format = event->attr.read_format;
1889
	int ret;
T
Thomas Gleixner 已提交
1890

1891
	/*
1892
	 * Return end-of-file for a read on a event that is in
1893 1894 1895
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
1896
	if (event->state == PERF_EVENT_STATE_ERROR)
1897 1898
		return 0;

1899
	if (count < perf_event_read_size(event))
1900 1901
		return -ENOSPC;

1902
	WARN_ON_ONCE(event->ctx->parent_ctx);
1903
	if (read_format & PERF_FORMAT_GROUP)
1904
		ret = perf_event_read_group(event, read_format, buf);
1905
	else
1906
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
1907

1908
	return ret;
T
Thomas Gleixner 已提交
1909 1910 1911 1912 1913
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
1914
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
1915

1916
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
1917 1918 1919 1920
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
1921
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
1922
	struct perf_mmap_data *data;
1923
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1924 1925

	rcu_read_lock();
1926
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
1927
	if (data)
1928
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1929
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1930

1931
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
1932 1933 1934 1935

	return events;
}

1936
static void perf_event_reset(struct perf_event *event)
1937
{
1938 1939 1940
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1941 1942
}

1943
/*
1944 1945 1946 1947
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
1948
 */
1949 1950
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1951
{
1952
	struct perf_event *child;
P
Peter Zijlstra 已提交
1953

1954 1955 1956 1957
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
1958
		func(child);
1959
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
1960 1961
}

1962 1963
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1964
{
1965 1966
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
1967

1968 1969
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
1970
	event = event->group_leader;
1971

1972 1973 1974 1975
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
1976
	mutex_unlock(&ctx->mutex);
1977 1978
}

1979
static int perf_event_period(struct perf_event *event, u64 __user *arg)
1980
{
1981
	struct perf_event_context *ctx = event->ctx;
1982 1983 1984 1985
	unsigned long size;
	int ret = 0;
	u64 value;

1986
	if (!event->attr.sample_period)
1987 1988 1989 1990 1991 1992 1993 1994 1995
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

1996
	raw_spin_lock_irq(&ctx->lock);
1997 1998
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
1999 2000 2001 2002
			ret = -EINVAL;
			goto unlock;
		}

2003
		event->attr.sample_freq = value;
2004
	} else {
2005 2006
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2007 2008
	}
unlock:
2009
	raw_spin_unlock_irq(&ctx->lock);
2010 2011 2012 2013

	return ret;
}

L
Li Zefan 已提交
2014 2015
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2016

2017 2018
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2019 2020
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2021
	u32 flags = arg;
2022 2023

	switch (cmd) {
2024 2025
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2026
		break;
2027 2028
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2029
		break;
2030 2031
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2032
		break;
P
Peter Zijlstra 已提交
2033

2034 2035
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2036

2037 2038
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2039

2040 2041
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2042

L
Li Zefan 已提交
2043 2044 2045
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2046
	default:
P
Peter Zijlstra 已提交
2047
		return -ENOTTY;
2048
	}
P
Peter Zijlstra 已提交
2049 2050

	if (flags & PERF_IOC_FLAG_GROUP)
2051
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2052
	else
2053
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2054 2055

	return 0;
2056 2057
}

2058
int perf_event_task_enable(void)
2059
{
2060
	struct perf_event *event;
2061

2062 2063 2064 2065
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2066 2067 2068 2069

	return 0;
}

2070
int perf_event_task_disable(void)
2071
{
2072
	struct perf_event *event;
2073

2074 2075 2076 2077
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2078 2079 2080 2081

	return 0;
}

2082 2083
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2084 2085
#endif

2086
static int perf_event_index(struct perf_event *event)
2087
{
2088
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2089 2090
		return 0;

2091
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2092 2093
}

2094 2095 2096 2097 2098
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2099
void perf_event_update_userpage(struct perf_event *event)
2100
{
2101
	struct perf_event_mmap_page *userpg;
2102
	struct perf_mmap_data *data;
2103 2104

	rcu_read_lock();
2105
	data = rcu_dereference(event->data);
2106 2107 2108 2109
	if (!data)
		goto unlock;

	userpg = data->user_page;
2110

2111 2112 2113 2114 2115
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2116
	++userpg->lock;
2117
	barrier();
2118 2119 2120 2121
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2122

2123 2124
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2125

2126 2127
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2128

2129
	barrier();
2130
	++userpg->lock;
2131
	preempt_enable();
2132
unlock:
2133
	rcu_read_unlock();
2134 2135
}

2136
static unsigned long perf_data_size(struct perf_mmap_data *data)
2137
{
2138 2139
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2140

2141
#ifndef CONFIG_PERF_USE_VMALLOC
2142

2143 2144 2145
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2146

2147 2148 2149 2150 2151
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2152

2153 2154
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2155

2156
	return virt_to_page(data->data_pages[pgoff - 1]);
2157 2158
}

2159 2160
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2161 2162 2163 2164 2165
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2166
	WARN_ON(atomic_read(&event->mmap_count));
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2185
	data->data_order = 0;
2186 2187
	data->nr_pages = nr_pages;

2188
	return data;
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2200
	return NULL;
2201 2202
}

2203 2204
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2205
	struct page *page = virt_to_page((void *)addr);
2206 2207 2208 2209 2210

	page->mapping = NULL;
	__free_page(page);
}

2211
static void perf_mmap_data_free(struct perf_mmap_data *data)
2212 2213 2214
{
	int i;

2215
	perf_mmap_free_page((unsigned long)data->user_page);
2216
	for (i = 0; i < data->nr_pages; i++)
2217
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2218
	kfree(data);
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2259
	kfree(data);
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2275

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2353
		data->watermark = max_size / 2;
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2365 2366
}

2367
static void perf_mmap_data_release(struct perf_event *event)
2368
{
2369
	struct perf_mmap_data *data = event->data;
2370

2371
	WARN_ON(atomic_read(&event->mmap_count));
2372

2373
	rcu_assign_pointer(event->data, NULL);
2374
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2375 2376 2377 2378
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2379
	struct perf_event *event = vma->vm_file->private_data;
2380

2381
	atomic_inc(&event->mmap_count);
2382 2383 2384 2385
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2386
	struct perf_event *event = vma->vm_file->private_data;
2387

2388 2389
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2390
		unsigned long size = perf_data_size(event->data);
2391 2392
		struct user_struct *user = current_user();

2393
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2394
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2395
		perf_mmap_data_release(event);
2396
		mutex_unlock(&event->mmap_mutex);
2397
	}
2398 2399
}

2400
static const struct vm_operations_struct perf_mmap_vmops = {
2401 2402 2403 2404
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2405 2406 2407 2408
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2409
	struct perf_event *event = file->private_data;
2410
	unsigned long user_locked, user_lock_limit;
2411
	struct user_struct *user = current_user();
2412
	unsigned long locked, lock_limit;
2413
	struct perf_mmap_data *data;
2414 2415
	unsigned long vma_size;
	unsigned long nr_pages;
2416
	long user_extra, extra;
2417
	int ret = 0;
2418

2419
	if (!(vma->vm_flags & VM_SHARED))
2420
		return -EINVAL;
2421 2422 2423 2424

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2425 2426 2427 2428 2429
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2430 2431
		return -EINVAL;

2432
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2433 2434
		return -EINVAL;

2435 2436
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2437

2438 2439 2440
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2441 2442 2443 2444
		ret = -EINVAL;
		goto unlock;
	}

2445 2446
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2447 2448 2449 2450
			ret = -EINVAL;
		goto unlock;
	}

2451
	user_extra = nr_pages + 1;
2452
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2453 2454 2455 2456 2457 2458

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2459
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2460

2461 2462 2463
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2464 2465 2466

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2467
	locked = vma->vm_mm->locked_vm + extra;
2468

2469 2470
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2471 2472 2473
		ret = -EPERM;
		goto unlock;
	}
2474

2475
	WARN_ON(event->data);
2476 2477 2478 2479

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2480 2481
		goto unlock;

2482 2483 2484
	ret = 0;
	perf_mmap_data_init(event, data);

2485
	atomic_set(&event->mmap_count, 1);
2486
	atomic_long_add(user_extra, &user->locked_vm);
2487
	vma->vm_mm->locked_vm += extra;
2488
	event->data->nr_locked = extra;
2489
	if (vma->vm_flags & VM_WRITE)
2490
		event->data->writable = 1;
2491

2492
unlock:
2493
	mutex_unlock(&event->mmap_mutex);
2494 2495 2496

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2497 2498

	return ret;
2499 2500
}

P
Peter Zijlstra 已提交
2501 2502 2503
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2504
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2505 2506 2507
	int retval;

	mutex_lock(&inode->i_mutex);
2508
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2509 2510 2511 2512 2513 2514 2515 2516
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2517 2518 2519 2520
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2521 2522
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2523
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2524
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2525 2526
};

2527
/*
2528
 * Perf event wakeup
2529 2530 2531 2532 2533
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2534
void perf_event_wakeup(struct perf_event *event)
2535
{
2536
	wake_up_all(&event->waitq);
2537

2538 2539 2540
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2541
	}
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2553
static void perf_pending_event(struct perf_pending_entry *entry)
2554
{
2555 2556
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2557

2558 2559 2560
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2561 2562
	}

2563 2564 2565
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2566 2567 2568
	}
}

2569
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2570

2571
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2572 2573 2574
	PENDING_TAIL,
};

2575 2576
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2577
{
2578
	struct perf_pending_entry **head;
2579

2580
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2581 2582
		return;

2583 2584 2585
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2586 2587

	do {
2588 2589
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2590

2591
	set_perf_event_pending();
2592

2593
	put_cpu_var(perf_pending_head);
2594 2595 2596 2597
}

static int __perf_pending_run(void)
{
2598
	struct perf_pending_entry *list;
2599 2600
	int nr = 0;

2601
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2602
	while (list != PENDING_TAIL) {
2603 2604
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2605 2606 2607

		list = list->next;

2608 2609
		func = entry->func;
		entry->next = NULL;
2610 2611 2612 2613 2614 2615 2616
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2617
		func(entry);
2618 2619 2620 2621 2622 2623
		nr++;
	}

	return nr;
}

2624
static inline int perf_not_pending(struct perf_event *event)
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2639
	return event->pending.next == NULL;
2640 2641
}

2642
static void perf_pending_sync(struct perf_event *event)
2643
{
2644
	wait_event(event->waitq, perf_not_pending(event));
2645 2646
}

2647
void perf_event_do_pending(void)
2648 2649 2650 2651
{
	__perf_pending_run();
}

2652 2653 2654 2655
/*
 * Callchain support -- arch specific
 */

2656
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2657 2658 2659 2660
{
	return NULL;
}

2661 2662 2663
/*
 * Output
 */
2664 2665
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2666 2667 2668 2669 2670 2671
{
	unsigned long mask;

	if (!data->writable)
		return true;

2672
	mask = perf_data_size(data) - 1;
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2683
static void perf_output_wakeup(struct perf_output_handle *handle)
2684
{
2685 2686
	atomic_set(&handle->data->poll, POLL_IN);

2687
	if (handle->nmi) {
2688 2689 2690
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2691
	} else
2692
		perf_event_wakeup(handle->event);
2693 2694
}

2695 2696 2697
/*
 * Curious locking construct.
 *
2698 2699
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2700 2701 2702 2703 2704 2705
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2706
 * event_id completes.
2707 2708 2709 2710
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2711
	int cur, cpu = get_cpu();
2712 2713 2714

	handle->locked = 0;

2715 2716 2717 2718 2719 2720 2721 2722
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2723 2724

		cpu_relax();
2725
	}
2726 2727 2728 2729 2730
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2731 2732
	unsigned long head;
	int cpu;
2733

2734
	data->done_head = data->head;
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2745
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2746 2747 2748
		data->user_page->data_head = head;

	/*
2749
	 * NMI can happen here, which means we can miss a done_head update.
2750 2751
	 */

2752
	cpu = atomic_xchg(&data->lock, -1);
2753 2754 2755 2756 2757
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2758
	if (unlikely(atomic_long_read(&data->done_head))) {
2759 2760 2761
		/*
		 * Since we had it locked, we can lock it again.
		 */
2762
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2763 2764 2765 2766 2767
			cpu_relax();

		goto again;
	}

2768
	if (atomic_xchg(&data->wakeup, 0))
2769 2770
		perf_output_wakeup(handle);
out:
2771
	put_cpu();
2772 2773
}

2774 2775
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2776 2777
{
	unsigned int pages_mask;
2778
	unsigned long offset;
2779 2780 2781 2782 2783 2784 2785 2786
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2787 2788
		unsigned long page_offset;
		unsigned long page_size;
2789 2790 2791
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2792 2793 2794
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2812
int perf_output_begin(struct perf_output_handle *handle,
2813
		      struct perf_event *event, unsigned int size,
2814
		      int nmi, int sample)
2815
{
2816
	struct perf_event *output_event;
2817
	struct perf_mmap_data *data;
2818
	unsigned long tail, offset, head;
2819 2820 2821 2822 2823 2824
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2825

2826
	rcu_read_lock();
2827
	/*
2828
	 * For inherited events we send all the output towards the parent.
2829
	 */
2830 2831
	if (event->parent)
		event = event->parent;
2832

2833 2834 2835
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2836

2837
	data = rcu_dereference(event->data);
2838 2839 2840
	if (!data)
		goto out;

2841
	handle->data	= data;
2842
	handle->event	= event;
2843 2844
	handle->nmi	= nmi;
	handle->sample	= sample;
2845

2846
	if (!data->nr_pages)
2847
		goto fail;
2848

2849 2850 2851 2852
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2853 2854
	perf_output_lock(handle);

2855
	do {
2856 2857 2858 2859 2860 2861 2862
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
2863
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2864
		head += size;
2865
		if (unlikely(!perf_output_space(data, tail, offset, head)))
2866
			goto fail;
2867
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2868

2869
	handle->offset	= offset;
2870
	handle->head	= head;
2871

2872
	if (head - tail > data->watermark)
2873
		atomic_set(&data->wakeup, 1);
2874

2875
	if (have_lost) {
2876
		lost_event.header.type = PERF_RECORD_LOST;
2877 2878
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
2879
		lost_event.id          = event->id;
2880 2881 2882 2883 2884
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2885
	return 0;
2886

2887
fail:
2888 2889
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2890 2891
out:
	rcu_read_unlock();
2892

2893 2894
	return -ENOSPC;
}
2895

2896
void perf_output_end(struct perf_output_handle *handle)
2897
{
2898
	struct perf_event *event = handle->event;
2899 2900
	struct perf_mmap_data *data = handle->data;

2901
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
2902

2903
	if (handle->sample && wakeup_events) {
2904
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2905
		if (events >= wakeup_events) {
2906
			atomic_sub(wakeup_events, &data->events);
2907
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2908
		}
2909 2910 2911
	}

	perf_output_unlock(handle);
2912
	rcu_read_unlock();
2913 2914
}

2915
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2916 2917
{
	/*
2918
	 * only top level events have the pid namespace they were created in
2919
	 */
2920 2921
	if (event->parent)
		event = event->parent;
2922

2923
	return task_tgid_nr_ns(p, event->ns);
2924 2925
}

2926
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2927 2928
{
	/*
2929
	 * only top level events have the pid namespace they were created in
2930
	 */
2931 2932
	if (event->parent)
		event = event->parent;
2933

2934
	return task_pid_nr_ns(p, event->ns);
2935 2936
}

2937
static void perf_output_read_one(struct perf_output_handle *handle,
2938
				 struct perf_event *event)
2939
{
2940
	u64 read_format = event->attr.read_format;
2941 2942 2943
	u64 values[4];
	int n = 0;

2944
	values[n++] = atomic64_read(&event->count);
2945
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2946 2947
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2948 2949
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2950 2951
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2952 2953
	}
	if (read_format & PERF_FORMAT_ID)
2954
		values[n++] = primary_event_id(event);
2955 2956 2957 2958 2959

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
2960
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2961 2962
 */
static void perf_output_read_group(struct perf_output_handle *handle,
2963
			    struct perf_event *event)
2964
{
2965 2966
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

2978
	if (leader != event)
2979 2980 2981 2982
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
2983
		values[n++] = primary_event_id(leader);
2984 2985 2986

	perf_output_copy(handle, values, n * sizeof(u64));

2987
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2988 2989
		n = 0;

2990
		if (sub != event)
2991 2992 2993 2994
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
2995
			values[n++] = primary_event_id(sub);
2996 2997 2998 2999 3000 3001

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3002
			     struct perf_event *event)
3003
{
3004 3005
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3006
	else
3007
		perf_output_read_one(handle, event);
3008 3009
}

3010 3011 3012
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3013
			struct perf_event *event)
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3044
		perf_output_read(handle, event);
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3082
			 struct perf_event *event,
3083
			 struct pt_regs *regs)
3084
{
3085
	u64 sample_type = event->attr.sample_type;
3086

3087
	data->type = sample_type;
3088

3089
	header->type = PERF_RECORD_SAMPLE;
3090 3091 3092 3093
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3094

3095
	if (sample_type & PERF_SAMPLE_IP) {
3096 3097 3098
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3099
	}
3100

3101
	if (sample_type & PERF_SAMPLE_TID) {
3102
		/* namespace issues */
3103 3104
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3105

3106
		header->size += sizeof(data->tid_entry);
3107 3108
	}

3109
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3110
		data->time = perf_clock();
3111

3112
		header->size += sizeof(data->time);
3113 3114
	}

3115
	if (sample_type & PERF_SAMPLE_ADDR)
3116
		header->size += sizeof(data->addr);
3117

3118
	if (sample_type & PERF_SAMPLE_ID) {
3119
		data->id = primary_event_id(event);
3120

3121 3122 3123 3124
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3125
		data->stream_id = event->id;
3126 3127 3128

		header->size += sizeof(data->stream_id);
	}
3129

3130
	if (sample_type & PERF_SAMPLE_CPU) {
3131 3132
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3133

3134
		header->size += sizeof(data->cpu_entry);
3135 3136
	}

3137
	if (sample_type & PERF_SAMPLE_PERIOD)
3138
		header->size += sizeof(data->period);
3139

3140
	if (sample_type & PERF_SAMPLE_READ)
3141
		header->size += perf_event_read_size(event);
3142

3143
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3144
		int size = 1;
3145

3146 3147 3148 3149 3150 3151
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3152 3153
	}

3154
	if (sample_type & PERF_SAMPLE_RAW) {
3155 3156 3157 3158 3159 3160 3161 3162
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3163
		header->size += size;
3164
	}
3165
}
3166

3167
static void perf_event_output(struct perf_event *event, int nmi,
3168 3169 3170 3171 3172
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3173

3174
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3175

3176
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3177
		return;
3178

3179
	perf_output_sample(&handle, &header, data, event);
3180

3181
	perf_output_end(&handle);
3182 3183
}

3184
/*
3185
 * read event_id
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3196
perf_event_read_event(struct perf_event *event,
3197 3198 3199
			struct task_struct *task)
{
	struct perf_output_handle handle;
3200
	struct perf_read_event read_event = {
3201
		.header = {
3202
			.type = PERF_RECORD_READ,
3203
			.misc = 0,
3204
			.size = sizeof(read_event) + perf_event_read_size(event),
3205
		},
3206 3207
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3208
	};
3209
	int ret;
3210

3211
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3212 3213 3214
	if (ret)
		return;

3215
	perf_output_put(&handle, read_event);
3216
	perf_output_read(&handle, event);
3217

3218 3219 3220
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3221
/*
P
Peter Zijlstra 已提交
3222 3223 3224
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3225 3226
 */

P
Peter Zijlstra 已提交
3227
struct perf_task_event {
3228
	struct task_struct		*task;
3229
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3230 3231 3232 3233 3234 3235

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3236 3237
		u32				tid;
		u32				ptid;
3238
		u64				time;
3239
	} event_id;
P
Peter Zijlstra 已提交
3240 3241
};

3242
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3243
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3244 3245
{
	struct perf_output_handle handle;
3246
	int size;
P
Peter Zijlstra 已提交
3247
	struct task_struct *task = task_event->task;
3248 3249
	int ret;

3250 3251
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3252 3253 3254 3255

	if (ret)
		return;

3256 3257
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3258

3259 3260
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3261

3262
	task_event->event_id.time = perf_clock();
3263

3264
	perf_output_put(&handle, task_event->event_id);
3265

P
Peter Zijlstra 已提交
3266 3267 3268
	perf_output_end(&handle);
}

3269
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3270
{
3271 3272 3273
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return 0;

3274 3275 3276
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3277
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3278 3279 3280 3281 3282
		return 1;

	return 0;
}

3283
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3284
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3285
{
3286
	struct perf_event *event;
P
Peter Zijlstra 已提交
3287

3288 3289 3290
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3291 3292 3293
	}
}

3294
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3295 3296
{
	struct perf_cpu_context *cpuctx;
3297
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3298

3299
	rcu_read_lock();
P
Peter Zijlstra 已提交
3300
	cpuctx = &get_cpu_var(perf_cpu_context);
3301
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3302
	if (!ctx)
3303
		ctx = rcu_dereference(task_event->task->perf_event_ctxp);
P
Peter Zijlstra 已提交
3304
	if (ctx)
3305
		perf_event_task_ctx(ctx, task_event);
3306
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3307 3308 3309
	rcu_read_unlock();
}

3310 3311
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3312
			      int new)
P
Peter Zijlstra 已提交
3313
{
P
Peter Zijlstra 已提交
3314
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3315

3316 3317 3318
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3319 3320
		return;

P
Peter Zijlstra 已提交
3321
	task_event = (struct perf_task_event){
3322 3323
		.task	  = task,
		.task_ctx = task_ctx,
3324
		.event_id    = {
P
Peter Zijlstra 已提交
3325
			.header = {
3326
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3327
				.misc = 0,
3328
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3329
			},
3330 3331
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3332 3333
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3334 3335 3336
		},
	};

3337
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3338 3339
}

3340
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3341
{
3342
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3343 3344
}

3345 3346 3347 3348 3349
/*
 * comm tracking
 */

struct perf_comm_event {
3350 3351
	struct task_struct	*task;
	char			*comm;
3352 3353 3354 3355 3356 3357 3358
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3359
	} event_id;
3360 3361
};

3362
static void perf_event_comm_output(struct perf_event *event,
3363 3364 3365
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3366 3367
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3368 3369 3370 3371

	if (ret)
		return;

3372 3373
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3374

3375
	perf_output_put(&handle, comm_event->event_id);
3376 3377 3378 3379 3380
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3381
static int perf_event_comm_match(struct perf_event *event)
3382
{
3383 3384 3385
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return 0;

3386 3387 3388
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3389
	if (event->attr.comm)
3390 3391 3392 3393 3394
		return 1;

	return 0;
}

3395
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3396 3397
				  struct perf_comm_event *comm_event)
{
3398
	struct perf_event *event;
3399

3400 3401 3402
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3403 3404 3405
	}
}

3406
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3407 3408
{
	struct perf_cpu_context *cpuctx;
3409
	struct perf_event_context *ctx;
3410
	unsigned int size;
3411
	char comm[TASK_COMM_LEN];
3412

3413
	memset(comm, 0, sizeof(comm));
3414
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3415
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3416 3417 3418 3419

	comm_event->comm = comm;
	comm_event->comm_size = size;

3420
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3421

3422
	rcu_read_lock();
3423
	cpuctx = &get_cpu_var(perf_cpu_context);
3424 3425
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3426
	if (ctx)
3427
		perf_event_comm_ctx(ctx, comm_event);
3428
	put_cpu_var(perf_cpu_context);
3429
	rcu_read_unlock();
3430 3431
}

3432
void perf_event_comm(struct task_struct *task)
3433
{
3434 3435
	struct perf_comm_event comm_event;

3436 3437
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3438

3439
	if (!atomic_read(&nr_comm_events))
3440
		return;
3441

3442
	comm_event = (struct perf_comm_event){
3443
		.task	= task,
3444 3445
		/* .comm      */
		/* .comm_size */
3446
		.event_id  = {
3447
			.header = {
3448
				.type = PERF_RECORD_COMM,
3449 3450 3451 3452 3453
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3454 3455 3456
		},
	};

3457
	perf_event_comm_event(&comm_event);
3458 3459
}

3460 3461 3462 3463 3464
/*
 * mmap tracking
 */

struct perf_mmap_event {
3465 3466 3467 3468
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3469 3470 3471 3472 3473 3474 3475 3476 3477

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3478
	} event_id;
3479 3480
};

3481
static void perf_event_mmap_output(struct perf_event *event,
3482 3483 3484
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3485 3486
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3487 3488 3489 3490

	if (ret)
		return;

3491 3492
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3493

3494
	perf_output_put(&handle, mmap_event->event_id);
3495 3496
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3497
	perf_output_end(&handle);
3498 3499
}

3500
static int perf_event_mmap_match(struct perf_event *event,
3501 3502
				   struct perf_mmap_event *mmap_event)
{
3503 3504 3505
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return 0;

3506 3507 3508
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3509
	if (event->attr.mmap)
3510 3511 3512 3513 3514
		return 1;

	return 0;
}

3515
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3516 3517
				  struct perf_mmap_event *mmap_event)
{
3518
	struct perf_event *event;
3519

3520 3521 3522
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3523 3524 3525
	}
}

3526
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3527 3528
{
	struct perf_cpu_context *cpuctx;
3529
	struct perf_event_context *ctx;
3530 3531
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3532 3533 3534
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3535
	const char *name;
3536

3537 3538
	memset(tmp, 0, sizeof(tmp));

3539
	if (file) {
3540 3541 3542 3543 3544 3545
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3546 3547 3548 3549
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3550
		name = d_path(&file->f_path, buf, PATH_MAX);
3551 3552 3553 3554 3555
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3556 3557 3558
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3559
			goto got_name;
3560
		}
3561 3562 3563 3564 3565 3566

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3567 3568 3569 3570 3571
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3572
	size = ALIGN(strlen(name)+1, sizeof(u64));
3573 3574 3575 3576

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3577
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3578

3579
	rcu_read_lock();
3580
	cpuctx = &get_cpu_var(perf_cpu_context);
3581 3582
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3583
	if (ctx)
3584
		perf_event_mmap_ctx(ctx, mmap_event);
3585
	put_cpu_var(perf_cpu_context);
3586 3587
	rcu_read_unlock();

3588 3589 3590
	kfree(buf);
}

3591
void __perf_event_mmap(struct vm_area_struct *vma)
3592
{
3593 3594
	struct perf_mmap_event mmap_event;

3595
	if (!atomic_read(&nr_mmap_events))
3596 3597 3598
		return;

	mmap_event = (struct perf_mmap_event){
3599
		.vma	= vma,
3600 3601
		/* .file_name */
		/* .file_size */
3602
		.event_id  = {
3603
			.header = {
3604
				.type = PERF_RECORD_MMAP,
3605 3606 3607 3608 3609
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3610 3611 3612
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3613 3614 3615
		},
	};

3616
	perf_event_mmap_event(&mmap_event);
3617 3618
}

3619 3620 3621 3622
/*
 * IRQ throttle logging
 */

3623
static void perf_log_throttle(struct perf_event *event, int enable)
3624 3625 3626 3627 3628 3629 3630
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3631
		u64				id;
3632
		u64				stream_id;
3633 3634
	} throttle_event = {
		.header = {
3635
			.type = PERF_RECORD_THROTTLE,
3636 3637 3638
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3639
		.time		= perf_clock(),
3640 3641
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3642 3643
	};

3644
	if (enable)
3645
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3646

3647
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3648 3649 3650 3651 3652 3653 3654
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3655
/*
3656
 * Generic event overflow handling, sampling.
3657 3658
 */

3659
static int __perf_event_overflow(struct perf_event *event, int nmi,
3660 3661
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3662
{
3663 3664
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3665 3666
	int ret = 0;

3667
	throttle = (throttle && event->pmu->unthrottle != NULL);
3668

3669
	if (!throttle) {
3670
		hwc->interrupts++;
3671
	} else {
3672 3673
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3674
			if (HZ * hwc->interrupts >
3675
					(u64)sysctl_perf_event_sample_rate) {
3676
				hwc->interrupts = MAX_INTERRUPTS;
3677
				perf_log_throttle(event, 0);
3678 3679 3680 3681
				ret = 1;
			}
		} else {
			/*
3682
			 * Keep re-disabling events even though on the previous
3683
			 * pass we disabled it - just in case we raced with a
3684
			 * sched-in and the event got enabled again:
3685
			 */
3686 3687 3688
			ret = 1;
		}
	}
3689

3690
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3691
		u64 now = perf_clock();
3692 3693 3694 3695 3696
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
3697
			perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3698 3699
	}

3700 3701
	/*
	 * XXX event_limit might not quite work as expected on inherited
3702
	 * events
3703 3704
	 */

3705 3706
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3707
		ret = 1;
3708
		event->pending_kill = POLL_HUP;
3709
		if (nmi) {
3710 3711 3712
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3713
		} else
3714
			perf_event_disable(event);
3715 3716
	}

3717 3718 3719 3720 3721
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3722
	return ret;
3723 3724
}

3725
int perf_event_overflow(struct perf_event *event, int nmi,
3726 3727
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3728
{
3729
	return __perf_event_overflow(event, nmi, 1, data, regs);
3730 3731
}

3732
/*
3733
 * Generic software event infrastructure
3734 3735
 */

3736
/*
3737 3738
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3739 3740 3741 3742
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3743
static u64 perf_swevent_set_period(struct perf_event *event)
3744
{
3745
	struct hw_perf_event *hwc = &event->hw;
3746 3747 3748 3749 3750
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3751 3752

again:
3753 3754 3755
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3756

3757 3758 3759 3760 3761
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3762

3763
	return nr;
3764 3765
}

3766
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3767 3768
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3769
{
3770
	struct hw_perf_event *hwc = &event->hw;
3771
	int throttle = 0;
3772

3773
	data->period = event->hw.last_period;
3774 3775
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3776

3777 3778
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3779

3780
	for (; overflow; overflow--) {
3781
		if (__perf_event_overflow(event, nmi, throttle,
3782
					    data, regs)) {
3783 3784 3785 3786 3787 3788
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3789
		throttle = 1;
3790
	}
3791 3792
}

3793
static void perf_swevent_unthrottle(struct perf_event *event)
3794 3795
{
	/*
3796
	 * Nothing to do, we already reset hwc->interrupts.
3797
	 */
3798
}
3799

3800
static void perf_swevent_add(struct perf_event *event, u64 nr,
3801 3802
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3803
{
3804
	struct hw_perf_event *hwc = &event->hw;
3805

3806
	atomic64_add(nr, &event->count);
3807

3808 3809 3810
	if (!regs)
		return;

3811 3812
	if (!hwc->sample_period)
		return;
3813

3814 3815 3816 3817
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3818
		return;
3819

3820
	perf_swevent_overflow(event, 0, nmi, data, regs);
3821 3822
}

3823
static int perf_swevent_is_counting(struct perf_event *event)
3824
{
3825
	/*
3826
	 * The event is active, we're good!
3827
	 */
3828
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3829 3830
		return 1;

3831
	/*
3832
	 * The event is off/error, not counting.
3833
	 */
3834
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3835 3836 3837
		return 0;

	/*
3838
	 * The event is inactive, if the context is active
3839 3840
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3841
	 */
3842
	if (event->ctx->is_active)
3843 3844 3845 3846 3847 3848 3849 3850
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3851 3852
}

L
Li Zefan 已提交
3853 3854 3855
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

3870
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
3871
				enum perf_type_id type,
L
Li Zefan 已提交
3872 3873 3874
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
3875
{
3876 3877 3878
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3879
	if (!perf_swevent_is_counting(event))
3880 3881
		return 0;

3882
	if (event->attr.type != type)
3883
		return 0;
3884

3885
	if (event->attr.config != event_id)
3886 3887
		return 0;

3888 3889
	if (perf_exclude_event(event, regs))
		return 0;
3890

L
Li Zefan 已提交
3891 3892 3893 3894
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

3895 3896 3897
	return 1;
}

3898
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3899
				     enum perf_type_id type,
3900
				     u32 event_id, u64 nr, int nmi,
3901 3902
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
3903
{
3904
	struct perf_event *event;
3905

3906
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
3907
		if (perf_swevent_match(event, type, event_id, data, regs))
3908
			perf_swevent_add(event, nr, nmi, data, regs);
3909 3910 3911
	}
}

3912
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
3913
{
3914 3915
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
	int rctx;
3916

P
Peter Zijlstra 已提交
3917
	if (in_nmi())
3918
		rctx = 3;
3919
	else if (in_irq())
3920
		rctx = 2;
3921
	else if (in_softirq())
3922
		rctx = 1;
3923
	else
3924
		rctx = 0;
P
Peter Zijlstra 已提交
3925

3926 3927
	if (cpuctx->recursion[rctx]) {
		put_cpu_var(perf_cpu_context);
3928
		return -1;
3929
	}
P
Peter Zijlstra 已提交
3930

3931 3932
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
3933

3934
	return rctx;
P
Peter Zijlstra 已提交
3935
}
I
Ingo Molnar 已提交
3936
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
3937

3938
void perf_swevent_put_recursion_context(int rctx)
3939
{
3940 3941
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
3942
	cpuctx->recursion[rctx]--;
3943
	put_cpu_var(perf_cpu_context);
3944
}
I
Ingo Molnar 已提交
3945
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
3946

3947 3948 3949 3950
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
3951
{
3952
	struct perf_cpu_context *cpuctx;
3953
	struct perf_event_context *ctx;
3954

3955
	cpuctx = &__get_cpu_var(perf_cpu_context);
3956
	rcu_read_lock();
3957
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3958
				 nr, nmi, data, regs);
3959 3960 3961 3962
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3963
	ctx = rcu_dereference(current->perf_event_ctxp);
3964
	if (ctx)
3965
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3966
	rcu_read_unlock();
3967
}
3968

3969
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3970
			    struct pt_regs *regs, u64 addr)
3971
{
3972
	struct perf_sample_data data;
3973 3974 3975 3976 3977
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
3978 3979 3980

	data.addr = addr;
	data.raw  = NULL;
3981

3982
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
3983 3984

	perf_swevent_put_recursion_context(rctx);
3985 3986
}

3987
static void perf_swevent_read(struct perf_event *event)
3988 3989 3990
{
}

3991
static int perf_swevent_enable(struct perf_event *event)
3992
{
3993
	struct hw_perf_event *hwc = &event->hw;
3994 3995 3996

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
3997
		perf_swevent_set_period(event);
3998
	}
3999 4000 4001
	return 0;
}

4002
static void perf_swevent_disable(struct perf_event *event)
4003 4004 4005
{
}

4006
static const struct pmu perf_ops_generic = {
4007 4008 4009 4010
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
4011 4012
};

4013
/*
4014
 * hrtimer based swevent callback
4015 4016
 */

4017
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4018 4019 4020
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4021
	struct pt_regs *regs;
4022
	struct perf_event *event;
4023 4024
	u64 period;

4025 4026
	event	= container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
4027 4028

	data.addr = 0;
4029
	data.raw = NULL;
4030
	data.period = event->hw.last_period;
4031
	regs = get_irq_regs();
4032 4033 4034 4035
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
4036 4037
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
4038
		regs = task_pt_regs(current);
4039

4040
	if (regs) {
4041 4042 4043
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4044 4045
	}

4046
	period = max_t(u64, 10000, event->hw.sample_period);
4047 4048 4049 4050 4051
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4088
/*
4089
 * Software event: cpu wall time clock
4090 4091
 */

4092
static void cpu_clock_perf_event_update(struct perf_event *event)
4093 4094 4095 4096 4097 4098
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4099
	prev = atomic64_xchg(&event->hw.prev_count, now);
4100
	atomic64_add(now - prev, &event->count);
4101 4102
}

4103
static int cpu_clock_perf_event_enable(struct perf_event *event)
4104
{
4105
	struct hw_perf_event *hwc = &event->hw;
4106 4107 4108
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4109
	perf_swevent_start_hrtimer(event);
4110 4111 4112 4113

	return 0;
}

4114
static void cpu_clock_perf_event_disable(struct perf_event *event)
4115
{
4116
	perf_swevent_cancel_hrtimer(event);
4117
	cpu_clock_perf_event_update(event);
4118 4119
}

4120
static void cpu_clock_perf_event_read(struct perf_event *event)
4121
{
4122
	cpu_clock_perf_event_update(event);
4123 4124
}

4125
static const struct pmu perf_ops_cpu_clock = {
4126 4127 4128
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4129 4130
};

4131
/*
4132
 * Software event: task time clock
4133 4134
 */

4135
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4136
{
4137
	u64 prev;
I
Ingo Molnar 已提交
4138 4139
	s64 delta;

4140
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4141
	delta = now - prev;
4142
	atomic64_add(delta, &event->count);
4143 4144
}

4145
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4146
{
4147
	struct hw_perf_event *hwc = &event->hw;
4148 4149
	u64 now;

4150
	now = event->ctx->time;
4151

4152
	atomic64_set(&hwc->prev_count, now);
4153 4154

	perf_swevent_start_hrtimer(event);
4155 4156

	return 0;
I
Ingo Molnar 已提交
4157 4158
}

4159
static void task_clock_perf_event_disable(struct perf_event *event)
4160
{
4161
	perf_swevent_cancel_hrtimer(event);
4162
	task_clock_perf_event_update(event, event->ctx->time);
4163

4164
}
I
Ingo Molnar 已提交
4165

4166
static void task_clock_perf_event_read(struct perf_event *event)
4167
{
4168 4169 4170
	u64 time;

	if (!in_nmi()) {
4171 4172
		update_context_time(event->ctx);
		time = event->ctx->time;
4173 4174
	} else {
		u64 now = perf_clock();
4175 4176
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4177 4178
	}

4179
	task_clock_perf_event_update(event, time);
4180 4181
}

4182
static const struct pmu perf_ops_task_clock = {
4183 4184 4185
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4186 4187
};

4188
#ifdef CONFIG_EVENT_PROFILE
L
Li Zefan 已提交
4189

4190
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4191
			  int entry_size)
4192
{
4193
	struct perf_raw_record raw = {
4194
		.size = entry_size,
4195
		.data = record,
4196 4197
	};

4198
	struct perf_sample_data data = {
4199
		.addr = addr,
4200
		.raw = &raw,
4201
	};
4202

4203 4204 4205 4206
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);
4207

4208
	/* Trace events already protected against recursion */
4209
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4210
				&data, regs);
4211
}
4212
EXPORT_SYMBOL_GPL(perf_tp_event);
4213

L
Li Zefan 已提交
4214 4215 4216 4217 4218 4219 4220 4221 4222
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4223

4224
static void tp_perf_event_destroy(struct perf_event *event)
4225
{
4226
	ftrace_profile_disable(event->attr.config);
4227 4228
}

4229
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4230
{
4231 4232 4233 4234
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4235
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4236
			perf_paranoid_tracepoint_raw() &&
4237 4238 4239
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4240
	if (ftrace_profile_enable(event->attr.config))
4241 4242
		return NULL;

4243
	event->destroy = tp_perf_event_destroy;
4244 4245 4246

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4271
#else
L
Li Zefan 已提交
4272 4273 4274 4275 4276 4277 4278

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4279
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4280 4281 4282
{
	return NULL;
}
L
Li Zefan 已提交
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

#endif /* CONFIG_EVENT_PROFILE */
4294

4295 4296 4297 4298 4299 4300 4301 4302 4303
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4304 4305

	err = register_perf_hw_breakpoint(bp);
4306 4307 4308 4309 4310 4311 4312 4313
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4314
void perf_bp_event(struct perf_event *bp, void *data)
4315
{
4316 4317 4318
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4319
	sample.raw = NULL;
4320 4321 4322 4323
	sample.addr = bp->attr.bp_addr;

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4336
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4337

4338
static void sw_perf_event_destroy(struct perf_event *event)
4339
{
4340
	u64 event_id = event->attr.config;
4341

4342
	WARN_ON(event->parent);
4343

4344
	atomic_dec(&perf_swevent_enabled[event_id]);
4345 4346
}

4347
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4348
{
4349
	const struct pmu *pmu = NULL;
4350
	u64 event_id = event->attr.config;
4351

4352
	/*
4353
	 * Software events (currently) can't in general distinguish
4354 4355 4356 4357 4358
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4359
	switch (event_id) {
4360
	case PERF_COUNT_SW_CPU_CLOCK:
4361
		pmu = &perf_ops_cpu_clock;
4362

4363
		break;
4364
	case PERF_COUNT_SW_TASK_CLOCK:
4365
		/*
4366 4367
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4368
		 */
4369
		if (event->ctx->task)
4370
			pmu = &perf_ops_task_clock;
4371
		else
4372
			pmu = &perf_ops_cpu_clock;
4373

4374
		break;
4375 4376 4377 4378 4379
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4380 4381
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4382 4383 4384
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4385
		}
4386
		pmu = &perf_ops_generic;
4387
		break;
4388
	}
4389

4390
	return pmu;
4391 4392
}

T
Thomas Gleixner 已提交
4393
/*
4394
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4395
 */
4396 4397
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4398
		   int cpu,
4399 4400 4401
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4402
		   perf_overflow_handler_t overflow_handler,
4403
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4404
{
4405
	const struct pmu *pmu;
4406 4407
	struct perf_event *event;
	struct hw_perf_event *hwc;
4408
	long err;
T
Thomas Gleixner 已提交
4409

4410 4411
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4412
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4413

4414
	/*
4415
	 * Single events are their own group leaders, with an
4416 4417 4418
	 * empty sibling list:
	 */
	if (!group_leader)
4419
		group_leader = event;
4420

4421 4422
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4423

4424 4425 4426 4427
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4428

4429
	mutex_init(&event->mmap_mutex);
4430

4431 4432 4433 4434 4435 4436
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4437

4438
	event->parent		= parent_event;
4439

4440 4441
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4442

4443
	event->state		= PERF_EVENT_STATE_INACTIVE;
4444

4445 4446
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4447
	
4448
	event->overflow_handler	= overflow_handler;
4449

4450
	if (attr->disabled)
4451
		event->state = PERF_EVENT_STATE_OFF;
4452

4453
	pmu = NULL;
4454

4455
	hwc = &event->hw;
4456
	hwc->sample_period = attr->sample_period;
4457
	if (attr->freq && attr->sample_freq)
4458
		hwc->sample_period = 1;
4459
	hwc->last_period = hwc->sample_period;
4460 4461

	atomic64_set(&hwc->period_left, hwc->sample_period);
4462

4463
	/*
4464
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4465
	 */
4466
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4467 4468
		goto done;

4469
	switch (attr->type) {
4470
	case PERF_TYPE_RAW:
4471
	case PERF_TYPE_HARDWARE:
4472
	case PERF_TYPE_HW_CACHE:
4473
		pmu = hw_perf_event_init(event);
4474 4475 4476
		break;

	case PERF_TYPE_SOFTWARE:
4477
		pmu = sw_perf_event_init(event);
4478 4479 4480
		break;

	case PERF_TYPE_TRACEPOINT:
4481
		pmu = tp_perf_event_init(event);
4482
		break;
4483

4484 4485 4486 4487 4488
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4489 4490
	default:
		break;
4491
	}
4492 4493
done:
	err = 0;
4494
	if (!pmu)
4495
		err = -EINVAL;
4496 4497
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4498

4499
	if (err) {
4500 4501 4502
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4503
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4504
	}
4505

4506
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4507

4508 4509 4510 4511 4512 4513 4514 4515
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4516
	}
4517

4518
	return event;
T
Thomas Gleixner 已提交
4519 4520
}

4521 4522
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4523 4524
{
	u32 size;
4525
	int ret;
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4550 4551 4552
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4553 4554
	 */
	if (size > sizeof(*attr)) {
4555 4556 4557
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4558

4559 4560
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4561

4562
		for (; addr < end; addr++) {
4563 4564 4565 4566 4567 4568
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4569
		size = sizeof(*attr);
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

4583
	if (attr->__reserved_1 || attr->__reserved_2)
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4601
static int perf_event_set_output(struct perf_event *event, int output_fd)
4602
{
4603
	struct perf_event *output_event = NULL;
4604
	struct file *output_file = NULL;
4605
	struct perf_event *old_output;
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4619
	output_event = output_file->private_data;
4620 4621

	/* Don't chain output fds */
4622
	if (output_event->output)
4623 4624 4625
		goto out;

	/* Don't set an output fd when we already have an output channel */
4626
	if (event->data)
4627 4628 4629 4630 4631
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4632 4633 4634 4635
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4636 4637 4638 4639

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4640
		 * is still referencing this event.
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4652
/**
4653
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4654
 *
4655
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4656
 * @pid:		target pid
I
Ingo Molnar 已提交
4657
 * @cpu:		target cpu
4658
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4659
 */
4660 4661
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4662
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4663
{
4664 4665 4666 4667
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4668 4669
	struct file *group_file = NULL;
	int fput_needed = 0;
4670
	int fput_needed2 = 0;
4671
	int err;
T
Thomas Gleixner 已提交
4672

4673
	/* for future expandability... */
4674
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4675 4676
		return -EINVAL;

4677 4678 4679
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4680

4681 4682 4683 4684 4685
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4686
	if (attr.freq) {
4687
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4688 4689 4690
			return -EINVAL;
	}

4691
	/*
I
Ingo Molnar 已提交
4692 4693 4694 4695 4696 4697 4698
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4699
	 * Look up the group leader (we will attach this event to it):
4700 4701
	 */
	group_leader = NULL;
4702
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4703
		err = -EINVAL;
4704 4705
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4706
			goto err_put_context;
4707
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4708
			goto err_put_context;
4709 4710 4711

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4712 4713 4714 4715 4716 4717 4718 4719
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4720
		 */
I
Ingo Molnar 已提交
4721 4722
		if (group_leader->ctx != ctx)
			goto err_put_context;
4723 4724 4725
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4726
		if (attr.exclusive || attr.pinned)
4727
			goto err_put_context;
4728 4729
	}

4730
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4731
				     NULL, NULL, GFP_KERNEL);
4732 4733
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4734 4735
		goto err_put_context;

4736
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4737
	if (err < 0)
4738 4739
		goto err_free_put_context;

4740 4741
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4742 4743
		goto err_free_put_context;

4744
	if (flags & PERF_FLAG_FD_OUTPUT) {
4745
		err = perf_event_set_output(event, group_fd);
4746 4747
		if (err)
			goto err_fput_free_put_context;
4748 4749
	}

4750
	event->filp = event_file;
4751
	WARN_ON_ONCE(ctx->parent_ctx);
4752
	mutex_lock(&ctx->mutex);
4753
	perf_install_in_context(ctx, event, cpu);
4754
	++ctx->generation;
4755
	mutex_unlock(&ctx->mutex);
4756

4757
	event->owner = current;
4758
	get_task_struct(current);
4759 4760 4761
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4762

4763
err_fput_free_put_context:
4764
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4765

4766
err_free_put_context:
4767
	if (err < 0)
4768
		kfree(event);
T
Thomas Gleixner 已提交
4769 4770

err_put_context:
4771 4772 4773 4774
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4775

4776
	return err;
T
Thomas Gleixner 已提交
4777 4778
}

4779 4780 4781 4782 4783 4784 4785 4786 4787
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4788 4789
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
4800 4801 4802 4803
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
4804 4805

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4806
				 NULL, overflow_handler, GFP_KERNEL);
4807 4808
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
4809
		goto err_put_context;
4810
	}
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

4827 4828 4829 4830
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
4831 4832 4833
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4834
/*
4835
 * inherit a event from parent task to child task:
4836
 */
4837 4838
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4839
	      struct task_struct *parent,
4840
	      struct perf_event_context *parent_ctx,
4841
	      struct task_struct *child,
4842 4843
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4844
{
4845
	struct perf_event *child_event;
4846

4847
	/*
4848 4849
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4850 4851 4852
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4853 4854
	if (parent_event->parent)
		parent_event = parent_event->parent;
4855

4856 4857 4858
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4859
					   NULL, GFP_KERNEL);
4860 4861
	if (IS_ERR(child_event))
		return child_event;
4862
	get_ctx(child_ctx);
4863

4864
	/*
4865
	 * Make the child state follow the state of the parent event,
4866
	 * not its attr.disabled bit.  We hold the parent's mutex,
4867
	 * so we won't race with perf_event_{en, dis}able_family.
4868
	 */
4869 4870
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
4871
	else
4872
		child_event->state = PERF_EVENT_STATE_OFF;
4873

4874 4875
	if (parent_event->attr.freq)
		child_event->hw.sample_period = parent_event->hw.sample_period;
4876

4877 4878
	child_event->overflow_handler = parent_event->overflow_handler;

4879 4880 4881
	/*
	 * Link it up in the child's context:
	 */
4882
	add_event_to_ctx(child_event, child_ctx);
4883 4884 4885

	/*
	 * Get a reference to the parent filp - we will fput it
4886
	 * when the child event exits. This is safe to do because
4887 4888 4889
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
4890
	atomic_long_inc(&parent_event->filp->f_count);
4891

4892
	/*
4893
	 * Link this into the parent event's child list
4894
	 */
4895 4896 4897 4898
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4899

4900
	return child_event;
4901 4902
}

4903
static int inherit_group(struct perf_event *parent_event,
4904
	      struct task_struct *parent,
4905
	      struct perf_event_context *parent_ctx,
4906
	      struct task_struct *child,
4907
	      struct perf_event_context *child_ctx)
4908
{
4909 4910 4911
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
4912

4913
	leader = inherit_event(parent_event, parent, parent_ctx,
4914
				 child, NULL, child_ctx);
4915 4916
	if (IS_ERR(leader))
		return PTR_ERR(leader);
4917 4918
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
4919 4920 4921
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
4922
	}
4923 4924 4925
	return 0;
}

4926
static void sync_child_event(struct perf_event *child_event,
4927
			       struct task_struct *child)
4928
{
4929
	struct perf_event *parent_event = child_event->parent;
4930
	u64 child_val;
4931

4932 4933
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
4934

4935
	child_val = atomic64_read(&child_event->count);
4936 4937 4938 4939

	/*
	 * Add back the child's count to the parent's count:
	 */
4940 4941 4942 4943 4944
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
4945 4946

	/*
4947
	 * Remove this event from the parent's list
4948
	 */
4949 4950 4951 4952
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4953 4954

	/*
4955
	 * Release the parent event, if this was the last
4956 4957
	 * reference to it.
	 */
4958
	fput(parent_event->filp);
4959 4960
}

4961
static void
4962 4963
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
4964
			 struct task_struct *child)
4965
{
4966
	struct perf_event *parent_event;
4967

4968
	perf_event_remove_from_context(child_event);
4969

4970
	parent_event = child_event->parent;
4971
	/*
4972
	 * It can happen that parent exits first, and has events
4973
	 * that are still around due to the child reference. These
4974
	 * events need to be zapped - but otherwise linger.
4975
	 */
4976 4977 4978
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
4979
	}
4980 4981 4982
}

/*
4983
 * When a child task exits, feed back event values to parent events.
4984
 */
4985
void perf_event_exit_task(struct task_struct *child)
4986
{
4987 4988
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
4989
	unsigned long flags;
4990

4991 4992
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
4993
		return;
P
Peter Zijlstra 已提交
4994
	}
4995

4996
	local_irq_save(flags);
4997 4998 4999 5000 5001 5002
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5003 5004
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5005 5006 5007

	/*
	 * Take the context lock here so that if find_get_context is
5008
	 * reading child->perf_event_ctxp, we wait until it has
5009 5010
	 * incremented the context's refcount before we do put_ctx below.
	 */
5011
	raw_spin_lock(&child_ctx->lock);
5012
	child->perf_event_ctxp = NULL;
5013 5014 5015
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5016
	 * the events from it.
5017 5018
	 */
	unclone_ctx(child_ctx);
5019
	update_context_time(child_ctx);
5020
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5021 5022

	/*
5023 5024 5025
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5026
	 */
5027
	perf_event_task(child, child_ctx, 0);
5028

5029 5030 5031
	/*
	 * We can recurse on the same lock type through:
	 *
5032 5033 5034
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5035 5036 5037 5038 5039 5040
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5041

5042
again:
5043
	list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5044
				 group_entry)
5045
		__perf_event_exit_task(child_event, child_ctx, child);
5046 5047

	/*
5048
	 * If the last event was a group event, it will have appended all
5049 5050 5051
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5052
	if (!list_empty(&child_ctx->group_list))
5053
		goto again;
5054 5055 5056 5057

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5058 5059
}

5060 5061 5062 5063
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5064
void perf_event_free_task(struct task_struct *task)
5065
{
5066 5067
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5068 5069 5070 5071 5072 5073

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5074 5075
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
		struct perf_event *parent = event->parent;
5076 5077 5078 5079 5080

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
5081
		list_del_init(&event->child_list);
5082 5083 5084 5085
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

5086 5087
		list_del_event(event, ctx);
		free_event(event);
5088 5089
	}

5090
	if (!list_empty(&ctx->group_list))
5091 5092 5093 5094 5095 5096 5097
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

5098
/*
5099
 * Initialize the perf_event context in task_struct
5100
 */
5101
int perf_event_init_task(struct task_struct *child)
5102
{
5103
	struct perf_event_context *child_ctx = NULL, *parent_ctx;
5104 5105
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5106
	struct task_struct *parent = current;
5107
	int inherited_all = 1;
5108
	int ret = 0;
5109

5110
	child->perf_event_ctxp = NULL;
5111

5112 5113
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5114

5115
	if (likely(!parent->perf_event_ctxp))
5116 5117
		return 0;

5118
	/*
5119 5120
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5121
	 */
5122 5123
	parent_ctx = perf_pin_task_context(parent);

5124 5125 5126 5127 5128 5129 5130
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5131 5132 5133 5134
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5135
	mutex_lock(&parent_ctx->mutex);
5136 5137 5138 5139 5140

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5141
	list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5142

5143
		if (!event->attr.inherit) {
5144
			inherited_all = 0;
5145
			continue;
5146
		}
5147

5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
		if (!child->perf_event_ctxp) {
			/*
			 * This is executed from the parent task context, so
			 * inherit events that have been marked for cloning.
			 * First allocate and initialize a context for the
			 * child.
			 */

			child_ctx = kzalloc(sizeof(struct perf_event_context),
					    GFP_KERNEL);
			if (!child_ctx) {
				ret = -ENOMEM;
5160
				break;
5161 5162 5163 5164 5165 5166 5167
			}

			__perf_event_init_context(child_ctx, child);
			child->perf_event_ctxp = child_ctx;
			get_task_struct(child);
		}

5168
		ret = inherit_group(event, parent, parent_ctx,
5169 5170
					     child, child_ctx);
		if (ret) {
5171
			inherited_all = 0;
5172
			break;
5173 5174 5175
		}
	}

5176
	if (child_ctx && inherited_all) {
5177 5178 5179
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5180 5181
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5182
		 * because the list of events and the generation
5183
		 * count can't have changed since we took the mutex.
5184
		 */
5185 5186 5187
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5188
			child_ctx->parent_gen = parent_ctx->parent_gen;
5189 5190 5191 5192 5193
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5194 5195
	}

5196
	mutex_unlock(&parent_ctx->mutex);
5197

5198
	perf_unpin_context(parent_ctx);
5199

5200
	return ret;
5201 5202
}

5203
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5204
{
5205
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5206

5207
	cpuctx = &per_cpu(perf_cpu_context, cpu);
5208
	__perf_event_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
5209

5210
	spin_lock(&perf_resource_lock);
5211
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5212
	spin_unlock(&perf_resource_lock);
5213

5214
	hw_perf_event_setup(cpu);
T
Thomas Gleixner 已提交
5215 5216 5217
}

#ifdef CONFIG_HOTPLUG_CPU
5218
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5219 5220
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5221 5222
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5223

5224 5225
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5226
}
5227
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5228
{
5229
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5230
	struct perf_event_context *ctx = &cpuctx->ctx;
5231 5232

	mutex_lock(&ctx->mutex);
5233
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5234
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5235 5236
}
#else
5237
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5249
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5250 5251
		break;

5252 5253
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
5254
		hw_perf_event_setup_online(cpu);
5255 5256
		break;

T
Thomas Gleixner 已提交
5257 5258
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5259
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5260 5261 5262 5263 5264 5265 5266 5267 5268
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5269 5270 5271
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5272 5273
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5274
	.priority		= 20,
T
Thomas Gleixner 已提交
5275 5276
};

5277
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5278 5279 5280
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5281 5282
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5303
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5304 5305
		return -EINVAL;

5306
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5307 5308 5309
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5310
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5311 5312
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5313
		cpuctx->max_pertask = mpt;
5314
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5315
	}
5316
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5338
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5339
	perf_overcommit = val;
5340
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5367
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5368 5369
};

5370
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5371 5372 5373 5374
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5375
device_initcall(perf_event_sysfs_init);