perf_event.c 119.8 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
L
Li Zefan 已提交
31
#include <linux/ftrace_event.h>
32
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
33

34 35
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
36
/*
37
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
38 39 40
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

41
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
42 43 44
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

45 46 47 48
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
49

50
/*
51
 * perf event paranoia level:
52 53
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
54
 *   1 - disallow cpu events for unpriv
55
 *   2 - disallow kernel profiling for unpriv
56
 */
57
int sysctl_perf_event_paranoid __read_mostly = 1;
58

59 60
static inline bool perf_paranoid_tracepoint_raw(void)
{
61
	return sysctl_perf_event_paranoid > -1;
62 63
}

64 65
static inline bool perf_paranoid_cpu(void)
{
66
	return sysctl_perf_event_paranoid > 0;
67 68 69 70
}

static inline bool perf_paranoid_kernel(void)
{
71
	return sysctl_perf_event_paranoid > 1;
72 73
}

74
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75 76

/*
77
 * max perf event sample rate
78
 */
79
int sysctl_perf_event_sample_rate __read_mostly = 100000;
80

81
static atomic64_t perf_event_id;
82

T
Thomas Gleixner 已提交
83
/*
84
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
85
 */
86
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
87 88 89 90

/*
 * Architecture provided APIs - weak aliases:
 */
91
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
92
{
93
	return NULL;
T
Thomas Gleixner 已提交
94 95
}

96 97 98
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

99 100
void __weak hw_perf_event_setup(int cpu)	{ barrier(); }
void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); }
101 102

int __weak
103
hw_perf_group_sched_in(struct perf_event *group_leader,
104
	       struct perf_cpu_context *cpuctx,
105
	       struct perf_event_context *ctx, int cpu)
106 107 108
{
	return 0;
}
T
Thomas Gleixner 已提交
109

110
void __weak perf_event_print_debug(void)	{ }
111

112
static DEFINE_PER_CPU(int, perf_disable_count);
113 114 115

void __perf_disable(void)
{
116
	__get_cpu_var(perf_disable_count)++;
117 118 119 120
}

bool __perf_enable(void)
{
121
	return !--__get_cpu_var(perf_disable_count);
122 123 124 125 126 127 128 129 130 131 132 133 134 135
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

136
static void get_ctx(struct perf_event_context *ctx)
137
{
138
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 140
}

141 142
static void free_ctx(struct rcu_head *head)
{
143
	struct perf_event_context *ctx;
144

145
	ctx = container_of(head, struct perf_event_context, rcu_head);
146 147 148
	kfree(ctx);
}

149
static void put_ctx(struct perf_event_context *ctx)
150
{
151 152 153
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
154 155 156
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
157
	}
158 159
}

160
static void unclone_ctx(struct perf_event_context *ctx)
161 162 163 164 165 166 167
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

168
/*
169
 * If we inherit events we want to return the parent event id
170 171
 * to userspace.
 */
172
static u64 primary_event_id(struct perf_event *event)
173
{
174
	u64 id = event->id;
175

176 177
	if (event->parent)
		id = event->parent->id;
178 179 180 181

	return id;
}

182
/*
183
 * Get the perf_event_context for a task and lock it.
184 185 186
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
187
static struct perf_event_context *
188
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189
{
190
	struct perf_event_context *ctx;
191 192 193

	rcu_read_lock();
 retry:
194
	ctx = rcu_dereference(task->perf_event_ctxp);
195 196 197 198
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
199
		 * perf_event_task_sched_out, though the
200 201 202 203 204 205 206
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
		spin_lock_irqsave(&ctx->lock, *flags);
207
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 209 210
			spin_unlock_irqrestore(&ctx->lock, *flags);
			goto retry;
		}
211 212 213 214 215

		if (!atomic_inc_not_zero(&ctx->refcount)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			ctx = NULL;
		}
216 217 218 219 220 221 222 223 224 225
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
226
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227
{
228
	struct perf_event_context *ctx;
229 230 231 232 233 234 235 236 237 238
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
		spin_unlock_irqrestore(&ctx->lock, flags);
	}
	return ctx;
}

239
static void perf_unpin_context(struct perf_event_context *ctx)
240 241 242 243 244 245 246 247 248
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->lock, flags);
	--ctx->pin_count;
	spin_unlock_irqrestore(&ctx->lock, flags);
	put_ctx(ctx);
}

249
/*
250
 * Add a event from the lists for its context.
251 252
 * Must be called with ctx->mutex and ctx->lock held.
 */
253
static void
254
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
255
{
256
	struct perf_event *group_leader = event->group_leader;
257 258

	/*
259 260
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
261 262
	 * leader's sibling list:
	 */
263 264
	if (group_leader == event)
		list_add_tail(&event->group_entry, &ctx->group_list);
P
Peter Zijlstra 已提交
265
	else {
266
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
267 268
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
269

270 271 272
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
273
		ctx->nr_stat++;
274 275
}

276
/*
277
 * Remove a event from the lists for its context.
278
 * Must be called with ctx->mutex and ctx->lock held.
279
 */
280
static void
281
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
282
{
283
	struct perf_event *sibling, *tmp;
284

285
	if (list_empty(&event->group_entry))
286
		return;
287 288
	ctx->nr_events--;
	if (event->attr.inherit_stat)
289
		ctx->nr_stat--;
290

291 292
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
293

294 295
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
296

297
	/*
298 299
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
300 301
	 * to the context list directly:
	 */
302
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
303

304
		list_move_tail(&sibling->group_entry, &ctx->group_list);
305 306 307 308
		sibling->group_leader = sibling;
	}
}

309
static void
310
event_sched_out(struct perf_event *event,
311
		  struct perf_cpu_context *cpuctx,
312
		  struct perf_event_context *ctx)
313
{
314
	if (event->state != PERF_EVENT_STATE_ACTIVE)
315 316
		return;

317 318 319 320
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
321
	}
322 323 324
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
325

326
	if (!is_software_event(event))
327 328
		cpuctx->active_oncpu--;
	ctx->nr_active--;
329
	if (event->attr.exclusive || !cpuctx->active_oncpu)
330 331 332
		cpuctx->exclusive = 0;
}

333
static void
334
group_sched_out(struct perf_event *group_event,
335
		struct perf_cpu_context *cpuctx,
336
		struct perf_event_context *ctx)
337
{
338
	struct perf_event *event;
339

340
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
341 342
		return;

343
	event_sched_out(group_event, cpuctx, ctx);
344 345 346 347

	/*
	 * Schedule out siblings (if any):
	 */
348 349
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
350

351
	if (group_event->attr.exclusive)
352 353 354
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
355
/*
356
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
357
 *
358
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
359 360
 * remove it from the context list.
 */
361
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
362 363
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
364 365
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
366 367 368 369 370 371

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
372
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
373 374
		return;

375
	spin_lock(&ctx->lock);
376 377
	/*
	 * Protect the list operation against NMI by disabling the
378
	 * events on a global level.
379 380
	 */
	perf_disable();
T
Thomas Gleixner 已提交
381

382
	event_sched_out(event, cpuctx, ctx);
383

384
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
385 386 387

	if (!ctx->task) {
		/*
388
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
389 390 391
		 * reservation:
		 */
		cpuctx->max_pertask =
392 393
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
394 395
	}

396
	perf_enable();
397
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
398 399 400 401
}


/*
402
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
403
 *
404
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
405
 *
406
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
407
 * call when the task is on a CPU.
408
 *
409 410
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
411 412
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
413
 * When called from perf_event_exit_task, it's OK because the
414
 * context has been detached from its task.
T
Thomas Gleixner 已提交
415
 */
416
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
417
{
418
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
419 420 421 422
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
423
		 * Per cpu events are removed via an smp call and
T
Thomas Gleixner 已提交
424 425
		 * the removal is always sucessful.
		 */
426 427 428
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
429 430 431 432
		return;
	}

retry:
433 434
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
435 436 437 438 439

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
440
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
441 442 443 444 445 446
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
447
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
448 449
	 * succeed.
	 */
450 451
	if (!list_empty(&event->group_entry)) {
		list_del_event(event, ctx);
T
Thomas Gleixner 已提交
452 453 454 455
	}
	spin_unlock_irq(&ctx->lock);
}

456
static inline u64 perf_clock(void)
457
{
458
	return cpu_clock(smp_processor_id());
459 460 461 462 463
}

/*
 * Update the record of the current time in a context.
 */
464
static void update_context_time(struct perf_event_context *ctx)
465
{
466 467 468 469
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
470 471 472
}

/*
473
 * Update the total_time_enabled and total_time_running fields for a event.
474
 */
475
static void update_event_times(struct perf_event *event)
476
{
477
	struct perf_event_context *ctx = event->ctx;
478 479
	u64 run_end;

480 481
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
482 483
		return;

484
	event->total_time_enabled = ctx->time - event->tstamp_enabled;
485

486 487
	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
488 489 490
	else
		run_end = ctx->time;

491
	event->total_time_running = run_end - event->tstamp_running;
492 493 494
}

/*
495
 * Update total_time_enabled and total_time_running for all events in a group.
496
 */
497
static void update_group_times(struct perf_event *leader)
498
{
499
	struct perf_event *event;
500

501 502 503
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
504 505
}

506
/*
507
 * Cross CPU call to disable a performance event
508
 */
509
static void __perf_event_disable(void *info)
510
{
511
	struct perf_event *event = info;
512
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
513
	struct perf_event_context *ctx = event->ctx;
514 515

	/*
516 517
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
518
	 */
519
	if (ctx->task && cpuctx->task_ctx != ctx)
520 521
		return;

522
	spin_lock(&ctx->lock);
523 524

	/*
525
	 * If the event is on, turn it off.
526 527
	 * If it is in error state, leave it in error state.
	 */
528
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
529
		update_context_time(ctx);
530 531 532
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
533
		else
534 535
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
536 537
	}

538
	spin_unlock(&ctx->lock);
539 540 541
}

/*
542
 * Disable a event.
543
 *
544 545
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
546
 * remains valid.  This condition is satisifed when called through
547 548 549 550
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
551
 * is the current context on this CPU and preemption is disabled,
552
 * hence we can't get into perf_event_task_sched_out for this context.
553
 */
554
static void perf_event_disable(struct perf_event *event)
555
{
556
	struct perf_event_context *ctx = event->ctx;
557 558 559 560
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
561
		 * Disable the event on the cpu that it's on
562
		 */
563 564
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
565 566 567 568
		return;
	}

 retry:
569
	task_oncpu_function_call(task, __perf_event_disable, event);
570 571 572

	spin_lock_irq(&ctx->lock);
	/*
573
	 * If the event is still active, we need to retry the cross-call.
574
	 */
575
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
576 577 578 579 580 581 582 583
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
584 585 586
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
587
	}
588 589 590 591

	spin_unlock_irq(&ctx->lock);
}

592
static int
593
event_sched_in(struct perf_event *event,
594
		 struct perf_cpu_context *cpuctx,
595
		 struct perf_event_context *ctx,
596 597
		 int cpu)
{
598
	if (event->state <= PERF_EVENT_STATE_OFF)
599 600
		return 0;

601 602
	event->state = PERF_EVENT_STATE_ACTIVE;
	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
603 604 605 606 607
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

608 609 610
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
611 612 613
		return -EAGAIN;
	}

614
	event->tstamp_running += ctx->time - event->tstamp_stopped;
615

616
	if (!is_software_event(event))
617
		cpuctx->active_oncpu++;
618 619
	ctx->nr_active++;

620
	if (event->attr.exclusive)
621 622
		cpuctx->exclusive = 1;

623 624 625
	return 0;
}

626
static int
627
group_sched_in(struct perf_event *group_event,
628
	       struct perf_cpu_context *cpuctx,
629
	       struct perf_event_context *ctx,
630 631
	       int cpu)
{
632
	struct perf_event *event, *partial_group;
633 634
	int ret;

635
	if (group_event->state == PERF_EVENT_STATE_OFF)
636 637
		return 0;

638
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
639 640 641
	if (ret)
		return ret < 0 ? ret : 0;

642
	if (event_sched_in(group_event, cpuctx, ctx, cpu))
643 644 645 646 647
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
648 649 650
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event_sched_in(event, cpuctx, ctx, cpu)) {
			partial_group = event;
651 652 653 654 655 656 657 658 659 660 661
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
662 663
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
664
			break;
665
		event_sched_out(event, cpuctx, ctx);
666
	}
667
	event_sched_out(group_event, cpuctx, ctx);
668 669 670 671

	return -EAGAIN;
}

672
/*
673 674
 * Return 1 for a group consisting entirely of software events,
 * 0 if the group contains any hardware events.
675
 */
676
static int is_software_only_group(struct perf_event *leader)
677
{
678
	struct perf_event *event;
679

680
	if (!is_software_event(leader))
681
		return 0;
P
Peter Zijlstra 已提交
682

683 684
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		if (!is_software_event(event))
685
			return 0;
P
Peter Zijlstra 已提交
686

687 688 689 690
	return 1;
}

/*
691
 * Work out whether we can put this event group on the CPU now.
692
 */
693
static int group_can_go_on(struct perf_event *event,
694 695 696 697
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
698
	 * Groups consisting entirely of software events can always go on.
699
	 */
700
	if (is_software_only_group(event))
701 702 703
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
704
	 * events can go on.
705 706 707 708 709
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
710
	 * events on the CPU, it can't go on.
711
	 */
712
	if (event->attr.exclusive && cpuctx->active_oncpu)
713 714 715 716 717 718 719 720
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

721 722
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
723
{
724 725 726 727
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
728 729
}

T
Thomas Gleixner 已提交
730
/*
731
 * Cross CPU call to install and enable a performance event
732 733
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
734 735 736 737
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
738 739 740
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
T
Thomas Gleixner 已提交
741
	int cpu = smp_processor_id();
742
	int err;
T
Thomas Gleixner 已提交
743 744 745 746 747

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
748
	 * Or possibly this is the right context but it isn't
749
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
750
	 */
751
	if (ctx->task && cpuctx->task_ctx != ctx) {
752
		if (cpuctx->task_ctx || ctx->task != current)
753 754 755
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
756

757
	spin_lock(&ctx->lock);
758
	ctx->is_active = 1;
759
	update_context_time(ctx);
T
Thomas Gleixner 已提交
760 761 762

	/*
	 * Protect the list operation against NMI by disabling the
763
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
764
	 */
765
	perf_disable();
T
Thomas Gleixner 已提交
766

767
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
768

769
	/*
770
	 * Don't put the event on if it is disabled or if
771 772
	 * it is in a group and the group isn't on.
	 */
773 774
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
775 776
		goto unlock;

777
	/*
778 779 780
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
781
	 */
782
	if (!group_can_go_on(event, cpuctx, 1))
783 784
		err = -EEXIST;
	else
785
		err = event_sched_in(event, cpuctx, ctx, cpu);
786

787 788
	if (err) {
		/*
789
		 * This event couldn't go on.  If it is in a group
790
		 * then we have to pull the whole group off.
791
		 * If the event group is pinned then put it in error state.
792
		 */
793
		if (leader != event)
794
			group_sched_out(leader, cpuctx, ctx);
795
		if (leader->attr.pinned) {
796
			update_group_times(leader);
797
			leader->state = PERF_EVENT_STATE_ERROR;
798
		}
799
	}
T
Thomas Gleixner 已提交
800

801
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
802 803
		cpuctx->max_pertask--;

804
 unlock:
805
	perf_enable();
806

807
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
808 809 810
}

/*
811
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
812
 *
813 814
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
815
 *
816
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
817 818
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
819 820
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
821 822
 */
static void
823 824
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
825 826 827 828 829 830
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
831
		 * Per cpu events are installed via an smp call and
T
Thomas Gleixner 已提交
832 833 834
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
835
					 event, 1);
T
Thomas Gleixner 已提交
836 837 838 839 840
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
841
				 event);
T
Thomas Gleixner 已提交
842 843 844 845 846

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
847
	if (ctx->is_active && list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
848 849 850 851 852 853
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
854
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
855 856
	 * succeed.
	 */
857 858
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
859 860 861
	spin_unlock_irq(&ctx->lock);
}

862
/*
863
 * Put a event into inactive state and update time fields.
864 865 866 867 868 869
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
870 871
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
872
{
873
	struct perf_event *sub;
874

875 876 877 878
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
879 880 881 882
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

883
/*
884
 * Cross CPU call to enable a performance event
885
 */
886
static void __perf_event_enable(void *info)
887
{
888
	struct perf_event *event = info;
889
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
890 891
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
892
	int err;
893

894
	/*
895 896
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
897
	 */
898
	if (ctx->task && cpuctx->task_ctx != ctx) {
899
		if (cpuctx->task_ctx || ctx->task != current)
900 901 902
			return;
		cpuctx->task_ctx = ctx;
	}
903

904
	spin_lock(&ctx->lock);
905
	ctx->is_active = 1;
906
	update_context_time(ctx);
907

908
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
909
		goto unlock;
910
	__perf_event_mark_enabled(event, ctx);
911 912

	/*
913
	 * If the event is in a group and isn't the group leader,
914
	 * then don't put it on unless the group is on.
915
	 */
916
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
917
		goto unlock;
918

919
	if (!group_can_go_on(event, cpuctx, 1)) {
920
		err = -EEXIST;
921
	} else {
922
		perf_disable();
923 924
		if (event == leader)
			err = group_sched_in(event, cpuctx, ctx,
925 926
					     smp_processor_id());
		else
927
			err = event_sched_in(event, cpuctx, ctx,
928
					       smp_processor_id());
929
		perf_enable();
930
	}
931 932 933

	if (err) {
		/*
934
		 * If this event can't go on and it's part of a
935 936
		 * group, then the whole group has to come off.
		 */
937
		if (leader != event)
938
			group_sched_out(leader, cpuctx, ctx);
939
		if (leader->attr.pinned) {
940
			update_group_times(leader);
941
			leader->state = PERF_EVENT_STATE_ERROR;
942
		}
943 944 945
	}

 unlock:
946
	spin_unlock(&ctx->lock);
947 948 949
}

/*
950
 * Enable a event.
951
 *
952 953
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
954
 * remains valid.  This condition is satisfied when called through
955 956
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
957
 */
958
static void perf_event_enable(struct perf_event *event)
959
{
960
	struct perf_event_context *ctx = event->ctx;
961 962 963 964
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
965
		 * Enable the event on the cpu that it's on
966
		 */
967 968
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
969 970 971 972
		return;
	}

	spin_lock_irq(&ctx->lock);
973
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
974 975 976
		goto out;

	/*
977 978
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
979 980 981 982
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
983 984
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
985 986 987

 retry:
	spin_unlock_irq(&ctx->lock);
988
	task_oncpu_function_call(task, __perf_event_enable, event);
989 990 991 992

	spin_lock_irq(&ctx->lock);

	/*
993
	 * If the context is active and the event is still off,
994 995
	 * we need to retry the cross-call.
	 */
996
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997 998 999 1000 1001 1002
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1003 1004
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1005

1006 1007 1008 1009
 out:
	spin_unlock_irq(&ctx->lock);
}

1010
static int perf_event_refresh(struct perf_event *event, int refresh)
1011
{
1012
	/*
1013
	 * not supported on inherited events
1014
	 */
1015
	if (event->attr.inherit)
1016 1017
		return -EINVAL;

1018 1019
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1020 1021

	return 0;
1022 1023
}

1024
void __perf_event_sched_out(struct perf_event_context *ctx,
1025 1026
			      struct perf_cpu_context *cpuctx)
{
1027
	struct perf_event *event;
1028

1029 1030
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
1031
	if (likely(!ctx->nr_events))
1032
		goto out;
1033
	update_context_time(ctx);
1034

1035
	perf_disable();
1036 1037 1038 1039
	if (ctx->nr_active)
		list_for_each_entry(event, &ctx->group_list, group_entry)
			group_sched_out(event, cpuctx, ctx);

1040
	perf_enable();
1041
 out:
1042 1043 1044
	spin_unlock(&ctx->lock);
}

1045 1046 1047
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1048 1049 1050 1051
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1052
 * in them directly with an fd; we can only enable/disable all
1053
 * events via prctl, or enable/disable all events in a family
1054 1055
 * via ioctl, which will have the same effect on both contexts.
 */
1056 1057
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1058 1059
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1060
		&& ctx1->parent_gen == ctx2->parent_gen
1061
		&& !ctx1->pin_count && !ctx2->pin_count;
1062 1063
}

1064 1065
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1066 1067 1068
{
	u64 value;

1069
	if (!event->attr.inherit_stat)
1070 1071 1072
		return;

	/*
1073
	 * Update the event value, we cannot use perf_event_read()
1074 1075
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1076
	 * we know the event must be on the current CPU, therefore we
1077 1078
	 * don't need to use it.
	 */
1079 1080
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1081 1082
		event->pmu->read(event);
		/* fall-through */
1083

1084 1085
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1086 1087 1088 1089 1090 1091 1092
		break;

	default:
		break;
	}

	/*
1093
	 * In order to keep per-task stats reliable we need to flip the event
1094 1095
	 * values when we flip the contexts.
	 */
1096 1097 1098
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1099

1100 1101
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1102

1103
	/*
1104
	 * Since we swizzled the values, update the user visible data too.
1105
	 */
1106 1107
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1108 1109 1110 1111 1112
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1113 1114
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1115
{
1116
	struct perf_event *event, *next_event;
1117 1118 1119 1120

	if (!ctx->nr_stat)
		return;

1121 1122
	update_context_time(ctx);

1123 1124
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1125

1126 1127
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1128

1129 1130
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1131

1132
		__perf_event_sync_stat(event, next_event);
1133

1134 1135
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1136 1137 1138
	}
}

T
Thomas Gleixner 已提交
1139
/*
1140
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1141 1142
 * with interrupts disabled.
 *
1143
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1144
 *
I
Ingo Molnar 已提交
1145
 * This does not protect us against NMI, but disable()
1146 1147 1148
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1149
 */
1150
void perf_event_task_sched_out(struct task_struct *task,
1151
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
1152 1153
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1154 1155 1156
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1157
	struct pt_regs *regs;
1158
	int do_switch = 1;
T
Thomas Gleixner 已提交
1159

1160
	regs = task_pt_regs(task);
1161
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1162

1163
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1164 1165
		return;

1166 1167
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1168
	next_ctx = next->perf_event_ctxp;
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
1183 1184
			/*
			 * XXX do we need a memory barrier of sorts
1185
			 * wrt to rcu_dereference() of perf_event_ctxp
1186
			 */
1187 1188
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1189 1190 1191
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1192

1193
			perf_event_sync_stat(ctx, next_ctx);
1194 1195 1196
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
1197
	}
1198
	rcu_read_unlock();
1199

1200
	if (do_switch) {
1201
		__perf_event_sched_out(ctx, cpuctx);
1202 1203
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1204 1205
}

1206 1207 1208
/*
 * Called with IRQs disabled
 */
1209
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1210 1211 1212
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1213 1214
	if (!cpuctx->task_ctx)
		return;
1215 1216 1217 1218

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1219
	__perf_event_sched_out(ctx, cpuctx);
1220 1221 1222
	cpuctx->task_ctx = NULL;
}

1223 1224 1225
/*
 * Called with IRQs disabled
 */
1226
static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1227
{
1228
	__perf_event_sched_out(&cpuctx->ctx, cpuctx);
1229 1230
}

1231
static void
1232
__perf_event_sched_in(struct perf_event_context *ctx,
1233
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1234
{
1235
	struct perf_event *event;
1236
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1237

1238 1239
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
1240
	if (likely(!ctx->nr_events))
1241
		goto out;
T
Thomas Gleixner 已提交
1242

1243
	ctx->timestamp = perf_clock();
1244

1245
	perf_disable();
1246 1247 1248 1249 1250

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
1251 1252 1253
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    !event->attr.pinned)
1254
			continue;
1255
		if (event->cpu != -1 && event->cpu != cpu)
1256 1257
			continue;

1258 1259
		if (group_can_go_on(event, cpuctx, 1))
			group_sched_in(event, cpuctx, ctx, cpu);
1260 1261 1262 1263 1264

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1265 1266 1267
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1268
		}
1269 1270
	}

1271
	list_for_each_entry(event, &ctx->group_list, group_entry) {
1272
		/*
1273 1274
		 * Ignore events in OFF or ERROR state, and
		 * ignore pinned events since we did them already.
1275
		 */
1276 1277
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    event->attr.pinned)
1278 1279
			continue;

1280 1281
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1282
		 * of events:
1283
		 */
1284
		if (event->cpu != -1 && event->cpu != cpu)
T
Thomas Gleixner 已提交
1285 1286
			continue;

1287 1288
		if (group_can_go_on(event, cpuctx, can_add_hw))
			if (group_sched_in(event, cpuctx, ctx, cpu))
1289
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1290
	}
1291
	perf_enable();
1292
 out:
T
Thomas Gleixner 已提交
1293
	spin_unlock(&ctx->lock);
1294 1295 1296
}

/*
1297
 * Called from scheduler to add the events of the current task
1298 1299
 * with interrupts disabled.
 *
1300
 * We restore the event value and then enable it.
1301 1302
 *
 * This does not protect us against NMI, but enable()
1303 1304 1305
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1306
 */
1307
void perf_event_task_sched_in(struct task_struct *task, int cpu)
1308 1309
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1310
	struct perf_event_context *ctx = task->perf_event_ctxp;
1311

1312 1313
	if (likely(!ctx))
		return;
1314 1315
	if (cpuctx->task_ctx == ctx)
		return;
1316
	__perf_event_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1317 1318 1319
	cpuctx->task_ctx = ctx;
}

1320
static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1321
{
1322
	struct perf_event_context *ctx = &cpuctx->ctx;
1323

1324
	__perf_event_sched_in(ctx, cpuctx, cpu);
1325 1326
}

1327 1328
#define MAX_INTERRUPTS (~0ULL)

1329
static void perf_log_throttle(struct perf_event *event, int enable);
1330

1331
static void perf_adjust_period(struct perf_event *event, u64 events)
1332
{
1333
	struct hw_perf_event *hwc = &event->hw;
1334 1335 1336 1337
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
1338
	period = div64_u64(events, event->attr.sample_freq);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
}

1351
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1352
{
1353 1354
	struct perf_event *event;
	struct hw_perf_event *hwc;
1355
	u64 interrupts, freq;
1356 1357

	spin_lock(&ctx->lock);
1358
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1359
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1360 1361
			continue;

1362
		hwc = &event->hw;
1363 1364 1365

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1366

1367
		/*
1368
		 * unthrottle events on the tick
1369
		 */
1370
		if (interrupts == MAX_INTERRUPTS) {
1371 1372 1373
			perf_log_throttle(event, 1);
			event->pmu->unthrottle(event);
			interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1374 1375
		}

1376
		if (!event->attr.freq || !event->attr.sample_freq)
1377 1378
			continue;

1379 1380 1381
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1382 1383
		if (event->attr.sample_freq < HZ) {
			freq = event->attr.sample_freq;
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1397
		perf_adjust_period(event, freq * interrupts);
1398

1399 1400 1401 1402 1403 1404 1405
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
1406
			event->pmu->disable(event);
1407
			atomic64_set(&hwc->period_left, 0);
1408
			event->pmu->enable(event);
1409 1410
			perf_enable();
		}
1411 1412 1413 1414
	}
	spin_unlock(&ctx->lock);
}

1415
/*
1416
 * Round-robin a context's events:
1417
 */
1418
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1419
{
1420
	struct perf_event *event;
T
Thomas Gleixner 已提交
1421

1422
	if (!ctx->nr_events)
T
Thomas Gleixner 已提交
1423 1424 1425 1426
		return;

	spin_lock(&ctx->lock);
	/*
1427
	 * Rotate the first entry last (works just fine for group events too):
T
Thomas Gleixner 已提交
1428
	 */
1429
	perf_disable();
1430 1431
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		list_move_tail(&event->group_entry, &ctx->group_list);
T
Thomas Gleixner 已提交
1432 1433
		break;
	}
1434
	perf_enable();
T
Thomas Gleixner 已提交
1435 1436

	spin_unlock(&ctx->lock);
1437 1438
}

1439
void perf_event_task_tick(struct task_struct *curr, int cpu)
1440
{
1441
	struct perf_cpu_context *cpuctx;
1442
	struct perf_event_context *ctx;
1443

1444
	if (!atomic_read(&nr_events))
1445 1446 1447
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1448
	ctx = curr->perf_event_ctxp;
1449

1450
	perf_ctx_adjust_freq(&cpuctx->ctx);
1451
	if (ctx)
1452
		perf_ctx_adjust_freq(ctx);
1453

1454
	perf_event_cpu_sched_out(cpuctx);
1455
	if (ctx)
1456
		__perf_event_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1457

1458
	rotate_ctx(&cpuctx->ctx);
1459 1460
	if (ctx)
		rotate_ctx(ctx);
1461

1462
	perf_event_cpu_sched_in(cpuctx, cpu);
1463
	if (ctx)
1464
		perf_event_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1465 1466
}

1467
/*
1468
 * Enable all of a task's events that have been marked enable-on-exec.
1469 1470
 * This expects task == current.
 */
1471
static void perf_event_enable_on_exec(struct task_struct *task)
1472
{
1473 1474
	struct perf_event_context *ctx;
	struct perf_event *event;
1475 1476 1477 1478
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
1479 1480
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1481 1482
		goto out;

1483
	__perf_event_task_sched_out(ctx);
1484 1485 1486

	spin_lock(&ctx->lock);

1487 1488
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (!event->attr.enable_on_exec)
1489
			continue;
1490 1491
		event->attr.enable_on_exec = 0;
		if (event->state >= PERF_EVENT_STATE_INACTIVE)
1492
			continue;
1493
		__perf_event_mark_enabled(event, ctx);
1494 1495 1496 1497
		enabled = 1;
	}

	/*
1498
	 * Unclone this context if we enabled any event.
1499
	 */
1500 1501
	if (enabled)
		unclone_ctx(ctx);
1502 1503 1504

	spin_unlock(&ctx->lock);

1505
	perf_event_task_sched_in(task, smp_processor_id());
1506 1507 1508 1509
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1510
/*
1511
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1512
 */
1513
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1514
{
1515
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1516 1517
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1518

1519 1520 1521 1522
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1523 1524
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1525 1526 1527 1528
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

P
Peter Zijlstra 已提交
1529
	update_context_time(ctx);
1530
	update_event_times(event);
P
Peter Zijlstra 已提交
1531
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1532 1533
}

1534
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1535 1536
{
	/*
1537 1538
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1539
	 */
1540 1541 1542 1543 1544
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_event_times(event);
T
Thomas Gleixner 已提交
1545 1546
	}

1547
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1548 1549
}

1550
/*
1551
 * Initialize the perf_event context in a task_struct:
1552 1553
 */
static void
1554
__perf_event_init_context(struct perf_event_context *ctx,
1555 1556 1557 1558 1559
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
1560
	INIT_LIST_HEAD(&ctx->group_list);
1561 1562 1563 1564 1565
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1566
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1567
{
1568
	struct perf_event_context *ctx;
1569
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1570
	struct task_struct *task;
1571
	unsigned long flags;
1572
	int err;
T
Thomas Gleixner 已提交
1573 1574

	/*
1575
	 * If cpu is not a wildcard then this is a percpu event:
T
Thomas Gleixner 已提交
1576 1577
	 */
	if (cpu != -1) {
1578
		/* Must be root to operate on a CPU event: */
1579
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1580 1581 1582 1583 1584 1585
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
1586
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1587 1588 1589 1590 1591 1592 1593 1594
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1595
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1612
	/*
1613
	 * Can't attach events to a dying task.
1614 1615 1616 1617 1618
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1619
	/* Reuse ptrace permission checks for now. */
1620 1621 1622 1623 1624
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1625
	ctx = perf_lock_task_context(task, &flags);
1626
	if (ctx) {
1627
		unclone_ctx(ctx);
1628
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1629 1630
	}

1631
	if (!ctx) {
1632
		ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1633 1634 1635
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1636
		__perf_event_init_context(ctx, task);
1637
		get_ctx(ctx);
1638
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1639 1640 1641 1642 1643
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1644
			goto retry;
1645
		}
1646
		get_task_struct(task);
1647 1648
	}

1649
	put_task_struct(task);
T
Thomas Gleixner 已提交
1650
	return ctx;
1651 1652 1653 1654

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1655 1656
}

L
Li Zefan 已提交
1657 1658
static void perf_event_free_filter(struct perf_event *event);

1659
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1660
{
1661
	struct perf_event *event;
P
Peter Zijlstra 已提交
1662

1663 1664 1665
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1666
	perf_event_free_filter(event);
1667
	kfree(event);
P
Peter Zijlstra 已提交
1668 1669
}

1670
static void perf_pending_sync(struct perf_event *event);
1671

1672
static void free_event(struct perf_event *event)
1673
{
1674
	perf_pending_sync(event);
1675

1676 1677 1678 1679 1680 1681 1682 1683
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1684
	}
1685

1686 1687 1688
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1689 1690
	}

1691 1692
	if (event->destroy)
		event->destroy(event);
1693

1694 1695
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1696 1697
}

T
Thomas Gleixner 已提交
1698 1699 1700 1701 1702
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
1703 1704
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1705 1706 1707

	file->private_data = NULL;

1708
	WARN_ON_ONCE(ctx->parent_ctx);
1709
	mutex_lock(&ctx->mutex);
1710
	perf_event_remove_from_context(event);
1711
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1712

1713 1714 1715 1716
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1717

1718
	free_event(event);
T
Thomas Gleixner 已提交
1719 1720 1721 1722

	return 0;
}

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
int perf_event_release_kernel(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_event_remove_from_context(event);
	mutex_unlock(&ctx->mutex);

	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);

	free_event(event);

	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

1743
static int perf_event_read_size(struct perf_event *event)
1744 1745 1746 1747 1748
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1749
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1750 1751
		size += sizeof(u64);

1752
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1753 1754
		size += sizeof(u64);

1755
	if (event->attr.read_format & PERF_FORMAT_ID)
1756 1757
		entry += sizeof(u64);

1758 1759
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1760 1761 1762 1763 1764 1765 1766 1767
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1768
u64 perf_event_read_value(struct perf_event *event)
1769
{
1770
	struct perf_event *child;
1771 1772
	u64 total = 0;

1773 1774 1775
	total += perf_event_read(event);
	list_for_each_entry(child, &event->child_list, child_list)
		total += perf_event_read(child);
1776 1777 1778

	return total;
}
1779
EXPORT_SYMBOL_GPL(perf_event_read_value);
1780

1781
static int perf_event_read_group(struct perf_event *event,
1782 1783
				   u64 read_format, char __user *buf)
{
1784
	struct perf_event *leader = event->group_leader, *sub;
1785 1786 1787 1788 1789
	int n = 0, size = 0, ret = 0;
	u64 values[5];
	u64 count;

	count = perf_event_read_value(leader);
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799

	values[n++] = 1 + leader->nr_siblings;
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] = leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] = leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}
1800 1801 1802
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1803 1804 1805 1806 1807 1808

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
		return -EFAULT;

1809
	ret += size;
1810

1811
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1812
		n = 0;
1813

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
		values[n++] = perf_event_read_value(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

		if (copy_to_user(buf + size, values, size))
			return -EFAULT;

		ret += size;
1824 1825
	}

1826
	return ret;
1827 1828
}

1829
static int perf_event_read_one(struct perf_event *event,
1830 1831 1832 1833 1834
				 u64 read_format, char __user *buf)
{
	u64 values[4];
	int n = 0;

1835
	values[n++] = perf_event_read_value(event);
1836
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1837 1838
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
1839 1840
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1841 1842
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
1843 1844
	}
	if (read_format & PERF_FORMAT_ID)
1845
		values[n++] = primary_event_id(event);
1846 1847 1848 1849 1850 1851 1852

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
1853
/*
1854
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
1855 1856
 */
static ssize_t
1857
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
1858
{
1859
	u64 read_format = event->attr.read_format;
1860
	int ret;
T
Thomas Gleixner 已提交
1861

1862
	/*
1863
	 * Return end-of-file for a read on a event that is in
1864 1865 1866
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
1867
	if (event->state == PERF_EVENT_STATE_ERROR)
1868 1869
		return 0;

1870
	if (count < perf_event_read_size(event))
1871 1872
		return -ENOSPC;

1873 1874
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
1875
	if (read_format & PERF_FORMAT_GROUP)
1876
		ret = perf_event_read_group(event, read_format, buf);
1877
	else
1878 1879
		ret = perf_event_read_one(event, read_format, buf);
	mutex_unlock(&event->child_mutex);
T
Thomas Gleixner 已提交
1880

1881
	return ret;
T
Thomas Gleixner 已提交
1882 1883 1884 1885 1886
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
1887
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
1888

1889
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
1890 1891 1892 1893
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
1894
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
1895
	struct perf_mmap_data *data;
1896
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1897 1898

	rcu_read_lock();
1899
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
1900
	if (data)
1901
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1902
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1903

1904
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
1905 1906 1907 1908

	return events;
}

1909
static void perf_event_reset(struct perf_event *event)
1910
{
1911 1912 1913
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1914 1915
}

1916
/*
1917 1918 1919 1920
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
1921
 */
1922 1923
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1924
{
1925
	struct perf_event *child;
P
Peter Zijlstra 已提交
1926

1927 1928 1929 1930
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
1931
		func(child);
1932
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
1933 1934
}

1935 1936
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1937
{
1938 1939
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
1940

1941 1942
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
1943
	event = event->group_leader;
1944

1945 1946 1947 1948
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
1949
	mutex_unlock(&ctx->mutex);
1950 1951
}

1952
static int perf_event_period(struct perf_event *event, u64 __user *arg)
1953
{
1954
	struct perf_event_context *ctx = event->ctx;
1955 1956 1957 1958
	unsigned long size;
	int ret = 0;
	u64 value;

1959
	if (!event->attr.sample_period)
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	spin_lock_irq(&ctx->lock);
1970 1971
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
1972 1973 1974 1975
			ret = -EINVAL;
			goto unlock;
		}

1976
		event->attr.sample_freq = value;
1977
	} else {
1978 1979
		event->attr.sample_period = value;
		event->hw.sample_period = value;
1980 1981 1982 1983 1984 1985 1986
	}
unlock:
	spin_unlock_irq(&ctx->lock);

	return ret;
}

L
Li Zefan 已提交
1987 1988
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
1989

1990 1991
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
1992 1993
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
1994
	u32 flags = arg;
1995 1996

	switch (cmd) {
1997 1998
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
1999
		break;
2000 2001
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2002
		break;
2003 2004
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2005
		break;
P
Peter Zijlstra 已提交
2006

2007 2008
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2009

2010 2011
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2012

2013 2014
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2015

L
Li Zefan 已提交
2016 2017 2018
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2019
	default:
P
Peter Zijlstra 已提交
2020
		return -ENOTTY;
2021
	}
P
Peter Zijlstra 已提交
2022 2023

	if (flags & PERF_IOC_FLAG_GROUP)
2024
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2025
	else
2026
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2027 2028

	return 0;
2029 2030
}

2031
int perf_event_task_enable(void)
2032
{
2033
	struct perf_event *event;
2034

2035 2036 2037 2038
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2039 2040 2041 2042

	return 0;
}

2043
int perf_event_task_disable(void)
2044
{
2045
	struct perf_event *event;
2046

2047 2048 2049 2050
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2051 2052 2053 2054

	return 0;
}

2055 2056
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2057 2058
#endif

2059
static int perf_event_index(struct perf_event *event)
2060
{
2061
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2062 2063
		return 0;

2064
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2065 2066
}

2067 2068 2069 2070 2071
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2072
void perf_event_update_userpage(struct perf_event *event)
2073
{
2074
	struct perf_event_mmap_page *userpg;
2075
	struct perf_mmap_data *data;
2076 2077

	rcu_read_lock();
2078
	data = rcu_dereference(event->data);
2079 2080 2081 2082
	if (!data)
		goto unlock;

	userpg = data->user_page;
2083

2084 2085 2086 2087 2088
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2089
	++userpg->lock;
2090
	barrier();
2091 2092 2093 2094
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2095

2096 2097
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2098

2099 2100
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2101

2102
	barrier();
2103
	++userpg->lock;
2104
	preempt_enable();
2105
unlock:
2106
	rcu_read_unlock();
2107 2108
}

2109
static unsigned long perf_data_size(struct perf_mmap_data *data)
2110
{
2111 2112
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2113

2114
#ifndef CONFIG_PERF_USE_VMALLOC
2115

2116 2117 2118
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2119

2120 2121 2122 2123 2124
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2125

2126 2127
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2128

2129
	return virt_to_page(data->data_pages[pgoff - 1]);
2130 2131
}

2132 2133
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2134 2135 2136 2137 2138
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2139
	WARN_ON(atomic_read(&event->mmap_count));
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2158
	data->data_order = 0;
2159 2160
	data->nr_pages = nr_pages;

2161
	return data;
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2173
	return NULL;
2174 2175
}

2176 2177
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2178
	struct page *page = virt_to_page((void *)addr);
2179 2180 2181 2182 2183

	page->mapping = NULL;
	__free_page(page);
}

2184
static void perf_mmap_data_free(struct perf_mmap_data *data)
2185 2186 2187
{
	int i;

2188
	perf_mmap_free_page((unsigned long)data->user_page);
2189
	for (i = 0; i < data->nr_pages; i++)
2190
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2246

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
		data->watermark = max_t(long, PAGE_SIZE, max_size / 2);


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2336 2337 2338
	kfree(data);
}

2339
static void perf_mmap_data_release(struct perf_event *event)
2340
{
2341
	struct perf_mmap_data *data = event->data;
2342

2343
	WARN_ON(atomic_read(&event->mmap_count));
2344

2345
	rcu_assign_pointer(event->data, NULL);
2346
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2347 2348 2349 2350
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2351
	struct perf_event *event = vma->vm_file->private_data;
2352

2353
	atomic_inc(&event->mmap_count);
2354 2355 2356 2357
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2358
	struct perf_event *event = vma->vm_file->private_data;
2359

2360 2361
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2362
		unsigned long size = perf_data_size(event->data);
2363 2364
		struct user_struct *user = current_user();

2365
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2366
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2367
		perf_mmap_data_release(event);
2368
		mutex_unlock(&event->mmap_mutex);
2369
	}
2370 2371
}

2372
static const struct vm_operations_struct perf_mmap_vmops = {
2373 2374 2375 2376
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2377 2378 2379 2380
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2381
	struct perf_event *event = file->private_data;
2382
	unsigned long user_locked, user_lock_limit;
2383
	struct user_struct *user = current_user();
2384
	unsigned long locked, lock_limit;
2385
	struct perf_mmap_data *data;
2386 2387
	unsigned long vma_size;
	unsigned long nr_pages;
2388
	long user_extra, extra;
2389
	int ret = 0;
2390

2391
	if (!(vma->vm_flags & VM_SHARED))
2392
		return -EINVAL;
2393 2394 2395 2396

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2397 2398 2399 2400 2401
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2402 2403
		return -EINVAL;

2404
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2405 2406
		return -EINVAL;

2407 2408
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2409

2410 2411 2412
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2413 2414 2415 2416
		ret = -EINVAL;
		goto unlock;
	}

2417 2418
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2419 2420 2421 2422
			ret = -EINVAL;
		goto unlock;
	}

2423
	user_extra = nr_pages + 1;
2424
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2425 2426 2427 2428 2429 2430

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2431
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2432

2433 2434 2435
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2436 2437 2438

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2439
	locked = vma->vm_mm->locked_vm + extra;
2440

2441 2442
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2443 2444 2445
		ret = -EPERM;
		goto unlock;
	}
2446

2447
	WARN_ON(event->data);
2448 2449 2450 2451

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2452 2453
		goto unlock;

2454 2455 2456
	ret = 0;
	perf_mmap_data_init(event, data);

2457
	atomic_set(&event->mmap_count, 1);
2458
	atomic_long_add(user_extra, &user->locked_vm);
2459
	vma->vm_mm->locked_vm += extra;
2460
	event->data->nr_locked = extra;
2461
	if (vma->vm_flags & VM_WRITE)
2462
		event->data->writable = 1;
2463

2464
unlock:
2465
	mutex_unlock(&event->mmap_mutex);
2466 2467 2468

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2469 2470

	return ret;
2471 2472
}

P
Peter Zijlstra 已提交
2473 2474 2475
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2476
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2477 2478 2479
	int retval;

	mutex_lock(&inode->i_mutex);
2480
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2481 2482 2483 2484 2485 2486 2487 2488
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2489 2490 2491 2492
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2493 2494
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2495
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2496
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2497 2498
};

2499
/*
2500
 * Perf event wakeup
2501 2502 2503 2504 2505
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2506
void perf_event_wakeup(struct perf_event *event)
2507
{
2508
	wake_up_all(&event->waitq);
2509

2510 2511 2512
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2513
	}
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2525
static void perf_pending_event(struct perf_pending_entry *entry)
2526
{
2527 2528
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2529

2530 2531 2532
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2533 2534
	}

2535 2536 2537
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2538 2539 2540
	}
}

2541
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2542

2543
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2544 2545 2546
	PENDING_TAIL,
};

2547 2548
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2549
{
2550
	struct perf_pending_entry **head;
2551

2552
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2553 2554
		return;

2555 2556 2557
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2558 2559

	do {
2560 2561
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2562

2563
	set_perf_event_pending();
2564

2565
	put_cpu_var(perf_pending_head);
2566 2567 2568 2569
}

static int __perf_pending_run(void)
{
2570
	struct perf_pending_entry *list;
2571 2572
	int nr = 0;

2573
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2574
	while (list != PENDING_TAIL) {
2575 2576
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2577 2578 2579

		list = list->next;

2580 2581
		func = entry->func;
		entry->next = NULL;
2582 2583 2584 2585 2586 2587 2588
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2589
		func(entry);
2590 2591 2592 2593 2594 2595
		nr++;
	}

	return nr;
}

2596
static inline int perf_not_pending(struct perf_event *event)
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2611
	return event->pending.next == NULL;
2612 2613
}

2614
static void perf_pending_sync(struct perf_event *event)
2615
{
2616
	wait_event(event->waitq, perf_not_pending(event));
2617 2618
}

2619
void perf_event_do_pending(void)
2620 2621 2622 2623
{
	__perf_pending_run();
}

2624 2625 2626 2627
/*
 * Callchain support -- arch specific
 */

2628
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2629 2630 2631 2632
{
	return NULL;
}

2633 2634 2635
/*
 * Output
 */
2636 2637
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2638 2639 2640 2641 2642 2643
{
	unsigned long mask;

	if (!data->writable)
		return true;

2644
	mask = perf_data_size(data) - 1;
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2655
static void perf_output_wakeup(struct perf_output_handle *handle)
2656
{
2657 2658
	atomic_set(&handle->data->poll, POLL_IN);

2659
	if (handle->nmi) {
2660 2661 2662
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2663
	} else
2664
		perf_event_wakeup(handle->event);
2665 2666
}

2667 2668 2669
/*
 * Curious locking construct.
 *
2670 2671
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2672 2673 2674 2675 2676 2677
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2678
 * event_id completes.
2679 2680 2681 2682
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2683
	int cur, cpu = get_cpu();
2684 2685 2686

	handle->locked = 0;

2687 2688 2689 2690 2691 2692 2693 2694
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2695 2696

		cpu_relax();
2697
	}
2698 2699 2700 2701 2702
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2703 2704
	unsigned long head;
	int cpu;
2705

2706
	data->done_head = data->head;
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2717
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2718 2719 2720
		data->user_page->data_head = head;

	/*
2721
	 * NMI can happen here, which means we can miss a done_head update.
2722 2723
	 */

2724
	cpu = atomic_xchg(&data->lock, -1);
2725 2726 2727 2728 2729
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2730
	if (unlikely(atomic_long_read(&data->done_head))) {
2731 2732 2733
		/*
		 * Since we had it locked, we can lock it again.
		 */
2734
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2735 2736 2737 2738 2739
			cpu_relax();

		goto again;
	}

2740
	if (atomic_xchg(&data->wakeup, 0))
2741 2742
		perf_output_wakeup(handle);
out:
2743
	put_cpu();
2744 2745
}

2746 2747
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2748 2749
{
	unsigned int pages_mask;
2750
	unsigned long offset;
2751 2752 2753 2754 2755 2756 2757 2758
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2759 2760
		unsigned long page_offset;
		unsigned long page_size;
2761 2762 2763
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2764 2765 2766
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2784
int perf_output_begin(struct perf_output_handle *handle,
2785
		      struct perf_event *event, unsigned int size,
2786
		      int nmi, int sample)
2787
{
2788
	struct perf_event *output_event;
2789
	struct perf_mmap_data *data;
2790
	unsigned long tail, offset, head;
2791 2792 2793 2794 2795 2796
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2797

2798
	rcu_read_lock();
2799
	/*
2800
	 * For inherited events we send all the output towards the parent.
2801
	 */
2802 2803
	if (event->parent)
		event = event->parent;
2804

2805 2806 2807
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2808

2809
	data = rcu_dereference(event->data);
2810 2811 2812
	if (!data)
		goto out;

2813
	handle->data	= data;
2814
	handle->event	= event;
2815 2816
	handle->nmi	= nmi;
	handle->sample	= sample;
2817

2818
	if (!data->nr_pages)
2819
		goto fail;
2820

2821 2822 2823 2824
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2825 2826
	perf_output_lock(handle);

2827
	do {
2828 2829 2830 2831 2832 2833 2834
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
2835
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2836
		head += size;
2837
		if (unlikely(!perf_output_space(data, tail, offset, head)))
2838
			goto fail;
2839
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2840

2841
	handle->offset	= offset;
2842
	handle->head	= head;
2843

2844
	if (head - tail > data->watermark)
2845
		atomic_set(&data->wakeup, 1);
2846

2847
	if (have_lost) {
2848
		lost_event.header.type = PERF_RECORD_LOST;
2849 2850
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
2851
		lost_event.id          = event->id;
2852 2853 2854 2855 2856
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2857
	return 0;
2858

2859
fail:
2860 2861
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2862 2863
out:
	rcu_read_unlock();
2864

2865 2866
	return -ENOSPC;
}
2867

2868
void perf_output_end(struct perf_output_handle *handle)
2869
{
2870
	struct perf_event *event = handle->event;
2871 2872
	struct perf_mmap_data *data = handle->data;

2873
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
2874

2875
	if (handle->sample && wakeup_events) {
2876
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2877
		if (events >= wakeup_events) {
2878
			atomic_sub(wakeup_events, &data->events);
2879
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2880
		}
2881 2882 2883
	}

	perf_output_unlock(handle);
2884
	rcu_read_unlock();
2885 2886
}

2887
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2888 2889
{
	/*
2890
	 * only top level events have the pid namespace they were created in
2891
	 */
2892 2893
	if (event->parent)
		event = event->parent;
2894

2895
	return task_tgid_nr_ns(p, event->ns);
2896 2897
}

2898
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2899 2900
{
	/*
2901
	 * only top level events have the pid namespace they were created in
2902
	 */
2903 2904
	if (event->parent)
		event = event->parent;
2905

2906
	return task_pid_nr_ns(p, event->ns);
2907 2908
}

2909
static void perf_output_read_one(struct perf_output_handle *handle,
2910
				 struct perf_event *event)
2911
{
2912
	u64 read_format = event->attr.read_format;
2913 2914 2915
	u64 values[4];
	int n = 0;

2916
	values[n++] = atomic64_read(&event->count);
2917
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2918 2919
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2920 2921
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2922 2923
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2924 2925
	}
	if (read_format & PERF_FORMAT_ID)
2926
		values[n++] = primary_event_id(event);
2927 2928 2929 2930 2931

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
2932
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2933 2934
 */
static void perf_output_read_group(struct perf_output_handle *handle,
2935
			    struct perf_event *event)
2936
{
2937 2938
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

2950
	if (leader != event)
2951 2952 2953 2954
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
2955
		values[n++] = primary_event_id(leader);
2956 2957 2958

	perf_output_copy(handle, values, n * sizeof(u64));

2959
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2960 2961
		n = 0;

2962
		if (sub != event)
2963 2964 2965 2966
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
2967
			values[n++] = primary_event_id(sub);
2968 2969 2970 2971 2972 2973

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
2974
			     struct perf_event *event)
2975
{
2976 2977
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
2978
	else
2979
		perf_output_read_one(handle, event);
2980 2981
}

2982 2983 2984
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
2985
			struct perf_event *event)
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3016
		perf_output_read(handle, event);
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3054
			 struct perf_event *event,
3055
			 struct pt_regs *regs)
3056
{
3057
	u64 sample_type = event->attr.sample_type;
3058

3059
	data->type = sample_type;
3060

3061
	header->type = PERF_RECORD_SAMPLE;
3062 3063 3064 3065
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3066

3067
	if (sample_type & PERF_SAMPLE_IP) {
3068 3069 3070
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3071
	}
3072

3073
	if (sample_type & PERF_SAMPLE_TID) {
3074
		/* namespace issues */
3075 3076
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3077

3078
		header->size += sizeof(data->tid_entry);
3079 3080
	}

3081
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3082
		data->time = perf_clock();
3083

3084
		header->size += sizeof(data->time);
3085 3086
	}

3087
	if (sample_type & PERF_SAMPLE_ADDR)
3088
		header->size += sizeof(data->addr);
3089

3090
	if (sample_type & PERF_SAMPLE_ID) {
3091
		data->id = primary_event_id(event);
3092

3093 3094 3095 3096
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3097
		data->stream_id = event->id;
3098 3099 3100

		header->size += sizeof(data->stream_id);
	}
3101

3102
	if (sample_type & PERF_SAMPLE_CPU) {
3103 3104
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3105

3106
		header->size += sizeof(data->cpu_entry);
3107 3108
	}

3109
	if (sample_type & PERF_SAMPLE_PERIOD)
3110
		header->size += sizeof(data->period);
3111

3112
	if (sample_type & PERF_SAMPLE_READ)
3113
		header->size += perf_event_read_size(event);
3114

3115
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3116
		int size = 1;
3117

3118 3119 3120 3121 3122 3123
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3124 3125
	}

3126
	if (sample_type & PERF_SAMPLE_RAW) {
3127 3128 3129 3130 3131 3132 3133 3134
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3135
		header->size += size;
3136
	}
3137
}
3138

3139
static void perf_event_output(struct perf_event *event, int nmi,
3140 3141 3142 3143 3144
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3145

3146
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3147

3148
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3149
		return;
3150

3151
	perf_output_sample(&handle, &header, data, event);
3152

3153
	perf_output_end(&handle);
3154 3155
}

3156
/*
3157
 * read event_id
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3168
perf_event_read_event(struct perf_event *event,
3169 3170 3171
			struct task_struct *task)
{
	struct perf_output_handle handle;
3172
	struct perf_read_event read_event = {
3173
		.header = {
3174
			.type = PERF_RECORD_READ,
3175
			.misc = 0,
3176
			.size = sizeof(read_event) + perf_event_read_size(event),
3177
		},
3178 3179
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3180
	};
3181
	int ret;
3182

3183
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3184 3185 3186
	if (ret)
		return;

3187
	perf_output_put(&handle, read_event);
3188
	perf_output_read(&handle, event);
3189

3190 3191 3192
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3193
/*
P
Peter Zijlstra 已提交
3194 3195 3196
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3197 3198
 */

P
Peter Zijlstra 已提交
3199
struct perf_task_event {
3200
	struct task_struct		*task;
3201
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3202 3203 3204 3205 3206 3207

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3208 3209
		u32				tid;
		u32				ptid;
3210
		u64				time;
3211
	} event_id;
P
Peter Zijlstra 已提交
3212 3213
};

3214
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3215
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3216 3217
{
	struct perf_output_handle handle;
3218
	int size;
P
Peter Zijlstra 已提交
3219
	struct task_struct *task = task_event->task;
3220 3221
	int ret;

3222 3223
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3224 3225 3226 3227

	if (ret)
		return;

3228 3229
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3230

3231 3232
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3233

3234
	task_event->event_id.time = perf_clock();
3235

3236
	perf_output_put(&handle, task_event->event_id);
3237

P
Peter Zijlstra 已提交
3238 3239 3240
	perf_output_end(&handle);
}

3241
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3242
{
3243
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3244 3245 3246 3247 3248
		return 1;

	return 0;
}

3249
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3250
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3251
{
3252
	struct perf_event *event;
P
Peter Zijlstra 已提交
3253

3254 3255 3256
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3257 3258 3259
	}
}

3260
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3261 3262
{
	struct perf_cpu_context *cpuctx;
3263
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3264

3265
	rcu_read_lock();
P
Peter Zijlstra 已提交
3266
	cpuctx = &get_cpu_var(perf_cpu_context);
3267
	perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3268 3269
	put_cpu_var(perf_cpu_context);

3270
	if (!ctx)
3271
		ctx = rcu_dereference(task_event->task->perf_event_ctxp);
P
Peter Zijlstra 已提交
3272
	if (ctx)
3273
		perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
3274 3275 3276
	rcu_read_unlock();
}

3277 3278
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3279
			      int new)
P
Peter Zijlstra 已提交
3280
{
P
Peter Zijlstra 已提交
3281
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3282

3283 3284 3285
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3286 3287
		return;

P
Peter Zijlstra 已提交
3288
	task_event = (struct perf_task_event){
3289 3290
		.task	  = task,
		.task_ctx = task_ctx,
3291
		.event_id    = {
P
Peter Zijlstra 已提交
3292
			.header = {
3293
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3294
				.misc = 0,
3295
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3296
			},
3297 3298
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3299 3300
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3301 3302 3303
		},
	};

3304
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3305 3306
}

3307
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3308
{
3309
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3310 3311
}

3312 3313 3314 3315 3316
/*
 * comm tracking
 */

struct perf_comm_event {
3317 3318
	struct task_struct	*task;
	char			*comm;
3319 3320 3321 3322 3323 3324 3325
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3326
	} event_id;
3327 3328
};

3329
static void perf_event_comm_output(struct perf_event *event,
3330 3331 3332
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3333 3334
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3335 3336 3337 3338

	if (ret)
		return;

3339 3340
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3341

3342
	perf_output_put(&handle, comm_event->event_id);
3343 3344 3345 3346 3347
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3348
static int perf_event_comm_match(struct perf_event *event)
3349
{
3350
	if (event->attr.comm)
3351 3352 3353 3354 3355
		return 1;

	return 0;
}

3356
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3357 3358
				  struct perf_comm_event *comm_event)
{
3359
	struct perf_event *event;
3360

3361 3362 3363
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3364 3365 3366
	}
}

3367
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3368 3369
{
	struct perf_cpu_context *cpuctx;
3370
	struct perf_event_context *ctx;
3371
	unsigned int size;
3372
	char comm[TASK_COMM_LEN];
3373

3374 3375
	memset(comm, 0, sizeof(comm));
	strncpy(comm, comm_event->task->comm, sizeof(comm));
3376
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3377 3378 3379 3380

	comm_event->comm = comm;
	comm_event->comm_size = size;

3381
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3382

3383
	rcu_read_lock();
3384
	cpuctx = &get_cpu_var(perf_cpu_context);
3385
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3386
	put_cpu_var(perf_cpu_context);
3387 3388 3389 3390 3391

	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3392
	ctx = rcu_dereference(current->perf_event_ctxp);
3393
	if (ctx)
3394
		perf_event_comm_ctx(ctx, comm_event);
3395
	rcu_read_unlock();
3396 3397
}

3398
void perf_event_comm(struct task_struct *task)
3399
{
3400 3401
	struct perf_comm_event comm_event;

3402 3403
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3404

3405
	if (!atomic_read(&nr_comm_events))
3406
		return;
3407

3408
	comm_event = (struct perf_comm_event){
3409
		.task	= task,
3410 3411
		/* .comm      */
		/* .comm_size */
3412
		.event_id  = {
3413
			.header = {
3414
				.type = PERF_RECORD_COMM,
3415 3416 3417 3418 3419
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3420 3421 3422
		},
	};

3423
	perf_event_comm_event(&comm_event);
3424 3425
}

3426 3427 3428 3429 3430
/*
 * mmap tracking
 */

struct perf_mmap_event {
3431 3432 3433 3434
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3435 3436 3437 3438 3439 3440 3441 3442 3443

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3444
	} event_id;
3445 3446
};

3447
static void perf_event_mmap_output(struct perf_event *event,
3448 3449 3450
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3451 3452
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3453 3454 3455 3456

	if (ret)
		return;

3457 3458
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3459

3460
	perf_output_put(&handle, mmap_event->event_id);
3461 3462
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3463
	perf_output_end(&handle);
3464 3465
}

3466
static int perf_event_mmap_match(struct perf_event *event,
3467 3468
				   struct perf_mmap_event *mmap_event)
{
3469
	if (event->attr.mmap)
3470 3471 3472 3473 3474
		return 1;

	return 0;
}

3475
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3476 3477
				  struct perf_mmap_event *mmap_event)
{
3478
	struct perf_event *event;
3479

3480 3481 3482
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3483 3484 3485
	}
}

3486
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3487 3488
{
	struct perf_cpu_context *cpuctx;
3489
	struct perf_event_context *ctx;
3490 3491
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3492 3493 3494
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3495
	const char *name;
3496

3497 3498
	memset(tmp, 0, sizeof(tmp));

3499
	if (file) {
3500 3501 3502 3503 3504 3505
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3506 3507 3508 3509
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3510
		name = d_path(&file->f_path, buf, PATH_MAX);
3511 3512 3513 3514 3515
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3516 3517 3518
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3519
			goto got_name;
3520
		}
3521 3522 3523 3524 3525 3526

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3527 3528 3529 3530 3531
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3532
	size = ALIGN(strlen(name)+1, sizeof(u64));
3533 3534 3535 3536

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3537
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3538

3539
	rcu_read_lock();
3540
	cpuctx = &get_cpu_var(perf_cpu_context);
3541
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3542 3543
	put_cpu_var(perf_cpu_context);

3544 3545 3546 3547
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3548
	ctx = rcu_dereference(current->perf_event_ctxp);
3549
	if (ctx)
3550
		perf_event_mmap_ctx(ctx, mmap_event);
3551 3552
	rcu_read_unlock();

3553 3554 3555
	kfree(buf);
}

3556
void __perf_event_mmap(struct vm_area_struct *vma)
3557
{
3558 3559
	struct perf_mmap_event mmap_event;

3560
	if (!atomic_read(&nr_mmap_events))
3561 3562 3563
		return;

	mmap_event = (struct perf_mmap_event){
3564
		.vma	= vma,
3565 3566
		/* .file_name */
		/* .file_size */
3567
		.event_id  = {
3568
			.header = {
3569
				.type = PERF_RECORD_MMAP,
3570 3571 3572 3573 3574
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3575 3576 3577
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3578 3579 3580
		},
	};

3581
	perf_event_mmap_event(&mmap_event);
3582 3583
}

3584 3585 3586 3587
/*
 * IRQ throttle logging
 */

3588
static void perf_log_throttle(struct perf_event *event, int enable)
3589 3590 3591 3592 3593 3594 3595
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3596
		u64				id;
3597
		u64				stream_id;
3598 3599
	} throttle_event = {
		.header = {
3600
			.type = PERF_RECORD_THROTTLE,
3601 3602 3603
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3604
		.time		= perf_clock(),
3605 3606
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3607 3608
	};

3609
	if (enable)
3610
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3611

3612
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3613 3614 3615 3616 3617 3618 3619
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3620
/*
3621
 * Generic event overflow handling, sampling.
3622 3623
 */

3624
static int __perf_event_overflow(struct perf_event *event, int nmi,
3625 3626
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3627
{
3628 3629
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3630 3631
	int ret = 0;

3632
	throttle = (throttle && event->pmu->unthrottle != NULL);
3633

3634
	if (!throttle) {
3635
		hwc->interrupts++;
3636
	} else {
3637 3638
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3639
			if (HZ * hwc->interrupts >
3640
					(u64)sysctl_perf_event_sample_rate) {
3641
				hwc->interrupts = MAX_INTERRUPTS;
3642
				perf_log_throttle(event, 0);
3643 3644 3645 3646
				ret = 1;
			}
		} else {
			/*
3647
			 * Keep re-disabling events even though on the previous
3648
			 * pass we disabled it - just in case we raced with a
3649
			 * sched-in and the event got enabled again:
3650
			 */
3651 3652 3653
			ret = 1;
		}
	}
3654

3655
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3656
		u64 now = perf_clock();
3657 3658 3659 3660 3661
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
3662
			perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3663 3664
	}

3665 3666
	/*
	 * XXX event_limit might not quite work as expected on inherited
3667
	 * events
3668 3669
	 */

3670 3671
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3672
		ret = 1;
3673
		event->pending_kill = POLL_HUP;
3674
		if (nmi) {
3675 3676 3677
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3678
		} else
3679
			perf_event_disable(event);
3680 3681
	}

3682 3683 3684 3685 3686
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3687
	return ret;
3688 3689
}

3690
int perf_event_overflow(struct perf_event *event, int nmi,
3691 3692
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3693
{
3694
	return __perf_event_overflow(event, nmi, 1, data, regs);
3695 3696
}

3697
/*
3698
 * Generic software event infrastructure
3699 3700
 */

3701
/*
3702 3703
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3704 3705 3706 3707
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3708
static u64 perf_swevent_set_period(struct perf_event *event)
3709
{
3710
	struct hw_perf_event *hwc = &event->hw;
3711 3712 3713 3714 3715
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3716 3717

again:
3718 3719 3720
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3721

3722 3723 3724 3725 3726
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3727

3728
	return nr;
3729 3730
}

3731
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3732 3733
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3734
{
3735
	struct hw_perf_event *hwc = &event->hw;
3736
	int throttle = 0;
3737

3738
	data->period = event->hw.last_period;
3739 3740
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3741

3742 3743
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3744

3745
	for (; overflow; overflow--) {
3746
		if (__perf_event_overflow(event, nmi, throttle,
3747
					    data, regs)) {
3748 3749 3750 3751 3752 3753
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3754
		throttle = 1;
3755
	}
3756 3757
}

3758
static void perf_swevent_unthrottle(struct perf_event *event)
3759 3760
{
	/*
3761
	 * Nothing to do, we already reset hwc->interrupts.
3762
	 */
3763
}
3764

3765
static void perf_swevent_add(struct perf_event *event, u64 nr,
3766 3767
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3768
{
3769
	struct hw_perf_event *hwc = &event->hw;
3770

3771
	atomic64_add(nr, &event->count);
3772

3773 3774 3775
	if (!regs)
		return;

3776 3777
	if (!hwc->sample_period)
		return;
3778

3779 3780 3781 3782
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3783
		return;
3784

3785
	perf_swevent_overflow(event, 0, nmi, data, regs);
3786 3787
}

3788
static int perf_swevent_is_counting(struct perf_event *event)
3789
{
3790
	/*
3791
	 * The event is active, we're good!
3792
	 */
3793
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3794 3795
		return 1;

3796
	/*
3797
	 * The event is off/error, not counting.
3798
	 */
3799
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3800 3801 3802
		return 0;

	/*
3803
	 * The event is inactive, if the context is active
3804 3805
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3806
	 */
3807
	if (event->ctx->is_active)
3808 3809 3810 3811 3812 3813 3814 3815
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3816 3817
}

L
Li Zefan 已提交
3818 3819 3820
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3821
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
3822
				enum perf_type_id type,
L
Li Zefan 已提交
3823 3824 3825
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
3826
{
3827
	if (!perf_swevent_is_counting(event))
3828 3829
		return 0;

3830
	if (event->attr.type != type)
3831
		return 0;
3832
	if (event->attr.config != event_id)
3833 3834
		return 0;

3835
	if (regs) {
3836
		if (event->attr.exclude_user && user_mode(regs))
3837
			return 0;
3838

3839
		if (event->attr.exclude_kernel && !user_mode(regs))
3840 3841
			return 0;
	}
3842

L
Li Zefan 已提交
3843 3844 3845 3846
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

3847 3848 3849
	return 1;
}

3850
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3851
				     enum perf_type_id type,
3852
				     u32 event_id, u64 nr, int nmi,
3853 3854
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
3855
{
3856
	struct perf_event *event;
3857

3858
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
3859
		if (perf_swevent_match(event, type, event_id, data, regs))
3860
			perf_swevent_add(event, nr, nmi, data, regs);
3861 3862 3863
	}
}

3864
static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
P
Peter Zijlstra 已提交
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

3878
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3879
				    u64 nr, int nmi,
3880 3881
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
3882 3883
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3884 3885
	int *recursion = perf_swevent_recursion_context(cpuctx);
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3886 3887 3888 3889 3890 3891

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
3892

3893
	rcu_read_lock();
3894
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3895
				 nr, nmi, data, regs);
3896 3897 3898 3899
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3900
	ctx = rcu_dereference(current->perf_event_ctxp);
3901
	if (ctx)
3902
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3903
	rcu_read_unlock();
3904

P
Peter Zijlstra 已提交
3905 3906 3907 3908
	barrier();
	(*recursion)--;

out:
3909 3910 3911
	put_cpu_var(perf_cpu_context);
}

3912
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3913
			    struct pt_regs *regs, u64 addr)
3914
{
3915 3916 3917 3918
	struct perf_sample_data data = {
		.addr = addr,
	};

3919
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3920
				&data, regs);
3921 3922
}

3923
static void perf_swevent_read(struct perf_event *event)
3924 3925 3926
{
}

3927
static int perf_swevent_enable(struct perf_event *event)
3928
{
3929
	struct hw_perf_event *hwc = &event->hw;
3930 3931 3932

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
3933
		perf_swevent_set_period(event);
3934
	}
3935 3936 3937
	return 0;
}

3938
static void perf_swevent_disable(struct perf_event *event)
3939 3940 3941
{
}

3942
static const struct pmu perf_ops_generic = {
3943 3944 3945 3946
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
3947 3948
};

3949
/*
3950
 * hrtimer based swevent callback
3951 3952
 */

3953
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3954 3955 3956
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
3957
	struct pt_regs *regs;
3958
	struct perf_event *event;
3959 3960
	u64 period;

3961 3962
	event	= container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
3963 3964

	data.addr = 0;
3965
	regs = get_irq_regs();
3966 3967 3968 3969
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
3970 3971
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
3972
		regs = task_pt_regs(current);
3973

3974
	if (regs) {
3975 3976 3977
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
3978 3979
	}

3980
	period = max_t(u64, 10000, event->hw.sample_period);
3981 3982 3983 3984 3985
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4022
/*
4023
 * Software event: cpu wall time clock
4024 4025
 */

4026
static void cpu_clock_perf_event_update(struct perf_event *event)
4027 4028 4029 4030 4031 4032
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4033 4034 4035
	prev = atomic64_read(&event->hw.prev_count);
	atomic64_set(&event->hw.prev_count, now);
	atomic64_add(now - prev, &event->count);
4036 4037
}

4038
static int cpu_clock_perf_event_enable(struct perf_event *event)
4039
{
4040
	struct hw_perf_event *hwc = &event->hw;
4041 4042 4043
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4044
	perf_swevent_start_hrtimer(event);
4045 4046 4047 4048

	return 0;
}

4049
static void cpu_clock_perf_event_disable(struct perf_event *event)
4050
{
4051
	perf_swevent_cancel_hrtimer(event);
4052
	cpu_clock_perf_event_update(event);
4053 4054
}

4055
static void cpu_clock_perf_event_read(struct perf_event *event)
4056
{
4057
	cpu_clock_perf_event_update(event);
4058 4059
}

4060
static const struct pmu perf_ops_cpu_clock = {
4061 4062 4063
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4064 4065
};

4066
/*
4067
 * Software event: task time clock
4068 4069
 */

4070
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4071
{
4072
	u64 prev;
I
Ingo Molnar 已提交
4073 4074
	s64 delta;

4075
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4076
	delta = now - prev;
4077
	atomic64_add(delta, &event->count);
4078 4079
}

4080
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4081
{
4082
	struct hw_perf_event *hwc = &event->hw;
4083 4084
	u64 now;

4085
	now = event->ctx->time;
4086

4087
	atomic64_set(&hwc->prev_count, now);
4088 4089

	perf_swevent_start_hrtimer(event);
4090 4091

	return 0;
I
Ingo Molnar 已提交
4092 4093
}

4094
static void task_clock_perf_event_disable(struct perf_event *event)
4095
{
4096
	perf_swevent_cancel_hrtimer(event);
4097
	task_clock_perf_event_update(event, event->ctx->time);
4098

4099
}
I
Ingo Molnar 已提交
4100

4101
static void task_clock_perf_event_read(struct perf_event *event)
4102
{
4103 4104 4105
	u64 time;

	if (!in_nmi()) {
4106 4107
		update_context_time(event->ctx);
		time = event->ctx->time;
4108 4109
	} else {
		u64 now = perf_clock();
4110 4111
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4112 4113
	}

4114
	task_clock_perf_event_update(event, time);
4115 4116
}

4117
static const struct pmu perf_ops_task_clock = {
4118 4119 4120
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4121 4122
};

4123
#ifdef CONFIG_EVENT_PROFILE
L
Li Zefan 已提交
4124

4125
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4126
			  int entry_size)
4127
{
4128
	struct perf_raw_record raw = {
4129
		.size = entry_size,
4130
		.data = record,
4131 4132
	};

4133
	struct perf_sample_data data = {
4134
		.addr = addr,
4135
		.raw = &raw,
4136
	};
4137

4138 4139 4140 4141
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);
4142

4143
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4144
				&data, regs);
4145
}
4146
EXPORT_SYMBOL_GPL(perf_tp_event);
4147

L
Li Zefan 已提交
4148 4149 4150 4151 4152 4153 4154 4155 4156
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4157

4158
static void tp_perf_event_destroy(struct perf_event *event)
4159
{
4160
	ftrace_profile_disable(event->attr.config);
4161 4162
}

4163
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4164
{
4165 4166 4167 4168
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4169
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4170
			perf_paranoid_tracepoint_raw() &&
4171 4172 4173
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4174
	if (ftrace_profile_enable(event->attr.config))
4175 4176
		return NULL;

4177
	event->destroy = tp_perf_event_destroy;
4178 4179 4180

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4205
#else
L
Li Zefan 已提交
4206 4207 4208 4209 4210 4211 4212

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4213
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4214 4215 4216
{
	return NULL;
}
L
Li Zefan 已提交
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

#endif /* CONFIG_EVENT_PROFILE */
4228

4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
	/*
	 * The breakpoint is already filled if we haven't created the counter
	 * through perf syscall
	 * FIXME: manage to get trigerred to NULL if it comes from syscalls
	 */
	if (!bp->callback)
		err = register_perf_hw_breakpoint(bp);
	else
		err = __register_perf_hw_breakpoint(bp);
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
	/* TODO */
}
#else
static void bp_perf_event_destroy(struct perf_event *event)
{
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4274
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4275

4276
static void sw_perf_event_destroy(struct perf_event *event)
4277
{
4278
	u64 event_id = event->attr.config;
4279

4280
	WARN_ON(event->parent);
4281

4282
	atomic_dec(&perf_swevent_enabled[event_id]);
4283 4284
}

4285
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4286
{
4287
	const struct pmu *pmu = NULL;
4288
	u64 event_id = event->attr.config;
4289

4290
	/*
4291
	 * Software events (currently) can't in general distinguish
4292 4293 4294 4295 4296
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4297
	switch (event_id) {
4298
	case PERF_COUNT_SW_CPU_CLOCK:
4299
		pmu = &perf_ops_cpu_clock;
4300

4301
		break;
4302
	case PERF_COUNT_SW_TASK_CLOCK:
4303
		/*
4304 4305
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4306
		 */
4307
		if (event->ctx->task)
4308
			pmu = &perf_ops_task_clock;
4309
		else
4310
			pmu = &perf_ops_cpu_clock;
4311

4312
		break;
4313 4314 4315 4316 4317
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4318 4319
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4320 4321 4322
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4323
		}
4324
		pmu = &perf_ops_generic;
4325
		break;
4326
	}
4327

4328
	return pmu;
4329 4330
}

T
Thomas Gleixner 已提交
4331
/*
4332
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4333
 */
4334 4335
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4336
		   int cpu,
4337 4338 4339
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4340
		   perf_callback_t callback,
4341
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4342
{
4343
	const struct pmu *pmu;
4344 4345
	struct perf_event *event;
	struct hw_perf_event *hwc;
4346
	long err;
T
Thomas Gleixner 已提交
4347

4348 4349
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4350
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4351

4352
	/*
4353
	 * Single events are their own group leaders, with an
4354 4355 4356
	 * empty sibling list:
	 */
	if (!group_leader)
4357
		group_leader = event;
4358

4359 4360
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4361

4362 4363 4364 4365
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4366

4367
	mutex_init(&event->mmap_mutex);
4368

4369 4370 4371 4372 4373 4374
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4375

4376
	event->parent		= parent_event;
4377

4378 4379
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4380

4381
	event->state		= PERF_EVENT_STATE_INACTIVE;
4382

4383 4384 4385 4386 4387
	if (!callback && parent_event)
		callback = parent_event->callback;
	
	event->callback	= callback;

4388
	if (attr->disabled)
4389
		event->state = PERF_EVENT_STATE_OFF;
4390

4391
	pmu = NULL;
4392

4393
	hwc = &event->hw;
4394
	hwc->sample_period = attr->sample_period;
4395
	if (attr->freq && attr->sample_freq)
4396
		hwc->sample_period = 1;
4397
	hwc->last_period = hwc->sample_period;
4398 4399

	atomic64_set(&hwc->period_left, hwc->sample_period);
4400

4401
	/*
4402
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4403
	 */
4404
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4405 4406
		goto done;

4407
	switch (attr->type) {
4408
	case PERF_TYPE_RAW:
4409
	case PERF_TYPE_HARDWARE:
4410
	case PERF_TYPE_HW_CACHE:
4411
		pmu = hw_perf_event_init(event);
4412 4413 4414
		break;

	case PERF_TYPE_SOFTWARE:
4415
		pmu = sw_perf_event_init(event);
4416 4417 4418
		break;

	case PERF_TYPE_TRACEPOINT:
4419
		pmu = tp_perf_event_init(event);
4420
		break;
4421

4422 4423 4424 4425 4426
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4427 4428
	default:
		break;
4429
	}
4430 4431
done:
	err = 0;
4432
	if (!pmu)
4433
		err = -EINVAL;
4434 4435
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4436

4437
	if (err) {
4438 4439 4440
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4441
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4442
	}
4443

4444
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4445

4446 4447 4448 4449 4450 4451 4452 4453
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4454
	}
4455

4456
	return event;
T
Thomas Gleixner 已提交
4457 4458
}

4459 4460
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4461 4462
{
	u32 size;
4463
	int ret;
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4488 4489 4490
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4491 4492
	 */
	if (size > sizeof(*attr)) {
4493 4494 4495
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4496

4497 4498
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4499

4500
		for (; addr < end; addr++) {
4501 4502 4503 4504 4505 4506
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4507
		size = sizeof(*attr);
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4539
static int perf_event_set_output(struct perf_event *event, int output_fd)
4540
{
4541
	struct perf_event *output_event = NULL;
4542
	struct file *output_file = NULL;
4543
	struct perf_event *old_output;
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4557
	output_event = output_file->private_data;
4558 4559

	/* Don't chain output fds */
4560
	if (output_event->output)
4561 4562 4563
		goto out;

	/* Don't set an output fd when we already have an output channel */
4564
	if (event->data)
4565 4566 4567 4568 4569
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4570 4571 4572 4573
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4574 4575 4576 4577

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4578
		 * is still referencing this event.
4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4590
/**
4591
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4592
 *
4593
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4594
 * @pid:		target pid
I
Ingo Molnar 已提交
4595
 * @cpu:		target cpu
4596
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4597
 */
4598 4599
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4600
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4601
{
4602 4603 4604 4605
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4606 4607
	struct file *group_file = NULL;
	int fput_needed = 0;
4608
	int fput_needed2 = 0;
4609
	int err;
T
Thomas Gleixner 已提交
4610

4611
	/* for future expandability... */
4612
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4613 4614
		return -EINVAL;

4615 4616 4617
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4618

4619 4620 4621 4622 4623
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4624
	if (attr.freq) {
4625
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4626 4627 4628
			return -EINVAL;
	}

4629
	/*
I
Ingo Molnar 已提交
4630 4631 4632 4633 4634 4635 4636
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4637
	 * Look up the group leader (we will attach this event to it):
4638 4639
	 */
	group_leader = NULL;
4640
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4641
		err = -EINVAL;
4642 4643
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4644
			goto err_put_context;
4645
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4646
			goto err_put_context;
4647 4648 4649

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4650 4651 4652 4653 4654 4655 4656 4657
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4658
		 */
I
Ingo Molnar 已提交
4659 4660
		if (group_leader->ctx != ctx)
			goto err_put_context;
4661 4662 4663
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4664
		if (attr.exclusive || attr.pinned)
4665
			goto err_put_context;
4666 4667
	}

4668
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4669
				     NULL, NULL, GFP_KERNEL);
4670 4671
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4672 4673
		goto err_put_context;

4674
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4675
	if (err < 0)
4676 4677
		goto err_free_put_context;

4678 4679
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4680 4681
		goto err_free_put_context;

4682
	if (flags & PERF_FLAG_FD_OUTPUT) {
4683
		err = perf_event_set_output(event, group_fd);
4684 4685
		if (err)
			goto err_fput_free_put_context;
4686 4687
	}

4688
	event->filp = event_file;
4689
	WARN_ON_ONCE(ctx->parent_ctx);
4690
	mutex_lock(&ctx->mutex);
4691
	perf_install_in_context(ctx, event, cpu);
4692
	++ctx->generation;
4693
	mutex_unlock(&ctx->mutex);
4694

4695
	event->owner = current;
4696
	get_task_struct(current);
4697 4698 4699
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4700

4701
err_fput_free_put_context:
4702
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4703

4704
err_free_put_context:
4705
	if (err < 0)
4706
		kfree(event);
T
Thomas Gleixner 已提交
4707 4708

err_put_context:
4709 4710 4711 4712
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4713

4714
	return err;
T
Thomas Gleixner 已提交
4715 4716
}

4717 4718 4719 4720 4721 4722 4723 4724 4725
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4726
				 pid_t pid, perf_callback_t callback)
4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
4738
		return NULL;
4739 4740

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4741
				     NULL, callback, GFP_KERNEL);
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
	err = PTR_ERR(event);
	if (IS_ERR(event))
		goto err_put_context;

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

err_put_context:
	if (err < 0)
		put_ctx(ctx);

	return NULL;
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4769
/*
4770
 * inherit a event from parent task to child task:
4771
 */
4772 4773
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4774
	      struct task_struct *parent,
4775
	      struct perf_event_context *parent_ctx,
4776
	      struct task_struct *child,
4777 4778
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4779
{
4780
	struct perf_event *child_event;
4781

4782
	/*
4783 4784
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4785 4786 4787
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4788 4789
	if (parent_event->parent)
		parent_event = parent_event->parent;
4790

4791 4792 4793
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4794
					   NULL, GFP_KERNEL);
4795 4796
	if (IS_ERR(child_event))
		return child_event;
4797
	get_ctx(child_ctx);
4798

4799
	/*
4800
	 * Make the child state follow the state of the parent event,
4801
	 * not its attr.disabled bit.  We hold the parent's mutex,
4802
	 * so we won't race with perf_event_{en, dis}able_family.
4803
	 */
4804 4805
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
4806
	else
4807
		child_event->state = PERF_EVENT_STATE_OFF;
4808

4809 4810
	if (parent_event->attr.freq)
		child_event->hw.sample_period = parent_event->hw.sample_period;
4811

4812 4813
	child_event->overflow_handler = parent_event->overflow_handler;

4814 4815 4816
	/*
	 * Link it up in the child's context:
	 */
4817
	add_event_to_ctx(child_event, child_ctx);
4818 4819 4820

	/*
	 * Get a reference to the parent filp - we will fput it
4821
	 * when the child event exits. This is safe to do because
4822 4823 4824
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
4825
	atomic_long_inc(&parent_event->filp->f_count);
4826

4827
	/*
4828
	 * Link this into the parent event's child list
4829
	 */
4830 4831 4832 4833
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4834

4835
	return child_event;
4836 4837
}

4838
static int inherit_group(struct perf_event *parent_event,
4839
	      struct task_struct *parent,
4840
	      struct perf_event_context *parent_ctx,
4841
	      struct task_struct *child,
4842
	      struct perf_event_context *child_ctx)
4843
{
4844 4845 4846
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
4847

4848
	leader = inherit_event(parent_event, parent, parent_ctx,
4849
				 child, NULL, child_ctx);
4850 4851
	if (IS_ERR(leader))
		return PTR_ERR(leader);
4852 4853
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
4854 4855 4856
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
4857
	}
4858 4859 4860
	return 0;
}

4861
static void sync_child_event(struct perf_event *child_event,
4862
			       struct task_struct *child)
4863
{
4864
	struct perf_event *parent_event = child_event->parent;
4865
	u64 child_val;
4866

4867 4868
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
4869

4870
	child_val = atomic64_read(&child_event->count);
4871 4872 4873 4874

	/*
	 * Add back the child's count to the parent's count:
	 */
4875 4876 4877 4878 4879
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
4880 4881

	/*
4882
	 * Remove this event from the parent's list
4883
	 */
4884 4885 4886 4887
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4888 4889

	/*
4890
	 * Release the parent event, if this was the last
4891 4892
	 * reference to it.
	 */
4893
	fput(parent_event->filp);
4894 4895
}

4896
static void
4897 4898
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
4899
			 struct task_struct *child)
4900
{
4901
	struct perf_event *parent_event;
4902

4903 4904
	update_event_times(child_event);
	perf_event_remove_from_context(child_event);
4905

4906
	parent_event = child_event->parent;
4907
	/*
4908
	 * It can happen that parent exits first, and has events
4909
	 * that are still around due to the child reference. These
4910
	 * events need to be zapped - but otherwise linger.
4911
	 */
4912 4913 4914
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
4915
	}
4916 4917 4918
}

/*
4919
 * When a child task exits, feed back event values to parent events.
4920
 */
4921
void perf_event_exit_task(struct task_struct *child)
4922
{
4923 4924
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
4925
	unsigned long flags;
4926

4927 4928
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
4929
		return;
P
Peter Zijlstra 已提交
4930
	}
4931

4932
	local_irq_save(flags);
4933 4934 4935 4936 4937 4938
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
4939 4940
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
4941 4942 4943

	/*
	 * Take the context lock here so that if find_get_context is
4944
	 * reading child->perf_event_ctxp, we wait until it has
4945 4946 4947
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
4948
	child->perf_event_ctxp = NULL;
4949 4950 4951
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
4952
	 * the events from it.
4953 4954
	 */
	unclone_ctx(child_ctx);
P
Peter Zijlstra 已提交
4955 4956 4957
	spin_unlock_irqrestore(&child_ctx->lock, flags);

	/*
4958 4959 4960
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
4961
	 */
4962
	perf_event_task(child, child_ctx, 0);
4963

4964 4965 4966
	/*
	 * We can recurse on the same lock type through:
	 *
4967 4968 4969
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
4970 4971 4972 4973 4974 4975
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4976

4977
again:
4978
	list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4979
				 group_entry)
4980
		__perf_event_exit_task(child_event, child_ctx, child);
4981 4982

	/*
4983
	 * If the last event was a group event, it will have appended all
4984 4985 4986
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
4987
	if (!list_empty(&child_ctx->group_list))
4988
		goto again;
4989 4990 4991 4992

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
4993 4994
}

4995 4996 4997 4998
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
4999
void perf_event_free_task(struct task_struct *task)
5000
{
5001 5002
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5003 5004 5005 5006 5007 5008

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5009 5010
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
		struct perf_event *parent = event->parent;
5011 5012 5013 5014 5015

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
5016
		list_del_init(&event->child_list);
5017 5018 5019 5020
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

5021 5022
		list_del_event(event, ctx);
		free_event(event);
5023 5024
	}

5025
	if (!list_empty(&ctx->group_list))
5026 5027 5028 5029 5030 5031 5032
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

5033
/*
5034
 * Initialize the perf_event context in task_struct
5035
 */
5036
int perf_event_init_task(struct task_struct *child)
5037
{
5038 5039 5040
	struct perf_event_context *child_ctx, *parent_ctx;
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5041
	struct task_struct *parent = current;
5042
	int inherited_all = 1;
5043
	int ret = 0;
5044

5045
	child->perf_event_ctxp = NULL;
5046

5047 5048
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5049

5050
	if (likely(!parent->perf_event_ctxp))
5051 5052
		return 0;

5053 5054
	/*
	 * This is executed from the parent task context, so inherit
5055
	 * events that have been marked for cloning.
5056
	 * First allocate and initialize a context for the child.
5057 5058
	 */

5059
	child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5060
	if (!child_ctx)
5061
		return -ENOMEM;
5062

5063 5064
	__perf_event_init_context(child_ctx, child);
	child->perf_event_ctxp = child_ctx;
5065
	get_task_struct(child);
5066

5067
	/*
5068 5069
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5070
	 */
5071 5072
	parent_ctx = perf_pin_task_context(parent);

5073 5074 5075 5076 5077 5078 5079
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5080 5081 5082 5083
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5084
	mutex_lock(&parent_ctx->mutex);
5085 5086 5087 5088 5089

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5090
	list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5091

5092
		if (!event->attr.inherit) {
5093
			inherited_all = 0;
5094
			continue;
5095
		}
5096

5097
		ret = inherit_group(event, parent, parent_ctx,
5098 5099
					     child, child_ctx);
		if (ret) {
5100
			inherited_all = 0;
5101
			break;
5102 5103 5104 5105 5106 5107 5108
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5109 5110
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5111
		 * because the list of events and the generation
5112
		 * count can't have changed since we took the mutex.
5113
		 */
5114 5115 5116
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5117
			child_ctx->parent_gen = parent_ctx->parent_gen;
5118 5119 5120 5121 5122
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5123 5124
	}

5125
	mutex_unlock(&parent_ctx->mutex);
5126

5127
	perf_unpin_context(parent_ctx);
5128

5129
	return ret;
5130 5131
}

5132
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5133
{
5134
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5135

5136
	cpuctx = &per_cpu(perf_cpu_context, cpu);
5137
	__perf_event_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
5138

5139
	spin_lock(&perf_resource_lock);
5140
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5141
	spin_unlock(&perf_resource_lock);
5142

5143
	hw_perf_event_setup(cpu);
T
Thomas Gleixner 已提交
5144 5145 5146
}

#ifdef CONFIG_HOTPLUG_CPU
5147
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5148 5149
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5150 5151
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5152

5153 5154
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5155
}
5156
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5157
{
5158
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5159
	struct perf_event_context *ctx = &cpuctx->ctx;
5160 5161

	mutex_lock(&ctx->mutex);
5162
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5163
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5164 5165
}
#else
5166
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5178
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5179 5180
		break;

5181 5182
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
5183
		hw_perf_event_setup_online(cpu);
5184 5185
		break;

T
Thomas Gleixner 已提交
5186 5187
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5188
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5189 5190 5191 5192 5193 5194 5195 5196 5197
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5198 5199 5200
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5201 5202
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5203
	.priority		= 20,
T
Thomas Gleixner 已提交
5204 5205
};

5206
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5207 5208 5209
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5210 5211
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5232
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5233 5234
		return -EINVAL;

5235
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5236 5237 5238 5239
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
5240 5241
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5242 5243 5244
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
5245
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5267
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5268
	perf_overcommit = val;
5269
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5296
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5297 5298
};

5299
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5300 5301 5302 5303
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5304
device_initcall(perf_event_sysfs_init);