gadget.c 135.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3 4
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
5 6 7 8 9 10 11
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
12
 */
13 14 15 16 17 18 19

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
20
#include <linux/mutex.h>
21 22 23
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
24
#include <linux/slab.h>
25
#include <linux/of_platform.h>
26 27 28

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
29
#include <linux/usb/phy.h>
30

31
#include "core.h"
32
#include "hw.h"
33 34

/* conversion functions */
35
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
36
{
37
	return container_of(req, struct dwc2_hsotg_req, req);
38 39
}

40
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
41
{
42
	return container_of(ep, struct dwc2_hsotg_ep, ep);
43 44
}

45
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
46
{
47
	return container_of(gadget, struct dwc2_hsotg, gadget);
48 49
}

50
static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
51
{
52
	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
53 54
}

55
static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
56
{
57
	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
58 59
}

60
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 62 63 64 65 66 67 68
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

69
/* forward declaration of functions */
70
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
89
 * g_using_dma is set depending on dts flag.
90
 */
91
static inline bool using_dma(struct dwc2_hsotg *hsotg)
92
{
93
	return hsotg->params.g_dma;
94 95
}

96 97 98 99 100 101 102 103 104 105 106
/*
 * using_desc_dma - return the descriptor DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using descriptor DMA.
 */
static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
{
	return hsotg->params.g_dma_desc;
}

107 108 109 110 111 112 113 114 115 116 117
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
118
		hs_ep->frame_overrun = true;
119 120
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
121
		hs_ep->frame_overrun = false;
122 123 124
	}
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
/**
 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
 *                                    by one.
 * @hs_ep: The endpoint.
 *
 * This function used in service interval based scheduling flow to calculate
 * descriptor frame number filed value. For service interval mode frame
 * number in descriptor should point to last (u)frame in the interval.
 *
 */
static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
{
	if (hs_ep->target_frame)
		hs_ep->target_frame -= 1;
	else
		hs_ep->target_frame = DSTS_SOFFN_LIMIT;
}

143
/**
144
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
145 146 147
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
148
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
149
{
150
	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
151 152 153 154 155 156
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
157
		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
158 159 160 161
	}
}

/**
162
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
163 164 165
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
166
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
167
{
168
	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
169 170 171 172 173
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
174
		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
175 176 177
}

/**
178
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
179 180 181 182 183 184 185 186
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
187
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
188
				  unsigned int ep, unsigned int dir_in,
189 190 191 192 193 194 195 196 197 198
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
199
	daint = dwc2_readl(hsotg, DAINTMSK);
200 201 202 203
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
204
	dwc2_writel(hsotg, daint, DAINTMSK);
205 206 207
	local_irq_restore(flags);
}

208 209
/**
 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
210 211
 *
 * @hsotg: Programming view of the DWC_otg controller
212 213 214 215 216
 */
int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
{
	if (hsotg->hw_params.en_multiple_tx_fifo)
		/* In dedicated FIFO mode we need count of IN EPs */
217
		return hsotg->hw_params.num_dev_in_eps;
218 219 220 221 222 223 224 225
	else
		/* In shared FIFO mode we need count of Periodic IN EPs */
		return hsotg->hw_params.num_dev_perio_in_ep;
}

/**
 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
 * device mode TX FIFOs
226 227
 *
 * @hsotg: Programming view of the DWC_otg controller
228 229 230 231 232 233 234 235 236 237 238
 */
int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
{
	int addr;
	int tx_addr_max;
	u32 np_tx_fifo_size;

	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
				hsotg->params.g_np_tx_fifo_size);

	/* Get Endpoint Info Control block size in DWORDs. */
239
	tx_addr_max = hsotg->hw_params.total_fifo_size;
240 241 242 243 244 245 246 247

	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
	if (tx_addr_max <= addr)
		return 0;

	return tx_addr_max - addr;
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
/**
 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
 *
 * @hsotg: Programming view of the DWC_otg controller
 *
 */
static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
{
	u32 gintsts2;
	u32 gintmsk2;

	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);

	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
264
		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
265
		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
266 267 268
	}
}

269 270 271
/**
 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
 * TX FIFOs
272 273
 *
 * @hsotg: Programming view of the DWC_otg controller
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
 */
int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
{
	int tx_fifo_count;
	int tx_fifo_depth;

	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);

	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);

	if (!tx_fifo_count)
		return tx_fifo_depth;
	else
		return tx_fifo_depth / tx_fifo_count;
}

290
/**
291
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
292 293
 * @hsotg: The device instance.
 */
294
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
295
{
296
	unsigned int ep;
297
	unsigned int addr;
298
	int timeout;
299

300
	u32 val;
301
	u32 *txfsz = hsotg->params.g_tx_fifo_size;
302

303 304 305 306
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

307
	/* set RX/NPTX FIFO sizes */
308 309 310
	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
		    FIFOSIZE_STARTADDR_SHIFT) |
311
		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
312
		    GNPTXFSIZ);
313

314 315
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
316 317
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
318 319
	 * known values.
	 */
320 321

	/* start at the end of the GNPTXFSIZ, rounded up */
322
	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
323

324
	/*
325
	 * Configure fifos sizes from provided configuration and assign
326 327
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
328
	 */
329
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
330
		if (!txfsz[ep])
331 332
			continue;
		val = addr;
333 334
		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
335
			  "insufficient fifo memory");
336
		addr += txfsz[ep];
337

338 339
		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
340
	}
341

342
	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
343
		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
344
		    GDFIFOCFG);
345 346 347 348
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
349

350 351
	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, GRSTCTL);
352 353 354 355

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
356
		val = dwc2_readl(hsotg, GRSTCTL);
357

358
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
359 360 361 362 363 364
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
365
			break;
366 367 368 369 370 371
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
372 373 374
}

/**
375
 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
376 377 378 379 380
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
381
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
382
						       gfp_t flags)
383
{
384
	struct dwc2_hsotg_req *req;
385

J
John Youn 已提交
386
	req = kzalloc(sizeof(*req), flags);
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
402
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
403 404 405 406 407
{
	return hs_ep->periodic;
}

/**
408
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
409 410 411 412
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
413
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
414
 * of a request to ensure the buffer is ready for access by the caller.
415
 */
416
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
417
				 struct dwc2_hsotg_ep *hs_ep,
418
				struct dwc2_hsotg_req *hs_req)
419 420
{
	struct usb_request *req = &hs_req->req;
421

422
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
423 424
}

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
/*
 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 * for Control endpoint
 * @hsotg: The device state.
 *
 * This function will allocate 4 descriptor chains for EP 0: 2 for
 * Setup stage, per one for IN and OUT data/status transactions.
 */
static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
{
	hsotg->setup_desc[0] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[0],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[0])
		goto fail;

	hsotg->setup_desc[1] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[1],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[1])
		goto fail;

	hsotg->ctrl_in_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_in_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_in_desc)
		goto fail;

	hsotg->ctrl_out_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_out_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_out_desc)
		goto fail;

	return 0;

fail:
	return -ENOMEM;
}

473
/**
474
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
475 476 477 478 479 480 481 482 483 484 485 486 487
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
488
 */
489
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
490
				 struct dwc2_hsotg_ep *hs_ep,
491
				struct dwc2_hsotg_req *hs_req)
492 493
{
	bool periodic = is_ep_periodic(hs_ep);
494
	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
495 496 497 498 499
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
500
	int max_transfer;
501 502 503 504 505 506 507

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

508
	if (periodic && !hsotg->dedicated_fifos) {
509
		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
510 511 512
		int size_left;
		int size_done;

513 514 515 516
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
517

518
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
519

520 521
		/*
		 * if shared fifo, we cannot write anything until the
522 523 524
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
525
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
526 527 528
			return -ENOSPC;
		}

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
546
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
547 548
			return -ENOSPC;
		}
549
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
550 551
		can_write = dwc2_readl(hsotg,
				       DTXFSTS(hs_ep->fifo_index));
552 553 554

		can_write &= 0xffff;
		can_write *= 4;
555
	} else {
556
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
557 558 559 560
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

561
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
562 563 564
			return -ENOSPC;
		}

565
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
566
		can_write *= 4;	/* fifo size is in 32bit quantities. */
567 568
	}

569 570 571
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
572
		__func__, gnptxsts, can_write, to_write, max_transfer);
573

574 575
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
576 577 578
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
579
	if (can_write > 512 && !periodic)
580 581
		can_write = 512;

582 583
	/*
	 * limit the write to one max-packet size worth of data, but allow
584
	 * the transfer to return that it did not run out of fifo space
585 586
	 * doing it.
	 */
587 588
	if (to_write > max_transfer) {
		to_write = max_transfer;
589

590 591
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
592
			dwc2_hsotg_en_gsint(hsotg,
593
					    periodic ? GINTSTS_PTXFEMP :
594
					   GINTSTS_NPTXFEMP);
595 596
	}

597 598 599 600
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
601
		pkt_round = to_write % max_transfer;
602

603 604
		/*
		 * Round the write down to an
605 606 607 608 609 610 611 612 613
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

614 615 616 617
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
618

619 620
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
621
			dwc2_hsotg_en_gsint(hsotg,
622
					    periodic ? GINTSTS_PTXFEMP :
623
					   GINTSTS_NPTXFEMP);
624 625 626
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
627
		to_write, hs_req->req.length, can_write, buf_pos);
628 629 630 631 632 633 634 635 636 637 638 639 640

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

641
	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
642 643 644 645 646 647 648 649 650 651 652

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
653
static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
654 655
{
	int index = hs_ep->index;
656 657
	unsigned int maxsize;
	unsigned int maxpkt;
658 659

	if (index != 0) {
660 661
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
662
	} else {
663
		maxsize = 64 + 64;
664
		if (hs_ep->dir_in)
665
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
666
		else
667 668 669 670 671 672 673
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

674 675 676 677
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
678 679 680 681 682 683 684

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

685
/**
686 687 688 689 690
 * dwc2_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
 */
691 692 693 694
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
	u32 dsts;

695
	dsts = dwc2_readl(hsotg, DSTS);
696 697 698 699 700 701
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;

	return dsts;
}

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/**
 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 * DMA descriptor chain prepared for specific endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * depending on its descriptor chain capacity so that transfers that
 * are too long can be split.
 */
static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
{
	int is_isoc = hs_ep->isochronous;
	unsigned int maxsize;

	if (is_isoc)
		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
	else
		maxsize = DEV_DMA_NBYTES_LIMIT;

	/* Above size of one descriptor was chosen, multiple it */
	maxsize *= MAX_DMA_DESC_NUM_GENERIC;

	return maxsize;
}

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
/*
 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 * @hs_ep: The endpoint
 * @mask: RX/TX bytes mask to be defined
 *
 * Returns maximum data payload for one descriptor after analyzing endpoint
 * characteristics.
 * DMA descriptor transfer bytes limit depends on EP type:
 * Control out - MPS,
 * Isochronous - descriptor rx/tx bytes bitfield limit,
 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 * have concatenations from various descriptors within one packet.
 *
 * Selects corresponding mask for RX/TX bytes as well.
 */
static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
{
	u32 mps = hs_ep->ep.maxpacket;
	int dir_in = hs_ep->dir_in;
	u32 desc_size = 0;

	if (!hs_ep->index && !dir_in) {
		desc_size = mps;
		*mask = DEV_DMA_NBYTES_MASK;
	} else if (hs_ep->isochronous) {
		if (dir_in) {
			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
		} else {
			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
		}
	} else {
		desc_size = DEV_DMA_NBYTES_LIMIT;
		*mask = DEV_DMA_NBYTES_MASK;

		/* Round down desc_size to be mps multiple */
		desc_size -= desc_size % mps;
	}

	return desc_size;
}

/*
 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 * @hs_ep: The endpoint
 * @dma_buff: DMA address to use
 * @len: Length of the transfer
 *
 * This function will iterate over descriptor chain and fill its entries
 * with corresponding information based on transfer data.
 */
static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
						 dma_addr_t dma_buff,
						 unsigned int len)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	u32 mps = hs_ep->ep.maxpacket;
	u32 maxsize = 0;
	u32 offset = 0;
	u32 mask = 0;
	int i;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);

	hs_ep->desc_count = (len / maxsize) +
				((len % maxsize) ? 1 : 0);
	if (len == 0)
		hs_ep->desc_count = 1;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		desc->status = 0;
		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
				 << DEV_DMA_BUFF_STS_SHIFT);

		if (len > maxsize) {
			if (!hs_ep->index && !dir_in)
				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			desc->status |= (maxsize <<
						DEV_DMA_NBYTES_SHIFT & mask);
			desc->buf = dma_buff + offset;

			len -= maxsize;
			offset += maxsize;
		} else {
			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			if (dir_in)
				desc->status |= (len % mps) ? DEV_DMA_SHORT :
					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
			if (len > maxsize)
				dev_err(hsotg->dev, "wrong len %d\n", len);

			desc->status |=
				len << DEV_DMA_NBYTES_SHIFT & mask;
			desc->buf = dma_buff + offset;
		}

		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
		desc->status |= (DEV_DMA_BUFF_STS_HREADY
				 << DEV_DMA_BUFF_STS_SHIFT);
		desc++;
	}
}

836 837 838 839 840 841
/*
 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 * @hs_ep: The isochronous endpoint.
 * @dma_buff: usb requests dma buffer.
 * @len: usb request transfer length.
 *
842
 * Fills next free descriptor with the data of the arrived usb request,
843 844 845 846 847 848 849 850 851 852 853 854
 * frame info, sets Last and IOC bits increments next_desc. If filled
 * descriptor is not the first one, removes L bit from the previous descriptor
 * status.
 */
static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
				      dma_addr_t dma_buff, unsigned int len)
{
	struct dwc2_dma_desc *desc;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 index;
	u32 maxsize = 0;
	u32 mask = 0;
855
	u8 pid = 0;
856 857 858

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);

859 860
	index = hs_ep->next_desc;
	desc = &hs_ep->desc_list[index];
861

862 863 864 865 866
	/* Check if descriptor chain full */
	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
	    DEV_DMA_BUFF_STS_HREADY) {
		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
		return 1;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
	}

	/* Clear L bit of previous desc if more than one entries in the chain */
	if (hs_ep->next_desc)
		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;

	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);

	desc->status = 0;
	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);

	desc->buf = dma_buff;
	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));

	if (hs_ep->dir_in) {
884 885 886 887 888
		if (len)
			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
		else
			pid = 1;
		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
889 890 891 892 893 894 895 896 897 898 899
				 DEV_DMA_ISOC_PID_MASK) |
				((len % hs_ep->ep.maxpacket) ?
				 DEV_DMA_SHORT : 0) |
				((hs_ep->target_frame <<
				  DEV_DMA_ISOC_FRNUM_SHIFT) &
				 DEV_DMA_ISOC_FRNUM_MASK);
	}

	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);

900 901 902 903
	/* Increment frame number by interval for IN */
	if (hs_ep->dir_in)
		dwc2_gadget_incr_frame_num(hs_ep);

904 905
	/* Update index of last configured entry in the chain */
	hs_ep->next_desc++;
906 907
	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_GENERIC)
		hs_ep->next_desc = 0;
908 909 910 911 912 913 914 915

	return 0;
}

/*
 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 * @hs_ep: The isochronous endpoint.
 *
916
 * Prepare descriptor chain for isochronous endpoints. Afterwards
917 918 919 920 921 922 923 924
 * write DMA address to HW and enable the endpoint.
 */
static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req, *treq;
	int index = hs_ep->index;
	int ret;
925
	int i;
926 927 928
	u32 dma_reg;
	u32 depctl;
	u32 ctrl;
929
	struct dwc2_dma_desc *desc;
930 931

	if (list_empty(&hs_ep->queue)) {
932
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
933 934 935 936
		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
		return;
	}

937 938 939 940 941 942 943 944 945
	/* Initialize descriptor chain by Host Busy status */
	for (i = 0; i < MAX_DMA_DESC_NUM_GENERIC; i++) {
		desc = &hs_ep->desc_list[i];
		desc->status = 0;
		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
				    << DEV_DMA_BUFF_STS_SHIFT);
	}

	hs_ep->next_desc = 0;
946 947 948
	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
949
		if (ret)
950 951 952
			break;
	}

953
	hs_ep->compl_desc = 0;
954 955 956 957
	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);

	/* write descriptor chain address to control register */
958
	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
959

960
	ctrl = dwc2_readl(hsotg, depctl);
961
	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
962
	dwc2_writel(hsotg, ctrl, depctl);
963 964
}

965
/**
966
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
967 968 969 970 971 972 973 974
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
975
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
976
				 struct dwc2_hsotg_ep *hs_ep,
977
				struct dwc2_hsotg_req *hs_req,
978 979 980 981 982 983 984 985 986
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
987 988 989
	unsigned int length;
	unsigned int packets;
	unsigned int maxreq;
990
	unsigned int dma_reg;
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

1005
	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1006 1007
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1008 1009

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1010
		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1011 1012
		hs_ep->dir_in ? "in" : "out");

1013
	/* If endpoint is stalled, we will restart request later */
1014
	ctrl = dwc2_readl(hsotg, epctrl_reg);
1015

1016
	if (index && ctrl & DXEPCTL_STALL) {
1017 1018 1019 1020
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

1021
	length = ureq->length - ureq->actual;
1022 1023
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
1024

1025 1026 1027 1028 1029
	if (!using_desc_dma(hsotg))
		maxreq = get_ep_limit(hs_ep);
	else
		maxreq = dwc2_gadget_get_chain_limit(hs_ep);

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

1048 1049 1050 1051 1052
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

1053
	if (dir_in && index != 0)
1054
		if (hs_ep->isochronous)
1055
			epsize = DXEPTSIZ_MC(packets);
1056
		else
1057
			epsize = DXEPTSIZ_MC(1);
1058 1059 1060
	else
		epsize = 0;

1061 1062 1063 1064 1065 1066 1067
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1068
		    !(ureq->length % hs_ep->ep.maxpacket))
1069
			hs_ep->send_zlp = 1;
1070 1071
	}

1072 1073
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
1074 1075 1076 1077 1078 1079 1080

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	if (using_desc_dma(hsotg)) {
		u32 offset = 0;
		u32 mps = hs_ep->ep.maxpacket;

		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
		if (!dir_in) {
			if (!index)
				length = mps;
			else if (length % mps)
				length += (mps - (length % mps));
		}
1092

1093
		/*
1094 1095 1096
		 * If more data to send, adjust DMA for EP0 out data stage.
		 * ureq->dma stays unchanged, hence increment it by already
		 * passed passed data count before starting new transaction.
1097
		 */
1098 1099 1100 1101 1102 1103 1104 1105 1106
		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
		    continuing)
			offset = ureq->actual;

		/* Fill DDMA chain entries */
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
						     length);

		/* write descriptor chain address to control register */
1107
		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1108

1109 1110 1111 1112
		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
	} else {
		/* write size / packets */
1113
		dwc2_writel(hsotg, epsize, epsize_reg);
1114

1115
		if (using_dma(hsotg) && !continuing && (length != 0)) {
1116 1117 1118 1119
			/*
			 * write DMA address to control register, buffer
			 * already synced by dwc2_hsotg_ep_queue().
			 */
1120

1121
			dwc2_writel(hsotg, ureq->dma, dma_reg);
1122 1123 1124 1125

			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
				__func__, &ureq->dma, dma_reg);
		}
1126 1127
	}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	if (hs_ep->isochronous && hs_ep->interval == 1) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(hs_ep);

		if (hs_ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;
	}

1138
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1139

1140
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1141 1142

	/* For Setup request do not clear NAK */
1143
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1144
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1145

1146
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1147
	dwc2_writel(hsotg, ctrl, epctrl_reg);
1148

1149 1150
	/*
	 * set these, it seems that DMA support increments past the end
1151
	 * of the packet buffer so we need to calculate the length from
1152 1153
	 * this information.
	 */
1154 1155 1156 1157 1158 1159 1160
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

1161
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1162 1163
	}

1164 1165 1166 1167
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
1168 1169

	/* check ep is enabled */
1170
	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1171
		dev_dbg(hsotg->dev,
1172
			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1173
			 index, dwc2_readl(hsotg, epctrl_reg));
1174

1175
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1176
		__func__, dwc2_readl(hsotg, epctrl_reg));
1177 1178

	/* enable ep interrupts */
1179
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1180 1181 1182
}

/**
1183
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1184 1185 1186 1187 1188 1189 1190 1191 1192
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
1193
 */
1194
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1195
			      struct dwc2_hsotg_ep *hs_ep,
1196 1197
			     struct usb_request *req)
{
1198
	int ret;
1199

1200 1201 1202
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

1213
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1214 1215
						 struct dwc2_hsotg_ep *hs_ep,
						 struct dwc2_hsotg_req *hs_req)
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1226
		hs_ep->ep.name, req_buf, hs_req->req.length);
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

1245 1246 1247 1248
static void
dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
					 struct dwc2_hsotg_ep *hs_ep,
					 struct dwc2_hsotg_req *hs_req)
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1260
		       hs_req->req.actual);
1261 1262 1263 1264 1265 1266 1267 1268

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
/**
 * dwc2_gadget_target_frame_elapsed - Checks target frame
 * @hs_ep: The driver endpoint to check
 *
 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
 * corresponding transfer.
 */
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 target_frame = hs_ep->target_frame;
1280
	u32 current_frame = hsotg->frame_number;
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	bool frame_overrun = hs_ep->frame_overrun;

	if (!frame_overrun && current_frame >= target_frame)
		return true;

	if (frame_overrun && current_frame >= target_frame &&
	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
		return true;

	return false;
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
/*
 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
 * @hsotg: The driver state
 * @hs_ep: the ep descriptor chain is for
 *
 * Called to update EP0 structure's pointers depend on stage of
 * control transfer.
 */
static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
					  struct dwc2_hsotg_ep *hs_ep)
{
	switch (hsotg->ep0_state) {
	case DWC2_EP0_SETUP:
	case DWC2_EP0_STATUS_OUT:
		hs_ep->desc_list = hsotg->setup_desc[0];
		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
		break;
	case DWC2_EP0_DATA_IN:
	case DWC2_EP0_STATUS_IN:
		hs_ep->desc_list = hsotg->ctrl_in_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
		break;
	case DWC2_EP0_DATA_OUT:
		hs_ep->desc_list = hsotg->ctrl_out_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
		break;
	default:
		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
			hsotg->ep0_state);
		return -EINVAL;
	}

	return 0;
}

1328
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1329
			       gfp_t gfp_flags)
1330
{
1331 1332
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1333
	struct dwc2_hsotg *hs = hs_ep->parent;
1334
	bool first;
1335
	int ret;
1336 1337 1338
	u32 maxsize = 0;
	u32 mask = 0;

1339 1340 1341 1342 1343

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

1344
	/* Prevent new request submission when controller is suspended */
1345 1346
	if (hs->lx_state != DWC2_L0) {
		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1347
			__func__);
1348 1349 1350
		return -EAGAIN;
	}

1351 1352 1353 1354 1355
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	/* In DDMA mode for ISOC's don't queue request if length greater
	 * than descriptor limits.
	 */
	if (using_desc_dma(hs) && hs_ep->isochronous) {
		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
		if (hs_ep->dir_in && req->length > maxsize) {
			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
				req->length, maxsize);
			return -EINVAL;
		}

		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
				req->length, hs_ep->ep.maxpacket);
			return -EINVAL;
		}
	}

1374
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1375 1376 1377
	if (ret)
		return ret;

1378 1379
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
1380
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1381 1382 1383
		if (ret)
			return ret;
	}
1384 1385 1386 1387 1388 1389
	/* If using descriptor DMA configure EP0 descriptor chain pointers */
	if (using_desc_dma(hs) && !hs_ep->index) {
		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
		if (ret)
			return ret;
	}
1390 1391 1392 1393

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

1394 1395
	/*
	 * Handle DDMA isochronous transfers separately - just add new entry
1396
	 * to the descriptor chain.
1397 1398 1399
	 * Transfer will be started once SW gets either one of NAK or
	 * OutTknEpDis interrupts.
	 */
1400 1401 1402 1403 1404
	if (using_desc_dma(hs) && hs_ep->isochronous) {
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
			dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						   hs_req->req.length);
		}
1405 1406 1407
		return 0;
	}

1408 1409 1410 1411 1412 1413
	if (first) {
		if (!hs_ep->isochronous) {
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
			return 0;
		}

1414 1415 1416
		/* Update current frame number value. */
		hs->frame_number = dwc2_hsotg_read_frameno(hs);
		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1417
			dwc2_gadget_incr_frame_num(hs_ep);
1418 1419 1420 1421 1422
			/* Update current frame number value once more as it
			 * changes here.
			 */
			hs->frame_number = dwc2_hsotg_read_frameno(hs);
		}
1423

1424 1425 1426
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
	}
1427 1428 1429
	return 0;
}

1430
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1431
				    gfp_t gfp_flags)
1432
{
1433
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1434
	struct dwc2_hsotg *hs = hs_ep->parent;
1435 1436 1437 1438
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
1439
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1440 1441 1442 1443 1444
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

1445
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1446
				       struct usb_request *req)
1447
{
1448
	struct dwc2_hsotg_req *hs_req = our_req(req);
1449 1450 1451 1452 1453

	kfree(hs_req);
}

/**
1454
 * dwc2_hsotg_complete_oursetup - setup completion callback
1455 1456 1457 1458 1459 1460
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
1461
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1462
					 struct usb_request *req)
1463
{
1464
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1465
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1466 1467 1468

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

1469
	dwc2_hsotg_ep_free_request(ep, req);
1470 1471 1472 1473 1474 1475 1476 1477 1478
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
1479
 */
1480
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1481
					    u32 windex)
1482
{
1483
	struct dwc2_hsotg_ep *ep;
1484 1485 1486 1487 1488 1489
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

1490
	if (idx > hsotg->num_of_eps)
1491 1492
		return NULL;

1493 1494
	ep = index_to_ep(hsotg, idx, dir);

1495 1496 1497 1498 1499 1500
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

1501
/**
1502
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1503 1504 1505 1506
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
1507
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1508
{
1509
	int dctl = dwc2_readl(hsotg, DCTL);
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
1523
	dwc2_writel(hsotg, dctl, DCTL);
1524 1525 1526
	return 0;
}

1527
/**
1528
 * dwc2_hsotg_send_reply - send reply to control request
1529 1530 1531 1532 1533 1534 1535 1536
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
1537
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1538
				 struct dwc2_hsotg_ep *ep,
1539 1540 1541 1542 1543 1544 1545 1546
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

1547
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1548 1549 1550 1551 1552 1553 1554 1555
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
1556 1557 1558 1559 1560
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
1561
	req->complete = dwc2_hsotg_complete_oursetup;
1562 1563 1564 1565

	if (length)
		memcpy(req->buf, buff, length);

1566
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1567 1568 1569 1570 1571 1572 1573 1574 1575
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
1576
 * dwc2_hsotg_process_req_status - process request GET_STATUS
1577 1578 1579
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1580
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1581
					 struct usb_ctrlrequest *ctrl)
1582
{
1583 1584
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
1597 1598 1599 1600 1601
		/*
		 * bit 0 => self powered
		 * bit 1 => remote wakeup
		 */
		reply = cpu_to_le16(0);
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1624
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1625 1626 1627 1628 1629 1630 1631 1632
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1633
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1634

1635 1636 1637 1638 1639 1640
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1641
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1642
{
1643 1644
	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
					queue);
1645 1646
}

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
1677
		mask = dwc2_readl(hsotg, epmsk_reg);
1678
		mask |= DOEPMSK_OUTTKNEPDISMSK;
1679
		dwc2_writel(hsotg, mask, epmsk_reg);
1680 1681 1682
	}
}

1683
/**
1684
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1685 1686 1687
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1688
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1689
					  struct usb_ctrlrequest *ctrl)
1690
{
1691 1692
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1693
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1694
	struct dwc2_hsotg_ep *ep;
1695
	int ret;
1696
	bool halted;
1697 1698 1699
	u32 recip;
	u32 wValue;
	u32 wIndex;
1700 1701 1702 1703

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1704 1705 1706 1707 1708 1709 1710
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
1711 1712 1713 1714
		case USB_DEVICE_REMOTE_WAKEUP:
			hsotg->remote_wakeup_allowed = 1;
			break;

1715 1716 1717 1718 1719 1720 1721
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1722
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1736 1737
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1738
				__func__, wIndex);
1739 1740 1741
			return -ENOENT;
		}

1742
		switch (wValue) {
1743
		case USB_ENDPOINT_HALT:
1744 1745
			halted = ep->halted;

1746
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1747

1748
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1749 1750 1751 1752 1753
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1754

1755 1756 1757 1758 1759 1760
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1761 1762 1763 1764 1765 1766 1767 1768
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1769 1770 1771 1772 1773 1774
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1775 1776 1777
				}

				/* If we have pending request, then start it */
J
John Youn 已提交
1778
				if (!ep->req)
1779
					dwc2_gadget_start_next_request(ep);
1780 1781
			}

1782 1783 1784 1785 1786
			break;

		default:
			return -ENOENT;
		}
1787 1788 1789 1790
		break;
	default:
		return -ENOENT;
	}
1791 1792 1793
	return 1;
}

1794
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1795

1796
/**
1797
 * dwc2_hsotg_stall_ep0 - stall ep0
1798 1799 1800 1801
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1802
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1803
{
1804
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1816
	ctrl = dwc2_readl(hsotg, reg);
1817 1818
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1819
	dwc2_writel(hsotg, ctrl, reg);
1820 1821

	dev_dbg(hsotg->dev,
1822
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1823
		ctrl, reg, dwc2_readl(hsotg, reg));
1824 1825 1826 1827 1828

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1829
	 dwc2_hsotg_enqueue_setup(hsotg);
1830 1831
}

1832
/**
1833
 * dwc2_hsotg_process_control - process a control request
1834 1835 1836 1837 1838 1839 1840
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1841
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1842
				       struct usb_ctrlrequest *ctrl)
1843
{
1844
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1845 1846 1847
	int ret = 0;
	u32 dcfg;

1848 1849 1850 1851
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1852

1853 1854 1855 1856
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1857
		ep0->dir_in = 1;
1858 1859 1860 1861 1862
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1863 1864 1865 1866

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1867
			hsotg->connected = 1;
1868
			dcfg = dwc2_readl(hsotg, DCFG);
1869
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1870 1871
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1872
			dwc2_writel(hsotg, dcfg, DCFG);
1873 1874 1875

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1876
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1877 1878 1879
			return;

		case USB_REQ_GET_STATUS:
1880
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1881 1882 1883 1884
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1885
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1886 1887 1888 1889 1890 1891 1892
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1893
		spin_unlock(&hsotg->lock);
1894
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1895
		spin_lock(&hsotg->lock);
1896 1897 1898 1899
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1900 1901
	/*
	 * the request is either unhandlable, or is not formatted correctly
1902 1903 1904
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1905
	if (ret < 0)
1906
		dwc2_hsotg_stall_ep0(hsotg);
1907 1908 1909
}

/**
1910
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1911 1912 1913 1914 1915 1916
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1917
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1918
				      struct usb_request *req)
1919
{
1920
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1921
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1922 1923 1924 1925 1926 1927

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1928
	spin_lock(&hsotg->lock);
1929
	if (req->actual == 0)
1930
		dwc2_hsotg_enqueue_setup(hsotg);
1931
	else
1932
		dwc2_hsotg_process_control(hsotg, req->buf);
1933
	spin_unlock(&hsotg->lock);
1934 1935 1936
}

/**
1937
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1938 1939 1940 1941 1942
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1943
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1944 1945
{
	struct usb_request *req = hsotg->ctrl_req;
1946
	struct dwc2_hsotg_req *hs_req = our_req(req);
1947 1948 1949 1950 1951 1952 1953
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1954
	req->complete = dwc2_hsotg_complete_setup;
1955 1956 1957 1958 1959 1960

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1961
	hsotg->eps_out[0]->dir_in = 0;
1962
	hsotg->eps_out[0]->send_zlp = 0;
1963
	hsotg->ep0_state = DWC2_EP0_SETUP;
1964

1965
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1966 1967
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1968 1969 1970 1971
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1972 1973 1974
	}
}

1975
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1976
				   struct dwc2_hsotg_ep *hs_ep)
1977 1978 1979 1980 1981 1982
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1983 1984
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1985
			index);
1986 1987
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1988 1989 1990 1991
			index);
	if (using_desc_dma(hsotg)) {
		/* Not specific buffer needed for ep0 ZLP */
		dma_addr_t dma = hs_ep->desc_list_dma;
1992

1993 1994 1995
		if (!index)
			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);

1996 1997
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
	} else {
1998 1999
		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			    DXEPTSIZ_XFERSIZE(0),
2000 2001
			    epsiz_reg);
	}
2002

2003
	ctrl = dwc2_readl(hsotg, epctl_reg);
2004 2005 2006
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
2007
	dwc2_writel(hsotg, ctrl, epctl_reg);
2008 2009
}

2010
/**
2011
 * dwc2_hsotg_complete_request - complete a request given to us
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
2022
 */
2023
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2024
					struct dwc2_hsotg_ep *hs_ep,
2025
				       struct dwc2_hsotg_req *hs_req,
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
				       int result)
{
	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

2036 2037 2038 2039
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
2040 2041 2042 2043

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

2044 2045 2046
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

2047
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2048

2049 2050 2051
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

2052 2053 2054 2055
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
2056 2057

	if (hs_req->req.complete) {
2058
		spin_unlock(&hsotg->lock);
2059
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2060
		spin_lock(&hsotg->lock);
2061 2062
	}

2063 2064 2065 2066
	/* In DDMA don't need to proceed to starting of next ISOC request */
	if (using_desc_dma(hsotg) && hs_ep->isochronous)
		return;

2067 2068
	/*
	 * Look to see if there is anything else to do. Note, the completion
2069
	 * of the previous request may have caused a new request to be started
2070 2071
	 * so be careful when doing this.
	 */
2072

J
John Youn 已提交
2073
	if (!hs_ep->req && result >= 0)
2074
		dwc2_gadget_start_next_request(hs_ep);
2075 2076
}

2077 2078 2079 2080 2081
/*
 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
 * @hs_ep: The endpoint the request was on.
 *
 * Get first request from the ep queue, determine descriptor on which complete
2082 2083 2084
 * happened. SW discovers which descriptor currently in use by HW, adjusts
 * dma_address and calculates index of completed descriptor based on the value
 * of DEPDMA register. Update actual length of request, giveback to gadget.
2085 2086 2087 2088 2089 2090 2091 2092 2093
 */
static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	struct usb_request *ureq;
	u32 desc_sts;
	u32 mask;

2094
	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2095

2096 2097 2098
	/* Process only descriptors with buffer status set to DMA done */
	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2099

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
		hs_req = get_ep_head(hs_ep);
		if (!hs_req) {
			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
			return;
		}
		ureq = &hs_req->req;

		/* Check completion status */
		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
			DEV_DMA_STS_SUCC) {
			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
				DEV_DMA_ISOC_RX_NBYTES_MASK;
			ureq->actual = ureq->length - ((desc_sts & mask) >>
				DEV_DMA_ISOC_NBYTES_SHIFT);

			/* Adjust actual len for ISOC Out if len is
			 * not align of 4
			 */
			if (!hs_ep->dir_in && ureq->length & 0x3)
				ureq->actual += 4 - (ureq->length & 0x3);
		}
2121

2122
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2123

2124 2125 2126 2127 2128
		hs_ep->compl_desc++;
		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_GENERIC - 1))
			hs_ep->compl_desc = 0;
		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
	}
2129 2130 2131
}

/*
2132 2133
 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
 * @hs_ep: The isochronous endpoint.
2134
 *
2135 2136 2137 2138
 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
 * interrupt. Reset target frame and next_desc to allow to start
 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
 * interrupt for OUT direction.
2139
 */
2140
static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2141 2142 2143
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;

2144 2145 2146
	if (!hs_ep->dir_in)
		dwc2_flush_rx_fifo(hsotg);
	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2147

2148 2149 2150
	hs_ep->target_frame = TARGET_FRAME_INITIAL;
	hs_ep->next_desc = 0;
	hs_ep->compl_desc = 0;
2151 2152
}

2153
/**
2154
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2155 2156 2157 2158 2159 2160 2161 2162
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
2163
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2164
{
2165 2166
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2167 2168 2169 2170 2171
	int to_read;
	int max_req;
	int read_ptr;

	if (!hs_req) {
2172
		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2173 2174
		int ptr;

2175
		dev_dbg(hsotg->dev,
2176
			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2177 2178 2179 2180
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
2181
			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2182 2183 2184 2185 2186 2187 2188 2189

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

2190 2191 2192
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

2193
	if (to_read > max_req) {
2194 2195
		/*
		 * more data appeared than we where willing
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

2207 2208 2209 2210
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
2211 2212
	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
		       hs_req->req.buf + read_ptr, to_read);
2213 2214 2215
}

/**
2216
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2217
 * @hsotg: The device instance
2218
 * @dir_in: If IN zlp
2219 2220 2221 2222 2223
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
2224
 * currently believed that we do not need to wait for any space in
2225 2226
 * the TxFIFO.
 */
2227
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2228
{
2229
	/* eps_out[0] is used in both directions */
2230 2231
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2232

2233
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2234 2235
}

2236
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2237
					    u32 epctl_reg)
2238 2239 2240
{
	u32 ctrl;

2241
	ctrl = dwc2_readl(hsotg, epctl_reg);
2242 2243 2244 2245
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
2246
	dwc2_writel(hsotg, ctrl, epctl_reg);
2247 2248
}

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
/*
 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
 * @hs_ep - The endpoint on which transfer went
 *
 * Iterate over endpoints descriptor chain and get info on bytes remained
 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
 */
static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	unsigned int bytes_rem = 0;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	int i;
	u32 status;

	if (!desc)
		return -EINVAL;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		status = desc->status;
		bytes_rem += status & DEV_DMA_NBYTES_MASK;

		if (status & DEV_DMA_STS_MASK)
			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
				i, status & DEV_DMA_STS_MASK);
	}

	return bytes_rem;
}

2279
/**
2280
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2281 2282 2283 2284 2285 2286
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
2287
 */
2288
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2289
{
2290
	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2291 2292
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2293
	struct usb_request *req = &hs_req->req;
2294
	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2295 2296 2297 2298 2299 2300 2301
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

2302 2303
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
2304 2305
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
2306 2307 2308
		return;
	}

2309 2310 2311
	if (using_desc_dma(hsotg))
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);

2312
	if (using_dma(hsotg)) {
2313
		unsigned int size_done;
2314

2315 2316
		/*
		 * Calculate the size of the transfer by checking how much
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

2330 2331
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
2332
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2333 2334 2335
		return;
	}

2336 2337 2338 2339
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

2340 2341 2342 2343
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
2344 2345
	}

2346 2347 2348
	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
	if (!using_desc_dma(hsotg) && epnum == 0 &&
	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2349
		/* Move to STATUS IN */
2350
		dwc2_hsotg_ep0_zlp(hsotg, true);
2351
		return;
2352 2353
	}

2354 2355 2356 2357 2358 2359 2360
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2361 2362
		else if (hs_ep->isochronous && hs_ep->interval > 1)
			dwc2_gadget_incr_frame_num(hs_ep);
2363 2364
	}

2365
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2366 2367 2368
}

/**
2369
 * dwc2_hsotg_handle_rx - RX FIFO has data
2370 2371 2372 2373 2374 2375
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
2376
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2377 2378 2379 2380 2381 2382 2383
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
2384
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2385
{
2386
	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2387 2388 2389 2390
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

2391 2392
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
2393

2394 2395
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
2396

2397
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2398
		__func__, grxstsr, size, epnum);
2399

2400 2401 2402
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2403 2404
		break;

2405
	case GRXSTS_PKTSTS_OUTDONE:
2406
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2407
			dwc2_hsotg_read_frameno(hsotg));
2408 2409

		if (!using_dma(hsotg))
2410
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2411 2412
		break;

2413
	case GRXSTS_PKTSTS_SETUPDONE:
2414 2415
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2416
			dwc2_hsotg_read_frameno(hsotg),
2417
			dwc2_readl(hsotg, DOEPCTL(0)));
2418
		/*
2419
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2420 2421 2422 2423
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2424
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2425 2426
		break;

2427
	case GRXSTS_PKTSTS_OUTRX:
2428
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2429 2430
		break;

2431
	case GRXSTS_PKTSTS_SETUPRX:
2432 2433
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2434
			dwc2_hsotg_read_frameno(hsotg),
2435
			dwc2_readl(hsotg, DOEPCTL(0)));
2436

2437 2438
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

2439
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2440 2441 2442 2443 2444 2445
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

2446
		dwc2_hsotg_dump(hsotg);
2447 2448 2449 2450 2451
		break;
	}
}

/**
2452
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2453
 * @mps: The maximum packet size in bytes.
2454
 */
2455
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2456 2457 2458
{
	switch (mps) {
	case 64:
2459
		return D0EPCTL_MPS_64;
2460
	case 32:
2461
		return D0EPCTL_MPS_32;
2462
	case 16:
2463
		return D0EPCTL_MPS_16;
2464
	case 8:
2465
		return D0EPCTL_MPS_8;
2466 2467 2468 2469 2470 2471 2472 2473
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
2474
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2475 2476 2477
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
2478
 * @mc: The multicount value
2479
 * @dir_in: True if direction is in.
2480 2481 2482 2483
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
2484
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2485 2486
					unsigned int ep, unsigned int mps,
					unsigned int mc, unsigned int dir_in)
2487
{
2488
	struct dwc2_hsotg_ep *hs_ep;
2489 2490
	u32 reg;

2491 2492 2493 2494
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

2495
	if (ep == 0) {
2496 2497
		u32 mps_bytes = mps;

2498
		/* EP0 is a special case */
2499 2500
		mps = dwc2_hsotg_ep0_mps(mps_bytes);
		if (mps > 3)
2501
			goto bad_mps;
2502
		hs_ep->ep.maxpacket = mps_bytes;
2503
		hs_ep->mc = 1;
2504
	} else {
2505
		if (mps > 1024)
2506
			goto bad_mps;
2507 2508
		hs_ep->mc = mc;
		if (mc > 3)
2509
			goto bad_mps;
2510
		hs_ep->ep.maxpacket = mps;
2511 2512
	}

2513
	if (dir_in) {
2514
		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2515
		reg &= ~DXEPCTL_MPS_MASK;
2516
		reg |= mps;
2517
		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2518
	} else {
2519
		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2520
		reg &= ~DXEPCTL_MPS_MASK;
2521
		reg |= mps;
2522
		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2523
	}
2524 2525 2526 2527 2528 2529 2530

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

2531
/**
2532
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2533 2534 2535
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
2536
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2537
{
2538 2539
	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    GRSTCTL);
2540 2541

	/* wait until the fifo is flushed */
2542 2543 2544
	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
			 __func__);
2545
}
2546 2547

/**
2548
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2549 2550 2551 2552 2553 2554
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
2555
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2556
			    struct dwc2_hsotg_ep *hs_ep)
2557
{
2558
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2559

2560 2561 2562 2563 2564 2565
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
2566
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2567
					      hs_ep->dir_in, 0);
2568
		return 0;
2569
	}
2570 2571 2572 2573

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
2574
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2575 2576 2577 2578 2579 2580
	}

	return 0;
}

/**
2581
 * dwc2_hsotg_complete_in - complete IN transfer
2582 2583 2584 2585 2586 2587
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
2588
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2589
				   struct dwc2_hsotg_ep *hs_ep)
2590
{
2591
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2592
	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2593 2594 2595 2596 2597 2598 2599
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

2600
	/* Finish ZLP handling for IN EP0 transactions */
2601 2602
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
2603 2604 2605 2606 2607 2608 2609

		/*
		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
		 * changed to IN. Change back to complete OUT transfer request
		 */
		hs_ep->dir_in = 0;

2610
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2611 2612 2613
		if (hsotg->test_mode) {
			int ret;

2614
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2615 2616
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2617
					hsotg->test_mode);
2618
				dwc2_hsotg_stall_ep0(hsotg);
2619 2620 2621
				return;
			}
		}
2622
		dwc2_hsotg_enqueue_setup(hsotg);
2623 2624 2625
		return;
	}

2626 2627
	/*
	 * Calculate the size of the transfer by checking how much is left
2628 2629 2630 2631 2632 2633 2634
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */
2635 2636 2637 2638 2639 2640 2641 2642
	if (using_desc_dma(hsotg)) {
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
		if (size_left < 0)
			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
				size_left);
	} else {
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
	}
2643 2644 2645 2646 2647 2648 2649 2650 2651

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
2652 2653 2654
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

2655 2656
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2657
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2658 2659 2660
		return;
	}

2661
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2662
	if (hs_ep->send_zlp) {
2663
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2664
		hs_ep->send_zlp = 0;
2665 2666 2667 2668
		/* transfer will be completed on next complete interrupt */
		return;
	}

2669 2670
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
2671
		dwc2_hsotg_ep0_zlp(hsotg, false);
2672 2673 2674
		return;
	}

2675
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2676 2677
}

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

2696 2697
	mask = dwc2_readl(hsotg, epmsk_reg);
	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2698 2699 2700
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

2701
	ints = dwc2_readl(hsotg, epint_reg);
2702 2703 2704 2705
	ints &= mask;
	return ints;
}

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
/**
 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This interrupt indicates that the endpoint has been disabled per the
 * application's request.
 *
 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
 * in case of ISOC completes current request.
 *
 * For ISOC-OUT endpoints completes expired requests. If there is remaining
 * request starts it.
 */
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	unsigned char idx = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2726
	int dctl = dwc2_readl(hsotg, DCTL);
2727 2728 2729 2730

	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

	if (dir_in) {
2731
		int epctl = dwc2_readl(hsotg, epctl_reg);
2732 2733 2734 2735 2736 2737 2738 2739 2740

		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);

		if (hs_ep->isochronous) {
			dwc2_hsotg_complete_in(hsotg, hs_ep);
			return;
		}

		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2741
			int dctl = dwc2_readl(hsotg, DCTL);
2742 2743

			dctl |= DCTL_CGNPINNAK;
2744
			dwc2_writel(hsotg, dctl, DCTL);
2745 2746 2747 2748 2749 2750
		}
		return;
	}

	if (dctl & DCTL_GOUTNAKSTS) {
		dctl |= DCTL_CGOUTNAK;
2751
		dwc2_writel(hsotg, dctl, DCTL);
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
	}

	if (!hs_ep->isochronous)
		return;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
			__func__, hs_ep);
		return;
	}

	do {
		hs_req = get_ep_head(hs_ep);
		if (hs_req)
			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
						    -ENODATA);
		dwc2_gadget_incr_frame_num(hs_ep);
2769 2770
		/* Update current frame number value. */
		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2771 2772 2773 2774 2775
	} while (dwc2_gadget_target_frame_elapsed(hs_ep));

	dwc2_gadget_start_next_request(hs_ep);
}

2776 2777
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2778
 * @ep: The endpoint on which interrupt is asserted.
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;

	if (dir_in || !ep->isochronous)
		return;

2796 2797 2798
	if (using_desc_dma(hsotg)) {
		if (ep->target_frame == TARGET_FRAME_INITIAL) {
			/* Start first ISO Out */
2799
			ep->target_frame = hsotg->frame_number;
2800 2801 2802 2803 2804
			dwc2_gadget_start_isoc_ddma(ep);
		}
		return;
	}

2805 2806 2807 2808
	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 ctrl;

2809
		ep->target_frame = hsotg->frame_number;
2810 2811
		dwc2_gadget_incr_frame_num(ep);

2812
		ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2813 2814 2815 2816 2817
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

2818
		dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2819 2820 2821
	}

	dwc2_gadget_start_next_request(ep);
2822
	doepmsk = dwc2_readl(hsotg, DOEPMSK);
2823
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2824
	dwc2_writel(hsotg, doepmsk, DOEPMSK);
2825 2826 2827
}

/**
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
 * dwc2_gadget_handle_nak - handle NAK interrupt
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-IN transfer, synchronization done with
 * first IN token received from host while corresponding EP is disabled.
 *
 * Device does not know when first one token will arrive from host. On first
 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
 * sent in response to that as there was no data in FIFO. SW is basing on this
 * interrupt to obtain frame in which token has come and then based on the
 * interval calculates next frame for transfer.
 */
2841 2842 2843 2844 2845 2846 2847 2848 2849
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2850 2851

		if (using_desc_dma(hsotg)) {
2852
			hs_ep->target_frame = hsotg->frame_number;
2853
			dwc2_gadget_incr_frame_num(hs_ep);
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870

			/* In service interval mode target_frame must
			 * be set to last (u)frame of the service interval.
			 */
			if (hsotg->params.service_interval) {
				/* Set target_frame to the first (u)frame of
				 * the service interval
				 */
				hs_ep->target_frame &= ~hs_ep->interval + 1;

				/* Set target_frame to the last (u)frame of
				 * the service interval
				 */
				dwc2_gadget_incr_frame_num(hs_ep);
				dwc2_gadget_dec_frame_num_by_one(hs_ep);
			}

2871 2872 2873 2874
			dwc2_gadget_start_isoc_ddma(hs_ep);
			return;
		}

2875
		hs_ep->target_frame = hsotg->frame_number;
2876
		if (hs_ep->interval > 1) {
2877
			u32 ctrl = dwc2_readl(hsotg,
2878 2879 2880 2881 2882 2883
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

2884
			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2885 2886 2887 2888 2889 2890
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

2891 2892
	if (!using_desc_dma(hsotg))
		dwc2_gadget_incr_frame_num(hs_ep);
2893 2894
}

2895
/**
2896
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2897 2898 2899 2900 2901
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2902
 */
2903
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2904
			     int dir_in)
2905
{
2906
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2907 2908 2909
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2910
	u32 ints;
2911
	u32 ctrl;
2912

2913
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2914
	ctrl = dwc2_readl(hsotg, epctl_reg);
2915

2916
	/* Clear endpoint interrupts */
2917
	dwc2_writel(hsotg, ints, epint_reg);
2918

2919 2920
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2921
			__func__, idx, dir_in ? "in" : "out");
2922 2923 2924
		return;
	}

2925 2926 2927
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2928 2929 2930 2931
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	/*
	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
	 * stage and xfercomplete was generated without SETUP phase done
	 * interrupt. SW should parse received setup packet only after host's
	 * exit from setup phase of control transfer.
	 */
	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
		ints &= ~DXEPINT_XFERCOMPL;

2942
	if (ints & DXEPINT_XFERCOMPL) {
2943
		dev_dbg(hsotg->dev,
2944
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2945 2946
			__func__, dwc2_readl(hsotg, epctl_reg),
			dwc2_readl(hsotg, epsiz_reg));
2947

2948 2949
		/* In DDMA handle isochronous requests separately */
		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2950 2951 2952
			/* XferCompl set along with BNA */
			if (!(ints & DXEPINT_BNAINTR))
				dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2953 2954 2955 2956 2957 2958
		} else if (dir_in) {
			/*
			 * We get OutDone from the FIFO, so we only
			 * need to look at completing IN requests here
			 * if operating slave mode
			 */
2959 2960 2961
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);

2962
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2963 2964
			if (ints & DXEPINT_NAKINTRPT)
				ints &= ~DXEPINT_NAKINTRPT;
2965

2966
			if (idx == 0 && !hs_ep->req)
2967
				dwc2_hsotg_enqueue_setup(hsotg);
2968
		} else if (using_dma(hsotg)) {
2969 2970 2971 2972
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2973 2974
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);
2975

2976
			dwc2_hsotg_handle_outdone(hsotg, idx);
2977 2978 2979
		}
	}

2980 2981
	if (ints & DXEPINT_EPDISBLD)
		dwc2_gadget_handle_ep_disabled(hs_ep);
2982

2983 2984 2985 2986 2987 2988
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2989
	if (ints & DXEPINT_AHBERR)
2990 2991
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2992
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2993 2994 2995
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2996 2997
			/*
			 * this is the notification we've received a
2998 2999
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
3000 3001
			 * the setup here.
			 */
3002 3003 3004 3005

			if (dir_in)
				WARN_ON_ONCE(1);
			else
3006
				dwc2_hsotg_handle_outdone(hsotg, 0);
3007 3008 3009
		}
	}

3010
	if (ints & DXEPINT_STSPHSERCVD) {
3011 3012
		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);

3013 3014 3015 3016 3017 3018 3019
		/* Safety check EP0 state when STSPHSERCVD asserted */
		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
			/* Move to STATUS IN for DDMA */
			if (using_desc_dma(hsotg))
				dwc2_hsotg_ep0_zlp(hsotg, true);
		}

3020 3021
	}

3022
	if (ints & DXEPINT_BACK2BACKSETUP)
3023 3024
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

3025 3026 3027
	if (ints & DXEPINT_BNAINTR) {
		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
		if (hs_ep->isochronous)
3028
			dwc2_gadget_handle_isoc_bna(hs_ep);
3029 3030
	}

3031
	if (dir_in && !hs_ep->isochronous) {
3032
		/* not sure if this is important, but we'll clear it anyway */
3033
		if (ints & DXEPINT_INTKNTXFEMP) {
3034 3035 3036 3037 3038
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
3039
		if (ints & DXEPINT_INTKNEPMIS) {
3040 3041 3042
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
3043 3044 3045

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
3046
		    ints & DXEPINT_TXFEMP) {
3047 3048
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
3049
			if (!using_dma(hsotg))
3050
				dwc2_hsotg_trytx(hsotg, hs_ep);
3051
		}
3052 3053 3054 3055
	}
}

/**
3056
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3057 3058 3059 3060
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
3061
 */
3062
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3063
{
3064
	u32 dsts = dwc2_readl(hsotg, DSTS);
3065
	int ep0_mps = 0, ep_mps = 8;
3066

3067 3068
	/*
	 * This should signal the finish of the enumeration phase
3069
	 * of the USB handshaking, so we should now know what rate
3070 3071
	 * we connected at.
	 */
3072 3073 3074

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

3075 3076
	/*
	 * note, since we're limited by the size of transfer on EP0, and
3077
	 * it seems IN transfers must be a even number of packets we do
3078 3079
	 * not advertise a 64byte MPS on EP0.
	 */
3080 3081

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3082
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3083 3084
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
3085 3086
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
3087
		ep_mps = 1023;
3088 3089
		break;

3090
	case DSTS_ENUMSPD_HS:
3091 3092
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
3093
		ep_mps = 1024;
3094 3095
		break;

3096
	case DSTS_ENUMSPD_LS:
3097
		hsotg->gadget.speed = USB_SPEED_LOW;
3098 3099
		ep0_mps = 8;
		ep_mps = 8;
3100 3101
		/*
		 * note, we don't actually support LS in this driver at the
3102 3103 3104 3105 3106
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
3107 3108
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
3109

3110 3111 3112 3113
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
3114 3115 3116

	if (ep0_mps) {
		int i;
3117
		/* Initialize ep0 for both in and out directions */
3118 3119
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3120 3121
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
3122 3123
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 1);
3124
			if (hsotg->eps_out[i])
3125 3126
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 0);
3127
		}
3128 3129 3130 3131
	}

	/* ensure after enumeration our EP0 is active */

3132
	dwc2_hsotg_enqueue_setup(hsotg);
3133 3134

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3135 3136
		dwc2_readl(hsotg, DIEPCTL0),
		dwc2_readl(hsotg, DOEPCTL0));
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
3148
static void kill_all_requests(struct dwc2_hsotg *hsotg,
3149
			      struct dwc2_hsotg_ep *ep,
3150
			      int result)
3151
{
3152
	struct dwc2_hsotg_req *req, *treq;
3153
	unsigned int size;
3154

3155
	ep->req = NULL;
3156

3157
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3158
		dwc2_hsotg_complete_request(hsotg, ep, req,
3159
					    result);
3160

3161 3162
	if (!hsotg->dedicated_fifos)
		return;
3163
	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3164
	if (size < ep->fifo_size)
3165
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3166 3167 3168
}

/**
3169
 * dwc2_hsotg_disconnect - disconnect service
3170 3171
 * @hsotg: The device state.
 *
3172 3173 3174
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
3175
 */
3176
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3177
{
3178
	unsigned int ep;
3179

3180 3181 3182 3183
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
3184
	hsotg->test_mode = 0;
3185

3186
	/* all endpoints should be shutdown */
3187 3188
	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
3189 3190
			kill_all_requests(hsotg, hsotg->eps_in[ep],
					  -ESHUTDOWN);
3191
		if (hsotg->eps_out[ep])
3192 3193
			kill_all_requests(hsotg, hsotg->eps_out[ep],
					  -ESHUTDOWN);
3194
	}
3195 3196

	call_gadget(hsotg, disconnect);
3197
	hsotg->lx_state = DWC2_L3;
J
John Stultz 已提交
3198 3199

	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3200 3201 3202
}

/**
3203
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3204 3205 3206
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
3207
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3208
{
3209
	struct dwc2_hsotg_ep *ep;
3210 3211 3212
	int epno, ret;

	/* look through for any more data to transmit */
3213
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3214 3215 3216 3217
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
3218 3219 3220 3221 3222 3223 3224 3225

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

3226
		ret = dwc2_hsotg_trytx(hsotg, ep);
3227 3228 3229 3230 3231 3232
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
3233 3234 3235
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
3236

3237
static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3238
/**
3239
 * dwc2_hsotg_core_init - issue softreset to the core
3240
 * @hsotg: The device state
3241
 * @is_usb_reset: Usb resetting flag
3242 3243 3244
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
3245
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3246
				       bool is_usb_reset)
3247
{
3248
	u32 intmsk;
3249
	u32 val;
3250
	u32 usbcfg;
3251
	u32 dcfg = 0;
3252
	int ep;
3253

3254 3255 3256
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

3257
	if (!is_usb_reset) {
3258
		if (dwc2_core_reset(hsotg, true))
3259
			return;
3260 3261 3262 3263 3264 3265 3266 3267 3268
	} else {
		/* all endpoints should be shutdown */
		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
			if (hsotg->eps_out[ep])
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
		}
	}
3269 3270 3271 3272 3273 3274

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

3275
	/* keep other bits untouched (so e.g. forced modes are not lost) */
3276
	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3277
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3278
		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3279

3280
	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3281 3282
	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3283 3284 3285 3286 3287 3288 3289 3290
		/* FS/LS Dedicated Transceiver Interface */
		usbcfg |= GUSBCFG_PHYSEL;
	} else {
		/* set the PLL on, remove the HNP/SRP and set the PHY */
		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
			(val << GUSBCFG_USBTRDTIM_SHIFT);
	}
3291
	dwc2_writel(hsotg, usbcfg, GUSBCFG);
3292

3293
	dwc2_hsotg_init_fifo(hsotg);
3294

3295
	if (!is_usb_reset)
3296
		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3297

3298
	dcfg |= DCFG_EPMISCNT(1);
3299 3300 3301 3302 3303 3304

	switch (hsotg->params.speed) {
	case DWC2_SPEED_PARAM_LOW:
		dcfg |= DCFG_DEVSPD_LS;
		break;
	case DWC2_SPEED_PARAM_FULL:
3305 3306 3307 3308
		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
			dcfg |= DCFG_DEVSPD_FS48;
		else
			dcfg |= DCFG_DEVSPD_FS;
3309 3310
		break;
	default:
3311 3312
		dcfg |= DCFG_DEVSPD_HS;
	}
3313

3314 3315 3316
	if (hsotg->params.ipg_isoc_en)
		dcfg |= DCFG_IPG_ISOC_SUPPORDED;

3317
	dwc2_writel(hsotg, dcfg,  DCFG);
3318 3319

	/* Clear any pending OTG interrupts */
3320
	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3321 3322

	/* Clear any pending interrupts */
3323
	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3324
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3325
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3326 3327
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3328 3329
		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
		GINTSTS_LPMTRANRCVD;
3330 3331 3332

	if (!using_desc_dma(hsotg))
		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3333

J
John Youn 已提交
3334
	if (!hsotg->params.external_id_pin_ctl)
3335 3336
		intmsk |= GINTSTS_CONIDSTSCHNG;

3337
	dwc2_writel(hsotg, intmsk, GINTMSK);
3338

3339
	if (using_dma(hsotg)) {
3340
		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3341
			    hsotg->params.ahbcfg,
3342
			    GAHBCFG);
3343 3344 3345

		/* Set DDMA mode support in the core if needed */
		if (using_desc_dma(hsotg))
3346
			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3347 3348

	} else {
3349
		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3350 3351
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3352
			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3353
	}
3354 3355

	/*
3356 3357 3358
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
3359 3360
	 */

3361
	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3362
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3363
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3364
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3365
		DIEPMSK);
3366 3367 3368

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3369
	 * DMA mode we may need this and StsPhseRcvd.
3370
	 */
3371
	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3372
		DOEPMSK_STSPHSERCVDMSK) : 0) |
3373
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3374
		DOEPMSK_SETUPMSK,
3375
		DOEPMSK);
3376

3377
	/* Enable BNA interrupt for DDMA */
3378
	if (using_desc_dma(hsotg)) {
3379 3380
		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3381
	}
3382

3383 3384 3385 3386
	/* Enable Service Interval mode if supported */
	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);

3387
	dwc2_writel(hsotg, 0, DAINTMSK);
3388 3389

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3390 3391
		dwc2_readl(hsotg, DIEPCTL0),
		dwc2_readl(hsotg, DOEPCTL0));
3392 3393

	/* enable in and out endpoint interrupts */
3394
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3395 3396 3397 3398 3399 3400 3401

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
3402
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3403 3404

	/* Enable interrupts for EP0 in and out */
3405 3406
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3407

3408
	if (!is_usb_reset) {
3409
		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3410
		udelay(10);  /* see openiboot */
3411
		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3412
	}
3413

3414
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3415 3416

	/*
3417
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3418 3419 3420 3421
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
3422 3423
	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3424

3425
	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3426 3427
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
3428
	       DOEPCTL0);
3429 3430

	/* enable, but don't activate EP0in */
3431 3432
	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
	       DXEPCTL_USBACTEP, DIEPCTL0);
3433 3434

	/* clear global NAKs */
3435 3436 3437
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
3438
	dwc2_set_bit(hsotg, DCTL, val);
3439

3440 3441 3442
	/* configure the core to support LPM */
	dwc2_gadget_init_lpm(hsotg);

3443 3444 3445 3446
	/* program GREFCLK register if needed */
	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
		dwc2_gadget_program_ref_clk(hsotg);

3447 3448 3449
	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

3450
	hsotg->lx_state = DWC2_L0;
3451 3452 3453 3454

	dwc2_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3455 3456
		dwc2_readl(hsotg, DIEPCTL0),
		dwc2_readl(hsotg, DOEPCTL0));
3457 3458
}

3459
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3460 3461
{
	/* set the soft-disconnect bit */
3462
	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3463
}
3464

3465
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3466
{
3467
	/* remove the soft-disconnect and let's go */
3468
	dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3469 3470
}

3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
/**
 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted IN Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
 */
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hsotg_ep *hs_ep;
	u32 epctrl;
3488
	u32 daintmsk;
3489 3490 3491 3492
	u32 idx;

	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");

3493
	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3494

3495
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3496
		hs_ep = hsotg->eps_in[idx];
3497
		/* Proceed only unmasked ISOC EPs */
3498
		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3499 3500
			continue;

3501
		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3502
		if ((epctrl & DXEPCTL_EPENA) &&
3503 3504 3505
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			epctrl |= DXEPCTL_SNAK;
			epctrl |= DXEPCTL_EPDIS;
3506
			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3507 3508 3509 3510
		}
	}

	/* Clear interrupt */
3511
	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
}

/**
 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted OUT Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
 */
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
{
	u32 gintsts;
	u32 gintmsk;
3531
	u32 daintmsk;
3532 3533 3534 3535 3536 3537
	u32 epctrl;
	struct dwc2_hsotg_ep *hs_ep;
	int idx;

	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);

3538
	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3539 3540
	daintmsk >>= DAINT_OUTEP_SHIFT;

3541
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3542
		hs_ep = hsotg->eps_out[idx];
3543
		/* Proceed only unmasked ISOC EPs */
3544
		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3545 3546
			continue;

3547
		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3548
		if ((epctrl & DXEPCTL_EPENA) &&
3549 3550
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			/* Unmask GOUTNAKEFF interrupt */
3551
			gintmsk = dwc2_readl(hsotg, GINTMSK);
3552
			gintmsk |= GINTSTS_GOUTNAKEFF;
3553
			dwc2_writel(hsotg, gintmsk, GINTMSK);
3554

3555
			gintsts = dwc2_readl(hsotg, GINTSTS);
3556
			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3557
				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3558 3559
				break;
			}
3560 3561 3562 3563
		}
	}

	/* Clear interrupt */
3564
	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3565 3566
}

3567
/**
3568
 * dwc2_hsotg_irq - handle device interrupt
3569 3570 3571
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
3572
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3573
{
3574
	struct dwc2_hsotg *hsotg = pw;
3575 3576 3577 3578
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

3579 3580 3581
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

3582
	spin_lock(&hsotg->lock);
3583
irq_retry:
3584 3585
	gintsts = dwc2_readl(hsotg, GINTSTS);
	gintmsk = dwc2_readl(hsotg, GINTMSK);
3586 3587 3588 3589 3590 3591

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

3592 3593 3594
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

3595
		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3596 3597 3598

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
3599
			dwc2_exit_partial_power_down(hsotg, true);
3600 3601 3602 3603 3604
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3605
		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3606 3607 3608 3609
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3610
			dwc2_readl(hsotg, GNPTXSTS));
3611

3612
		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3613 3614 3615 3616

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

3617
		/* Reset device address to zero */
3618
		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3619

3620 3621 3622 3623
		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

3624
	if (gintsts & GINTSTS_ENUMDONE) {
3625
		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3626

3627
		dwc2_hsotg_irq_enumdone(hsotg);
3628 3629
	}

3630
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3631 3632
		u32 daint = dwc2_readl(hsotg, DAINT);
		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3633
		u32 daint_out, daint_in;
3634 3635
		int ep;

3636
		daint &= daintmsk;
3637 3638
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3639

3640 3641
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

3642 3643
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
3644
			if (daint_out & 1)
3645
				dwc2_hsotg_epint(hsotg, ep, 0);
3646 3647
		}

3648 3649
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
3650
			if (daint_in & 1)
3651
				dwc2_hsotg_epint(hsotg, ep, 1);
3652 3653 3654 3655 3656
		}
	}

	/* check both FIFOs */

3657
	if (gintsts & GINTSTS_NPTXFEMP) {
3658 3659
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

3660 3661
		/*
		 * Disable the interrupt to stop it happening again
3662
		 * unless one of these endpoint routines decides that
3663 3664
		 * it needs re-enabling
		 */
3665

3666 3667
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
3668 3669
	}

3670
	if (gintsts & GINTSTS_PTXFEMP) {
3671 3672
		dev_dbg(hsotg->dev, "PTxFEmp\n");

3673
		/* See note in GINTSTS_NPTxFEmp */
3674

3675 3676
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
3677 3678
	}

3679
	if (gintsts & GINTSTS_RXFLVL) {
3680 3681
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3682
		 * we need to retry dwc2_hsotg_handle_rx if this is still
3683 3684
		 * set.
		 */
3685

3686
		dwc2_hsotg_handle_rx(hsotg);
3687 3688
	}

3689
	if (gintsts & GINTSTS_ERLYSUSP) {
3690
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3691
		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3692 3693
	}

3694 3695
	/*
	 * these next two seem to crop-up occasionally causing the core
3696
	 * to shutdown the USB transfer, so try clearing them and logging
3697 3698
	 * the occurrence.
	 */
3699

3700
	if (gintsts & GINTSTS_GOUTNAKEFF) {
3701 3702 3703
		u8 idx;
		u32 epctrl;
		u32 gintmsk;
3704
		u32 daintmsk;
3705 3706
		struct dwc2_hsotg_ep *hs_ep;

3707
		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3708
		daintmsk >>= DAINT_OUTEP_SHIFT;
3709
		/* Mask this interrupt */
3710
		gintmsk = dwc2_readl(hsotg, GINTMSK);
3711
		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3712
		dwc2_writel(hsotg, gintmsk, GINTMSK);
3713 3714

		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3715
		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3716
			hs_ep = hsotg->eps_out[idx];
3717
			/* Proceed only unmasked ISOC EPs */
3718
			if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3719 3720
				continue;

3721
			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3722

3723
			if (epctrl & DXEPCTL_EPENA) {
3724 3725
				epctrl |= DXEPCTL_SNAK;
				epctrl |= DXEPCTL_EPDIS;
3726
				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3727 3728
			}
		}
3729

3730
		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3731 3732
	}

3733
	if (gintsts & GINTSTS_GINNAKEFF) {
3734 3735
		dev_info(hsotg->dev, "GINNakEff triggered\n");

3736
		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3737

3738
		dwc2_hsotg_dump(hsotg);
3739 3740
	}

3741 3742
	if (gintsts & GINTSTS_INCOMPL_SOIN)
		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3743

3744 3745
	if (gintsts & GINTSTS_INCOMPL_SOOUT)
		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3746

3747 3748 3749 3750
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
3751 3752

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3753
		goto irq_retry;
3754

3755 3756 3757 3758
	/* Check WKUP_ALERT interrupt*/
	if (hsotg->params.service_interval)
		dwc2_gadget_wkup_alert_handler(hsotg);

3759 3760
	spin_unlock(&hsotg->lock);

3761 3762 3763
	return IRQ_HANDLED;
}

3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
				   struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
		hs_ep->name);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3780
			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3781 3782 3783 3784 3785 3786 3787
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						    DXEPINT_INEPNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout DIEPINT.NAKEFF\n",
					 __func__);
		} else {
3788
			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3789 3790 3791 3792 3793 3794 3795 3796
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
						    GINTSTS_GINNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout GINTSTS.GINNAKEFF\n",
					 __func__);
		}
	} else {
3797 3798
		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3799 3800 3801 3802 3803 3804 3805 3806 3807

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
					    GINTSTS_GOUTNAKEFF, 100))
			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
				 __func__);
	}

	/* Disable ep */
3808
	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3809 3810 3811 3812 3813 3814 3815

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			 "%s: timeout DOEPCTL.EPDisable\n", __func__);

	/* Clear EPDISBLD interrupt */
3816
	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830

	if (hs_ep->dir_in) {
		unsigned short fifo_index;

		if (hsotg->dedicated_fifos || hs_ep->periodic)
			fifo_index = hs_ep->fifo_index;
		else
			fifo_index = 0;

		/* Flush TX FIFO */
		dwc2_flush_tx_fifo(hsotg, fifo_index);

		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3831
			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3832 3833 3834

	} else {
		/* Remove global NAKs */
3835
		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3836 3837 3838
	}
}

3839
/**
3840
 * dwc2_hsotg_ep_enable - enable the given endpoint
3841 3842 3843 3844
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
3845
 */
3846
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3847
				const struct usb_endpoint_descriptor *desc)
3848
{
3849
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3850
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3851
	unsigned long flags;
3852
	unsigned int index = hs_ep->index;
3853 3854 3855
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
3856
	u32 mc;
3857
	u32 mask;
3858 3859
	unsigned int dir_in;
	unsigned int i, val, size;
3860
	int ret = 0;
3861
	unsigned char ep_type;
3862 3863 3864 3865 3866 3867 3868

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
3869 3870 3871 3872
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
3873 3874 3875 3876 3877 3878 3879

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

3880
	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3881
	mps = usb_endpoint_maxp(desc);
3882
	mc = usb_endpoint_maxp_mult(desc);
3883

3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
	/* ISOC IN in DDMA supported bInterval up to 10 */
	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
	    dir_in && desc->bInterval > 10) {
		dev_err(hsotg->dev,
			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
		return -EINVAL;
	}

	/* High bandwidth ISOC OUT in DDMA not supported */
	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
	    !dir_in && mc > 1) {
		dev_err(hsotg->dev,
			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
		return -EINVAL;
	}

3900
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3901

3902
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3903
	epctrl = dwc2_readl(hsotg, epctrl_reg);
3904 3905 3906 3907

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

3908
	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3909 3910
	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3911 3912
			MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
3913
			&hs_ep->desc_list_dma, GFP_ATOMIC);
3914 3915 3916 3917 3918 3919
		if (!hs_ep->desc_list) {
			ret = -ENOMEM;
			goto error2;
		}
	}

3920
	spin_lock_irqsave(&hsotg->lock, flags);
3921

3922 3923
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
3924

3925 3926 3927 3928
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
3929
	epctrl |= DXEPCTL_USBACTEP;
3930 3931

	/* update the endpoint state */
3932
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3933 3934

	/* default, set to non-periodic */
3935
	hs_ep->isochronous = 0;
3936
	hs_ep->periodic = 0;
3937
	hs_ep->halted = 0;
3938
	hs_ep->interval = desc->bInterval;
3939

3940
	switch (ep_type) {
3941
	case USB_ENDPOINT_XFER_ISOC:
3942 3943
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
3944
		hs_ep->isochronous = 1;
3945
		hs_ep->interval = 1 << (desc->bInterval - 1);
3946
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3947
		hs_ep->next_desc = 0;
3948
		hs_ep->compl_desc = 0;
3949
		if (dir_in) {
3950
			hs_ep->periodic = 1;
3951
			mask = dwc2_readl(hsotg, DIEPMSK);
3952
			mask |= DIEPMSK_NAKMSK;
3953
			dwc2_writel(hsotg, mask, DIEPMSK);
3954
		} else {
3955
			mask = dwc2_readl(hsotg, DOEPMSK);
3956
			mask |= DOEPMSK_OUTTKNEPDISMSK;
3957
			dwc2_writel(hsotg, mask, DOEPMSK);
3958
		}
3959
		break;
3960 3961

	case USB_ENDPOINT_XFER_BULK:
3962
		epctrl |= DXEPCTL_EPTYPE_BULK;
3963 3964 3965
		break;

	case USB_ENDPOINT_XFER_INT:
3966
		if (dir_in)
3967 3968
			hs_ep->periodic = 1;

3969 3970 3971
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

3972
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3973 3974 3975
		break;

	case USB_ENDPOINT_XFER_CONTROL:
3976
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3977 3978 3979
		break;
	}

3980 3981
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
3982 3983
	 * a unique tx-fifo even if it is non-periodic.
	 */
3984
	if (dir_in && hsotg->dedicated_fifos) {
3985 3986
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
3987 3988

		size = hs_ep->ep.maxpacket * hs_ep->mc;
3989
		for (i = 1; i < hsotg->num_of_eps; ++i) {
3990
			if (hsotg->fifo_map & (1 << i))
3991
				continue;
3992
			val = dwc2_readl(hsotg, DPTXFSIZN(i));
3993
			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3994 3995
			if (val < size)
				continue;
3996 3997 3998 3999 4000
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
4001
		}
4002
		if (!fifo_index) {
4003 4004
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
4005
			ret = -ENOMEM;
4006
			goto error1;
4007
		}
4008 4009 4010 4011
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
4012
	}
4013

4014
	/* for non control endpoints, set PID to D0 */
4015
	if (index && !hs_ep->isochronous)
4016
		epctrl |= DXEPCTL_SETD0PID;
4017

4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
	/* WA for Full speed ISOC IN in DDMA mode.
	 * By Clear NAK status of EP, core will send ZLP
	 * to IN token and assert NAK interrupt relying
	 * on TxFIFO status only
	 */

	if (hsotg->gadget.speed == USB_SPEED_FULL &&
	    hs_ep->isochronous && dir_in) {
		/* The WA applies only to core versions from 2.72a
		 * to 4.00a (including both). Also for FS_IOT_1.00a
		 * and HS_IOT_1.00a.
		 */
4030
		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4031 4032 4033 4034 4035 4036 4037 4038

		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
			epctrl |= DXEPCTL_CNAK;
	}

4039 4040 4041
	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

4042
	dwc2_writel(hsotg, epctrl, epctrl_reg);
4043
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4044
		__func__, dwc2_readl(hsotg, epctrl_reg));
4045 4046

	/* enable the endpoint interrupt */
4047
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4048

4049
error1:
4050
	spin_unlock_irqrestore(&hsotg->lock, flags);
4051 4052 4053

error2:
	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4054
		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
4055 4056 4057 4058 4059
			sizeof(struct dwc2_dma_desc),
			hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

4060
	return ret;
4061 4062
}

4063
/**
4064
 * dwc2_hsotg_ep_disable - disable given endpoint
4065 4066
 * @ep: The endpoint to disable.
 */
4067
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4068
{
4069
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4070
	struct dwc2_hsotg *hsotg = hs_ep->parent;
4071 4072 4073 4074 4075
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 ctrl;

4076
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4077

4078
	if (ep == &hsotg->eps_out[0]->ep) {
4079 4080
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
4081 4082 4083 4084 4085
	}

	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
		return -EINVAL;
4086 4087
	}

4088
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4089

4090
	ctrl = dwc2_readl(hsotg, epctrl_reg);
4091 4092 4093 4094

	if (ctrl & DXEPCTL_EPENA)
		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);

4095 4096 4097
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
4098 4099

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4100
	dwc2_writel(hsotg, ctrl, epctrl_reg);
4101 4102

	/* disable endpoint interrupts */
4103
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4104

4105 4106 4107
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

4108 4109 4110 4111
	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;

4112 4113 4114
	return 0;
}

4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
{
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&hsotg->lock, flags);
	ret = dwc2_hsotg_ep_disable(ep);
	spin_unlock_irqrestore(&hsotg->lock, flags);
	return ret;
}

4128 4129 4130 4131
/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
4132
 */
4133
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4134
{
4135
	struct dwc2_hsotg_req *req, *treq;
4136 4137 4138 4139 4140 4141 4142 4143 4144

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

4145
/**
4146
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4147 4148 4149
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
4150
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4151
{
4152 4153
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4154
	struct dwc2_hsotg *hs = hs_ep->parent;
4155 4156
	unsigned long flags;

4157
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4158

4159
	spin_lock_irqsave(&hs->lock, flags);
4160 4161

	if (!on_list(hs_ep, hs_req)) {
4162
		spin_unlock_irqrestore(&hs->lock, flags);
4163 4164 4165
		return -EINVAL;
	}

4166 4167 4168 4169
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

4170
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4171
	spin_unlock_irqrestore(&hs->lock, flags);
4172 4173 4174 4175

	return 0;
}

4176
/**
4177
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4178 4179
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
4180 4181 4182 4183 4184
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
4185
 */
4186
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4187
{
4188
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4189
	struct dwc2_hsotg *hs = hs_ep->parent;
4190 4191 4192
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
4193
	u32 xfertype;
4194 4195 4196

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

4197 4198
	if (index == 0) {
		if (value)
4199
			dwc2_hsotg_stall_ep0(hs);
4200 4201 4202 4203 4204 4205
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

4206 4207 4208 4209 4210
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

4211 4212 4213 4214 4215 4216
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

4217 4218
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
4219
		epctl = dwc2_readl(hs, epreg);
4220 4221

		if (value) {
4222
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4223 4224 4225 4226 4227 4228
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4229
			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4230
				epctl |= DXEPCTL_SETD0PID;
4231
		}
4232
		dwc2_writel(hs, epctl, epreg);
4233
	} else {
4234
		epreg = DOEPCTL(index);
4235
		epctl = dwc2_readl(hs, epreg);
4236

J
John Youn 已提交
4237
		if (value) {
4238
			epctl |= DXEPCTL_STALL;
J
John Youn 已提交
4239
		} else {
4240 4241 4242
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4243
			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4244
				epctl |= DXEPCTL_SETD0PID;
4245
		}
4246
		dwc2_writel(hs, epctl, epreg);
4247
	}
4248

4249 4250
	hs_ep->halted = value;

4251 4252 4253
	return 0;
}

4254
/**
4255
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4256 4257 4258
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
4259
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4260
{
4261
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4262
	struct dwc2_hsotg *hs = hs_ep->parent;
4263 4264 4265 4266
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
4267
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4268 4269 4270 4271 4272
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

4273
static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4274
	.enable		= dwc2_hsotg_ep_enable,
4275
	.disable	= dwc2_hsotg_ep_disable_lock,
4276 4277 4278 4279 4280
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
4281
	/* note, don't believe we have any call for the fifo routines */
4282 4283
};

4284
/**
4285
 * dwc2_hsotg_init - initialize the usb core
4286 4287
 * @hsotg: The driver state
 */
4288
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4289
{
4290
	u32 trdtim;
4291
	u32 usbcfg;
4292 4293
	/* unmask subset of endpoint interrupts */

4294
	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4295
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4296
		    DIEPMSK);
4297

4298
	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4299
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4300
		    DOEPMSK);
4301

4302
	dwc2_writel(hsotg, 0, DAINTMSK);
4303 4304

	/* Be in disconnected state until gadget is registered */
4305
	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4306 4307 4308 4309

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4310 4311
		dwc2_readl(hsotg, GRXFSIZ),
		dwc2_readl(hsotg, GNPTXFSIZ));
4312

4313
	dwc2_hsotg_init_fifo(hsotg);
4314

4315
	/* keep other bits untouched (so e.g. forced modes are not lost) */
4316
	usbcfg = dwc2_readl(hsotg, GUSBCFG);
4317
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4318
		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4319

4320
	/* set the PLL on, remove the HNP/SRP and set the PHY */
4321
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4322 4323
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4324
	dwc2_writel(hsotg, usbcfg, GUSBCFG);
4325

4326
	if (using_dma(hsotg))
4327
		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4328 4329
}

4330
/**
4331
 * dwc2_hsotg_udc_start - prepare the udc for work
4332 4333 4334 4335 4336 4337
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
4338
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4339
				struct usb_gadget_driver *driver)
4340
{
4341
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4342
	unsigned long flags;
4343 4344 4345
	int ret;

	if (!hsotg) {
4346
		pr_err("%s: called with no device\n", __func__);
4347 4348 4349 4350 4351 4352 4353 4354
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

4355
	if (driver->max_speed < USB_SPEED_FULL)
4356 4357
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

4358
	if (!driver->setup) {
4359 4360 4361 4362 4363 4364 4365 4366
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
4367
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4368 4369
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

4370 4371 4372 4373
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
4374 4375
	}

4376 4377
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4378

4379
	spin_lock_irqsave(&hsotg->lock, flags);
4380 4381 4382 4383 4384
	if (dwc2_hw_is_device(hsotg)) {
		dwc2_hsotg_init(hsotg);
		dwc2_hsotg_core_init_disconnected(hsotg, false);
	}

4385
	hsotg->enabled = 0;
4386 4387
	spin_unlock_irqrestore(&hsotg->lock, flags);

4388
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4389

4390 4391 4392 4393 4394 4395 4396
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

4397
/**
4398
 * dwc2_hsotg_udc_stop - stop the udc
4399 4400 4401 4402
 * @gadget: The usb gadget state
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
4403
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4404
{
4405
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4406
	unsigned long flags = 0;
4407 4408 4409 4410 4411 4412
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
4413 4414
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
4415
			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4416
		if (hsotg->eps_out[ep])
4417
			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4418
	}
4419

4420 4421
	spin_lock_irqsave(&hsotg->lock, flags);

4422
	hsotg->driver = NULL;
4423
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4424
	hsotg->enabled = 0;
4425

4426 4427
	spin_unlock_irqrestore(&hsotg->lock, flags);

4428 4429
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
4430

4431 4432
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
4433 4434 4435 4436

	return 0;
}

4437
/**
4438
 * dwc2_hsotg_gadget_getframe - read the frame number
4439 4440 4441 4442
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
4443
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4444
{
4445
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4446 4447
}

4448
/**
4449
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4450 4451 4452 4453 4454
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
4455
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4456
{
4457
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4458 4459
	unsigned long flags = 0;

4460
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4461
		hsotg->op_state);
4462 4463 4464 4465 4466 4467

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
4468 4469 4470

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
4471
		hsotg->enabled = 1;
4472
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4473 4474
		/* Enable ACG feature in device mode,if supported */
		dwc2_enable_acg(hsotg);
4475
		dwc2_hsotg_core_connect(hsotg);
4476
	} else {
4477 4478
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4479
		hsotg->enabled = 0;
4480 4481 4482 4483 4484 4485 4486 4487
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

4488
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4489 4490 4491 4492 4493 4494 4495
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

4496
	/*
4497
	 * If controller is hibernated, it must exit from power_down
4498 4499 4500
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
4501
		dwc2_exit_partial_power_down(hsotg, false);
4502

4503
	if (is_active) {
4504
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4505

4506
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4507 4508 4509
		if (hsotg->enabled) {
			/* Enable ACG feature in device mode,if supported */
			dwc2_enable_acg(hsotg);
4510
			dwc2_hsotg_core_connect(hsotg);
4511
		}
4512
	} else {
4513 4514
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4515 4516 4517 4518 4519 4520
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

4521
/**
4522
 * dwc2_hsotg_vbus_draw - report bMaxPower field
4523 4524 4525 4526 4527
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
4528
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4529 4530 4531 4532 4533 4534 4535 4536
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

4537 4538 4539 4540 4541 4542 4543
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
4544 4545 4546
};

/**
4547
 * dwc2_hsotg_initep - initialise a single endpoint
4548 4549 4550
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
4551
 * @dir_in: True if direction is in.
4552 4553 4554 4555 4556
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
4557
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4558
			      struct dwc2_hsotg_ep *hs_ep,
4559 4560
				       int epnum,
				       bool dir_in)
4561 4562 4563 4564 4565
{
	char *dir;

	if (epnum == 0)
		dir = "";
4566
	else if (dir_in)
4567
		dir = "in";
4568 4569
	else
		dir = "out";
4570

4571
	hs_ep->dir_in = dir_in;
4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
4585 4586 4587 4588 4589 4590

	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
	else
		usb_ep_set_maxpacket_limit(&hs_ep->ep,
					   epnum ? 1024 : EP0_MPS_LIMIT);
4591
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4592

4593 4594 4595
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
4596 4597 4598 4599
		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
			hs_ep->ep.caps.type_iso = true;
			hs_ep->ep.caps.type_bulk = true;
		}
4600 4601 4602 4603 4604 4605 4606 4607
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

4608 4609
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
4610 4611 4612 4613
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
4614
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4615

4616
		if (dir_in)
4617
			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4618
		else
4619
			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4620 4621 4622
	}
}

4623
/**
4624
 * dwc2_hsotg_hw_cfg - read HW configuration registers
4625
 * @hsotg: Programming view of the DWC_otg controller
4626 4627 4628
 *
 * Read the USB core HW configuration registers
 */
4629
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4630
{
4631 4632 4633 4634
	u32 cfg;
	u32 ep_type;
	u32 i;

4635
	/* check hardware configuration */
4636

4637 4638
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

4639 4640
	/* Add ep0 */
	hsotg->num_of_eps++;
4641

4642 4643 4644
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
					sizeof(struct dwc2_hsotg_ep),
					GFP_KERNEL);
4645 4646
	if (!hsotg->eps_in[0])
		return -ENOMEM;
4647
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4648 4649
	hsotg->eps_out[0] = hsotg->eps_in[0];

4650
	cfg = hsotg->hw_params.dev_ep_dirs;
4651
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4652 4653 4654 4655
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4656
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4657 4658 4659 4660 4661 4662
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4663
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4664 4665 4666 4667 4668
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

4669 4670
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4671

4672 4673 4674 4675
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
4676
	return 0;
4677 4678
}

4679
/**
4680
 * dwc2_hsotg_dump - dump state of the udc
4681 4682
 * @hsotg: Programming view of the DWC_otg controller
 *
4683
 */
4684
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4685
{
M
Mark Brown 已提交
4686
#ifdef DEBUG
4687 4688 4689 4690 4691
	struct device *dev = hsotg->dev;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4692 4693
		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
		 dwc2_readl(hsotg, DIEPMSK));
4694

4695
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4696
		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4697 4698

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4699
		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4700 4701 4702

	/* show periodic fifo settings */

4703
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4704
		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4705
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4706 4707
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
4708 4709
	}

4710
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4711 4712
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4713 4714 4715
			 dwc2_readl(hsotg, DIEPCTL(idx)),
			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
			 dwc2_readl(hsotg, DIEPDMA(idx)));
4716

4717
		val = dwc2_readl(hsotg, DOEPCTL(idx));
4718 4719
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4720 4721 4722
			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
			 dwc2_readl(hsotg, DOEPDMA(idx)));
4723 4724 4725
	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4726
		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
M
Mark Brown 已提交
4727
#endif
4728 4729
}

4730
/**
4731
 * dwc2_gadget_init - init function for gadget
4732 4733
 * @hsotg: Programming view of the DWC_otg controller
 *
4734
 */
4735
int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4736
{
4737
	struct device *dev = hsotg->dev;
4738 4739
	int epnum;
	int ret;
4740

4741 4742
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4743 4744
		hsotg->params.g_np_tx_fifo_size);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4745

4746
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4747
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4748
	hsotg->gadget.name = dev_name(dev);
4749
	hsotg->remote_wakeup_allowed = 0;
J
John Youn 已提交
4750 4751 4752 4753

	if (hsotg->params.lpm)
		hsotg->gadget.lpm_capable = true;

4754 4755
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
4756 4757
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4758

4759
	ret = dwc2_hsotg_hw_cfg(hsotg);
4760 4761
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4762
		return ret;
4763 4764
	}

4765 4766
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4767
	if (!hsotg->ctrl_buff)
4768
		return -ENOMEM;
4769 4770 4771

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4772
	if (!hsotg->ep0_buff)
4773
		return -ENOMEM;
4774

4775 4776 4777 4778 4779 4780
	if (using_desc_dma(hsotg)) {
		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
		if (ret < 0)
			return ret;
	}

4781 4782
	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4783
	if (ret < 0) {
4784
		dev_err(dev, "cannot claim IRQ for gadget\n");
4785
		return ret;
4786 4787
	}

4788 4789 4790 4791
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
4792
		return -EINVAL;
4793 4794 4795 4796 4797
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4798
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4799 4800 4801

	/* allocate EP0 request */

4802
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4803 4804 4805
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
4806
		return -ENOMEM;
4807
	}
4808 4809

	/* initialise the endpoints now the core has been initialised */
4810 4811
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
4812
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4813
					  epnum, 1);
4814
		if (hsotg->eps_out[epnum])
4815
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4816
					  epnum, 0);
4817
	}
4818

4819
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4820 4821 4822
	if (ret) {
		dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep,
					   hsotg->ctrl_req);
4823
		return ret;
4824
	}
4825
	dwc2_hsotg_dump(hsotg);
4826 4827 4828 4829

	return 0;
}

4830
/**
4831
 * dwc2_hsotg_remove - remove function for hsotg driver
4832 4833
 * @hsotg: Programming view of the DWC_otg controller
 *
4834
 */
4835
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4836
{
4837
	usb_del_gadget_udc(&hsotg->gadget);
4838
	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4839

4840 4841 4842
	return 0;
}

4843
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4844 4845 4846
{
	unsigned long flags;

4847
	if (hsotg->lx_state != DWC2_L0)
4848
		return 0;
4849

4850 4851 4852
	if (hsotg->driver) {
		int ep;

4853 4854 4855
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

4856 4857
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
4858 4859
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4860 4861
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
4862

4863 4864
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
4865
				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4866
			if (hsotg->eps_out[ep])
4867
				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4868
		}
4869 4870
	}

4871
	return 0;
4872 4873
}

4874
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4875 4876 4877
{
	unsigned long flags;

4878
	if (hsotg->lx_state == DWC2_L2)
4879
		return 0;
4880

4881 4882 4883
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
4884

4885
		spin_lock_irqsave(&hsotg->lock, flags);
4886
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4887 4888 4889
		if (hsotg->enabled) {
			/* Enable ACG feature in device mode,if supported */
			dwc2_enable_acg(hsotg);
4890
			dwc2_hsotg_core_connect(hsotg);
4891
		}
4892 4893
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
4894

4895
	return 0;
4896
}
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

4915 4916 4917 4918 4919
	dr->dcfg = dwc2_readl(hsotg, DCFG);
	dr->dctl = dwc2_readl(hsotg, DCTL);
	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
4920 4921 4922

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
4923
		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
4924 4925 4926 4927 4928 4929 4930

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

4931 4932
		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
4933 4934

		/* Backup OUT EPs */
4935
		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
4936 4937 4938 4939 4940 4941 4942

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

4943 4944 4945
		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
4957 4958 4959
 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
 *
 * Return: 0 if successful, negative error code otherwise
4960
 */
4961
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

4977
	if (!remote_wakeup)
4978
		dwc2_writel(hsotg, dr->dctl, DCTL);
4979

4980 4981 4982
	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
4983 4984 4985

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
4986 4987 4988
		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
4989 4990 4991 4992 4993 4994 4995 4996
		/** WA for enabled EPx's IN in DDMA mode. On entering to
		 * hibernation wrong value read and saved from DIEPDMAx,
		 * as result BNA interrupt asserted on hibernation exit
		 * by restoring from saved area.
		 */
		if (hsotg->params.g_dma_desc &&
		    (dr->diepctl[i] & DXEPCTL_EPENA))
			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
4997 4998
		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
4999
		/* Restore OUT EPs */
5000
		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5001 5002 5003 5004 5005 5006 5007 5008
		/* WA for enabled EPx's OUT in DDMA mode. On entering to
		 * hibernation wrong value read and saved from DOEPDMAx,
		 * as result BNA interrupt asserted on hibernation exit
		 * by restoring from saved area.
		 */
		if (hsotg->params.g_dma_desc &&
		    (dr->doepctl[i] & DXEPCTL_EPENA))
			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5009 5010
		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5011 5012 5013 5014
	}

	return 0;
}
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033

/**
 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
 *
 * @hsotg: Programming view of DWC_otg controller
 *
 */
void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
{
	u32 val;

	if (!hsotg->params.lpm)
		return;

	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5034
	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5035 5036
	dwc2_writel(hsotg, val, GLPMCFG);
	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5037 5038 5039 5040

	/* Unmask WKUP_ALERT Interrupt */
	if (hsotg->params.service_interval)
		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5041
}
5042

5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
/**
 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
 *
 * @hsotg: Programming view of DWC_otg controller
 *
 */
void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
{
	u32 val = 0;

	val |= GREFCLK_REF_CLK_MODE;
	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
	val |= hsotg->params.sof_cnt_wkup_alert <<
	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;

	dwc2_writel(hsotg, val, GREFCLK);
	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
}

5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
/**
 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
 *
 * @hsotg: Programming view of the DWC_otg controller
 *
 * Return non-zero if failed to enter to hibernation.
 */
int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
{
	u32 gpwrdn;
	int ret = 0;

	/* Change to L2(suspend) state */
	hsotg->lx_state = DWC2_L2;
	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
	ret = dwc2_backup_global_registers(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
			__func__);
		return ret;
	}
	ret = dwc2_backup_device_registers(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
			__func__);
		return ret;
	}

	gpwrdn = GPWRDN_PWRDNRSTN;
	gpwrdn |= GPWRDN_PMUACTV;
5092
	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5093 5094 5095 5096 5097 5098
	udelay(10);

	/* Set flag to indicate that we are in hibernation */
	hsotg->hibernated = 1;

	/* Enable interrupts from wake up logic */
5099
	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5100
	gpwrdn |= GPWRDN_PMUINTSEL;
5101
	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5102 5103 5104
	udelay(10);

	/* Unmask device mode interrupts in GPWRDN */
5105
	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5106 5107 5108
	gpwrdn |= GPWRDN_RST_DET_MSK;
	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5109
	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5110 5111 5112
	udelay(10);

	/* Enable Power Down Clamp */
5113
	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5114
	gpwrdn |= GPWRDN_PWRDNCLMP;
5115
	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5116 5117 5118
	udelay(10);

	/* Switch off VDD */
5119
	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5120
	gpwrdn |= GPWRDN_PWRDNSWTCH;
5121
	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5122 5123 5124
	udelay(10);

	/* Save gpwrdn register for further usage if stschng interrupt */
5125
	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
	dev_dbg(hsotg->dev, "Hibernation completed\n");

	return ret;
}

/**
 * dwc2_gadget_exit_hibernation()
 * This function is for exiting from Device mode hibernation by host initiated
 * resume/reset and device initiated remote-wakeup.
 *
 * @hsotg: Programming view of the DWC_otg controller
 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5138
 * @reset: indicates whether resume is initiated by Reset.
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
 *
 * Return non-zero if failed to exit from hibernation.
 */
int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
				 int rem_wakeup, int reset)
{
	u32 pcgcctl;
	u32 gpwrdn;
	u32 dctl;
	int ret = 0;
	struct dwc2_gregs_backup *gr;
	struct dwc2_dregs_backup *dr;

	gr = &hsotg->gr_backup;
	dr = &hsotg->dr_backup;

	if (!hsotg->hibernated) {
		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
		return 1;
	}
	dev_dbg(hsotg->dev,
		"%s: called with rem_wakeup = %d reset = %d\n",
		__func__, rem_wakeup, reset);

	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);

	if (!reset) {
		/* Clear all pending interupts */
5167
		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5168 5169 5170
	}

	/* De-assert Restore */
5171
	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5172
	gpwrdn &= ~GPWRDN_RESTORE;
5173
	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5174 5175 5176
	udelay(10);

	if (!rem_wakeup) {
5177
		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5178
		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5179
		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5180 5181 5182
	}

	/* Restore GUSBCFG, DCFG and DCTL */
5183 5184 5185
	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
	dwc2_writel(hsotg, dr->dcfg, DCFG);
	dwc2_writel(hsotg, dr->dctl, DCTL);
5186 5187

	/* De-assert Wakeup Logic */
5188
	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5189
	gpwrdn &= ~GPWRDN_PMUACTV;
5190
	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5191 5192 5193 5194

	if (rem_wakeup) {
		udelay(10);
		/* Start Remote Wakeup Signaling */
5195
		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5196 5197 5198
	} else {
		udelay(50);
		/* Set Device programming done bit */
5199
		dctl = dwc2_readl(hsotg, DCTL);
5200
		dctl |= DCTL_PWRONPRGDONE;
5201
		dwc2_writel(hsotg, dctl, DCTL);
5202 5203 5204 5205
	}
	/* Wait for interrupts which must be cleared */
	mdelay(2);
	/* Clear all pending interupts */
5206
	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225

	/* Restore global registers */
	ret = dwc2_restore_global_registers(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to restore registers\n",
			__func__);
		return ret;
	}

	/* Restore device registers */
	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
			__func__);
		return ret;
	}

	if (rem_wakeup) {
		mdelay(10);
5226
		dctl = dwc2_readl(hsotg, DCTL);
5227
		dctl &= ~DCTL_RMTWKUPSIG;
5228
		dwc2_writel(hsotg, dctl, DCTL);
5229 5230 5231 5232 5233 5234 5235 5236
	}

	hsotg->hibernated = 0;
	hsotg->lx_state = DWC2_L0;
	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");

	return ret;
}