gadget.c 126.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/**
3 4
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
5 6 7 8 9 10 11
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
12
 */
13 14 15 16 17 18 19

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
20
#include <linux/mutex.h>
21 22 23
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
24
#include <linux/slab.h>
25
#include <linux/of_platform.h>
26 27 28

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
29
#include <linux/usb/phy.h>
30

31
#include "core.h"
32
#include "hw.h"
33 34

/* conversion functions */
35
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
36
{
37
	return container_of(req, struct dwc2_hsotg_req, req);
38 39
}

40
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
41
{
42
	return container_of(ep, struct dwc2_hsotg_ep, ep);
43 44
}

45
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
46
{
47
	return container_of(gadget, struct dwc2_hsotg, gadget);
48 49 50 51
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
52
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
53 54 55 56
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
57
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
58 59
}

60
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 62 63 64 65 66 67 68
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

69
/* forward declaration of functions */
70
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
89
 * g_using_dma is set depending on dts flag.
90
 */
91
static inline bool using_dma(struct dwc2_hsotg *hsotg)
92
{
93
	return hsotg->params.g_dma;
94 95
}

96 97 98 99 100 101 102 103 104 105 106
/*
 * using_desc_dma - return the descriptor DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using descriptor DMA.
 */
static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
{
	return hsotg->params.g_dma_desc;
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

126
/**
127
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
128 129 130
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
131
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
132
{
133
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
134 135 136 137 138 139
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
140
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
141 142 143 144
	}
}

/**
145
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
146 147 148
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
149
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
150
{
151
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
152 153 154 155 156
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
157
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
158 159 160
}

/**
161
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
162 163 164 165 166 167 168 169
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
170
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
171
				  unsigned int ep, unsigned int dir_in,
172 173 174 175 176 177 178 179 180 181
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
182
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
183 184 185 186
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
187
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
188 189 190
	local_irq_restore(flags);
}

191 192 193 194 195 196 197
/**
 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
 */
int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
{
	if (hsotg->hw_params.en_multiple_tx_fifo)
		/* In dedicated FIFO mode we need count of IN EPs */
198
		return hsotg->hw_params.num_dev_in_eps;
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
	else
		/* In shared FIFO mode we need count of Periodic IN EPs */
		return hsotg->hw_params.num_dev_perio_in_ep;
}

/**
 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
 * device mode TX FIFOs
 */
int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
{
	int addr;
	int tx_addr_max;
	u32 np_tx_fifo_size;

	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
				hsotg->params.g_np_tx_fifo_size);

	/* Get Endpoint Info Control block size in DWORDs. */
218
	tx_addr_max = hsotg->hw_params.total_fifo_size;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
	if (tx_addr_max <= addr)
		return 0;

	return tx_addr_max - addr;
}

/**
 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
 * TX FIFOs
 */
int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
{
	int tx_fifo_count;
	int tx_fifo_depth;

	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);

	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);

	if (!tx_fifo_count)
		return tx_fifo_depth;
	else
		return tx_fifo_depth / tx_fifo_count;
}

246
/**
247
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
248 249
 * @hsotg: The device instance.
 */
250
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
251
{
252
	unsigned int ep;
253
	unsigned int addr;
254
	int timeout;
255
	u32 val;
256
	u32 *txfsz = hsotg->params.g_tx_fifo_size;
257

258 259 260 261
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

262
	/* set RX/NPTX FIFO sizes */
263 264 265 266
	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
		    hsotg->regs + GNPTXFSIZ);
267

268 269
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
270 271
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
272 273
	 * known values.
	 */
274 275

	/* start at the end of the GNPTXFSIZ, rounded up */
276
	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
277

278
	/*
279
	 * Configure fifos sizes from provided configuration and assign
280 281
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
282
	 */
283
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
284
		if (!txfsz[ep])
285 286
			continue;
		val = addr;
287 288
		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
289
			  "insufficient fifo memory");
290
		addr += txfsz[ep];
291

292
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
293
		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
294
	}
295

296 297 298
	dwc2_writel(hsotg->hw_params.total_fifo_size |
		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
		    hsotg->regs + GDFIFOCFG);
299 300 301 302
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
303

304
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
305
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
306 307 308 309

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
310
		val = dwc2_readl(hsotg->regs + GRSTCTL);
311

312
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
313 314 315 316 317 318
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
319
			break;
320 321 322 323 324 325
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
326 327 328 329 330 331 332 333
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
334
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
335
						       gfp_t flags)
336
{
337
	struct dwc2_hsotg_req *req;
338

J
John Youn 已提交
339
	req = kzalloc(sizeof(*req), flags);
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
355
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
356 357 358 359 360
{
	return hs_ep->periodic;
}

/**
361
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
362 363 364 365
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
366
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
367
 * of a request to ensure the buffer is ready for access by the caller.
368
 */
369
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
370
				 struct dwc2_hsotg_ep *hs_ep,
371
				struct dwc2_hsotg_req *hs_req)
372 373
{
	struct usb_request *req = &hs_req->req;
374

375
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
376 377
}

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
/*
 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 * for Control endpoint
 * @hsotg: The device state.
 *
 * This function will allocate 4 descriptor chains for EP 0: 2 for
 * Setup stage, per one for IN and OUT data/status transactions.
 */
static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
{
	hsotg->setup_desc[0] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[0],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[0])
		goto fail;

	hsotg->setup_desc[1] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[1],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[1])
		goto fail;

	hsotg->ctrl_in_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_in_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_in_desc)
		goto fail;

	hsotg->ctrl_out_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_out_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_out_desc)
		goto fail;

	return 0;

fail:
	return -ENOMEM;
}

426
/**
427
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
428 429 430 431 432 433 434 435 436 437 438 439 440
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
441
 */
442
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
443
				 struct dwc2_hsotg_ep *hs_ep,
444
				struct dwc2_hsotg_req *hs_req)
445 446
{
	bool periodic = is_ep_periodic(hs_ep);
447
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
448 449 450 451 452
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
453
	int max_transfer;
454 455 456 457 458 459 460

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

461
	if (periodic && !hsotg->dedicated_fifos) {
462
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
463 464 465
		int size_left;
		int size_done;

466 467 468 469
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
470

471
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
472

473 474
		/*
		 * if shared fifo, we cannot write anything until the
475 476 477
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
478
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
479 480 481
			return -ENOSPC;
		}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
499
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
500 501
			return -ENOSPC;
		}
502
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
503 504
		can_write = dwc2_readl(hsotg->regs +
				DTXFSTS(hs_ep->fifo_index));
505 506 507

		can_write &= 0xffff;
		can_write *= 4;
508
	} else {
509
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
510 511 512 513
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

514
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
515 516 517
			return -ENOSPC;
		}

518
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
519
		can_write *= 4;	/* fifo size is in 32bit quantities. */
520 521
	}

522 523 524
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
525
		__func__, gnptxsts, can_write, to_write, max_transfer);
526

527 528
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
529 530 531
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
532
	if (can_write > 512 && !periodic)
533 534
		can_write = 512;

535 536
	/*
	 * limit the write to one max-packet size worth of data, but allow
537
	 * the transfer to return that it did not run out of fifo space
538 539
	 * doing it.
	 */
540 541
	if (to_write > max_transfer) {
		to_write = max_transfer;
542

543 544
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
545
			dwc2_hsotg_en_gsint(hsotg,
546
					    periodic ? GINTSTS_PTXFEMP :
547
					   GINTSTS_NPTXFEMP);
548 549
	}

550 551 552 553
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
554
		pkt_round = to_write % max_transfer;
555

556 557
		/*
		 * Round the write down to an
558 559 560 561 562 563 564 565 566
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

567 568 569 570
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
571

572 573
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
574
			dwc2_hsotg_en_gsint(hsotg,
575
					    periodic ? GINTSTS_PTXFEMP :
576
					   GINTSTS_NPTXFEMP);
577 578 579
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
580
		to_write, hs_req->req.length, can_write, buf_pos);
581 582 583 584 585 586 587 588 589 590 591 592 593

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

594
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
595 596 597 598 599 600 601 602 603 604 605

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
606
static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
607 608
{
	int index = hs_ep->index;
609 610
	unsigned int maxsize;
	unsigned int maxpkt;
611 612

	if (index != 0) {
613 614
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
615
	} else {
616
		maxsize = 64 + 64;
617
		if (hs_ep->dir_in)
618
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
619
		else
620 621 622 623 624 625 626
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

627 628 629 630
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
631 632 633 634 635 636 637

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

638
/**
639 640 641 642 643
 * dwc2_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
 */
644 645 646 647 648 649 650 651 652 653 654
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
	u32 dsts;

	dsts = dwc2_readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;

	return dsts;
}

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
/**
 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 * DMA descriptor chain prepared for specific endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * depending on its descriptor chain capacity so that transfers that
 * are too long can be split.
 */
static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
{
	int is_isoc = hs_ep->isochronous;
	unsigned int maxsize;

	if (is_isoc)
		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
	else
		maxsize = DEV_DMA_NBYTES_LIMIT;

	/* Above size of one descriptor was chosen, multiple it */
	maxsize *= MAX_DMA_DESC_NUM_GENERIC;

	return maxsize;
}

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
/*
 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 * @hs_ep: The endpoint
 * @mask: RX/TX bytes mask to be defined
 *
 * Returns maximum data payload for one descriptor after analyzing endpoint
 * characteristics.
 * DMA descriptor transfer bytes limit depends on EP type:
 * Control out - MPS,
 * Isochronous - descriptor rx/tx bytes bitfield limit,
 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 * have concatenations from various descriptors within one packet.
 *
 * Selects corresponding mask for RX/TX bytes as well.
 */
static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
{
	u32 mps = hs_ep->ep.maxpacket;
	int dir_in = hs_ep->dir_in;
	u32 desc_size = 0;

	if (!hs_ep->index && !dir_in) {
		desc_size = mps;
		*mask = DEV_DMA_NBYTES_MASK;
	} else if (hs_ep->isochronous) {
		if (dir_in) {
			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
		} else {
			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
		}
	} else {
		desc_size = DEV_DMA_NBYTES_LIMIT;
		*mask = DEV_DMA_NBYTES_MASK;

		/* Round down desc_size to be mps multiple */
		desc_size -= desc_size % mps;
	}

	return desc_size;
}

/*
 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 * @hs_ep: The endpoint
 * @dma_buff: DMA address to use
 * @len: Length of the transfer
 *
 * This function will iterate over descriptor chain and fill its entries
 * with corresponding information based on transfer data.
 */
static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
						 dma_addr_t dma_buff,
						 unsigned int len)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	u32 mps = hs_ep->ep.maxpacket;
	u32 maxsize = 0;
	u32 offset = 0;
	u32 mask = 0;
	int i;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);

	hs_ep->desc_count = (len / maxsize) +
				((len % maxsize) ? 1 : 0);
	if (len == 0)
		hs_ep->desc_count = 1;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		desc->status = 0;
		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
				 << DEV_DMA_BUFF_STS_SHIFT);

		if (len > maxsize) {
			if (!hs_ep->index && !dir_in)
				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			desc->status |= (maxsize <<
						DEV_DMA_NBYTES_SHIFT & mask);
			desc->buf = dma_buff + offset;

			len -= maxsize;
			offset += maxsize;
		} else {
			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			if (dir_in)
				desc->status |= (len % mps) ? DEV_DMA_SHORT :
					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
			if (len > maxsize)
				dev_err(hsotg->dev, "wrong len %d\n", len);

			desc->status |=
				len << DEV_DMA_NBYTES_SHIFT & mask;
			desc->buf = dma_buff + offset;
		}

		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
		desc->status |= (DEV_DMA_BUFF_STS_HREADY
				 << DEV_DMA_BUFF_STS_SHIFT);
		desc++;
	}
}

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
/*
 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 * @hs_ep: The isochronous endpoint.
 * @dma_buff: usb requests dma buffer.
 * @len: usb request transfer length.
 *
 * Finds out index of first free entry either in the bottom or up half of
 * descriptor chain depend on which is under SW control and not processed
 * by HW. Then fills that descriptor with the data of the arrived usb request,
 * frame info, sets Last and IOC bits increments next_desc. If filled
 * descriptor is not the first one, removes L bit from the previous descriptor
 * status.
 */
static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
				      dma_addr_t dma_buff, unsigned int len)
{
	struct dwc2_dma_desc *desc;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 index;
	u32 maxsize = 0;
	u32 mask = 0;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
	if (len > maxsize) {
		dev_err(hsotg->dev, "wrong len %d\n", len);
		return -EINVAL;
	}

	/*
	 * If SW has already filled half of chain, then return and wait for
	 * the other chain to be processed by HW.
	 */
	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
		return -EBUSY;

	/* Increment frame number by interval for IN */
	if (hs_ep->dir_in)
		dwc2_gadget_incr_frame_num(hs_ep);

	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
		 hs_ep->next_desc;

	/* Sanity check of calculated index */
	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
		return -EINVAL;
	}

	desc = &hs_ep->desc_list[index];

	/* Clear L bit of previous desc if more than one entries in the chain */
	if (hs_ep->next_desc)
		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;

	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);

	desc->status = 0;
	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);

	desc->buf = dma_buff;
	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));

	if (hs_ep->dir_in) {
		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
				 DEV_DMA_ISOC_PID_MASK) |
				((len % hs_ep->ep.maxpacket) ?
				 DEV_DMA_SHORT : 0) |
				((hs_ep->target_frame <<
				  DEV_DMA_ISOC_FRNUM_SHIFT) &
				 DEV_DMA_ISOC_FRNUM_MASK);
	}

	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);

	/* Update index of last configured entry in the chain */
	hs_ep->next_desc++;

	return 0;
}

/*
 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 * @hs_ep: The isochronous endpoint.
 *
 * Prepare first descriptor chain for isochronous endpoints. Afterwards
 * write DMA address to HW and enable the endpoint.
 *
 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
 * to prepare second descriptor chain while first one is being processed by HW.
 */
static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req, *treq;
	int index = hs_ep->index;
	int ret;
	u32 dma_reg;
	u32 depctl;
	u32 ctrl;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
		return;
	}

	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret) {
			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
			break;
		}
	}

	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);

	/* write descriptor chain address to control register */
	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);

	ctrl = dwc2_readl(hsotg->regs + depctl);
	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
	dwc2_writel(ctrl, hsotg->regs + depctl);

	/* Switch ISOC descriptor chain number being processed by SW*/
	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
	hs_ep->next_desc = 0;
}

922
/**
923
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
924 925 926 927 928 929 930 931
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
932
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
933
				 struct dwc2_hsotg_ep *hs_ep,
934
				struct dwc2_hsotg_req *hs_req,
935 936 937 938 939 940 941 942 943
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
944 945 946
	unsigned int length;
	unsigned int packets;
	unsigned int maxreq;
947
	unsigned int dma_reg;
948 949 950 951 952 953 954 955 956 957 958 959 960 961

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

962
	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
963 964
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
965 966

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
967
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
968 969
		hs_ep->dir_in ? "in" : "out");

970
	/* If endpoint is stalled, we will restart request later */
971
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
972

973
	if (index && ctrl & DXEPCTL_STALL) {
974 975 976 977
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

978
	length = ureq->length - ureq->actual;
979 980
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
981

982 983 984 985 986
	if (!using_desc_dma(hsotg))
		maxreq = get_ep_limit(hs_ep);
	else
		maxreq = dwc2_gadget_get_chain_limit(hs_ep);

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

1005 1006 1007 1008 1009
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

1010
	if (dir_in && index != 0)
1011
		if (hs_ep->isochronous)
1012
			epsize = DXEPTSIZ_MC(packets);
1013
		else
1014
			epsize = DXEPTSIZ_MC(1);
1015 1016 1017
	else
		epsize = 0;

1018 1019 1020 1021 1022 1023 1024
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1025
		    !(ureq->length % hs_ep->ep.maxpacket))
1026
			hs_ep->send_zlp = 1;
1027 1028
	}

1029 1030
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
1031 1032 1033 1034 1035 1036 1037

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	if (using_desc_dma(hsotg)) {
		u32 offset = 0;
		u32 mps = hs_ep->ep.maxpacket;

		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
		if (!dir_in) {
			if (!index)
				length = mps;
			else if (length % mps)
				length += (mps - (length % mps));
		}
1049

1050
		/*
1051 1052 1053
		 * If more data to send, adjust DMA for EP0 out data stage.
		 * ureq->dma stays unchanged, hence increment it by already
		 * passed passed data count before starting new transaction.
1054
		 */
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
		    continuing)
			offset = ureq->actual;

		/* Fill DDMA chain entries */
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
						     length);

		/* write descriptor chain address to control register */
		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1065

1066 1067 1068 1069 1070 1071
		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
	} else {
		/* write size / packets */
		dwc2_writel(epsize, hsotg->regs + epsize_reg);

1072
		if (using_dma(hsotg) && !continuing && (length != 0)) {
1073 1074 1075 1076
			/*
			 * write DMA address to control register, buffer
			 * already synced by dwc2_hsotg_ep_queue().
			 */
1077

1078 1079 1080 1081 1082
			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);

			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
				__func__, &ureq->dma, dma_reg);
		}
1083 1084
	}

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	if (hs_ep->isochronous && hs_ep->interval == 1) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(hs_ep);

		if (hs_ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;
	}

1095
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1096

1097
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1098 1099

	/* For Setup request do not clear NAK */
1100
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1101
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1102

1103
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1104
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1105

1106 1107
	/*
	 * set these, it seems that DMA support increments past the end
1108
	 * of the packet buffer so we need to calculate the length from
1109 1110
	 * this information.
	 */
1111 1112 1113 1114 1115 1116 1117
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

1118
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1119 1120
	}

1121 1122 1123 1124
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
1125 1126

	/* check ep is enabled */
1127
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1128
		dev_dbg(hsotg->dev,
1129
			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1130
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1131

1132
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1133
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1134 1135

	/* enable ep interrupts */
1136
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1137 1138 1139
}

/**
1140
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1141 1142 1143 1144 1145 1146 1147 1148 1149
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
1150
 */
1151
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1152
			      struct dwc2_hsotg_ep *hs_ep,
1153 1154
			     struct usb_request *req)
{
1155
	int ret;
1156

1157 1158 1159
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

1170
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1171 1172
						 struct dwc2_hsotg_ep *hs_ep,
						 struct dwc2_hsotg_req *hs_req)
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1183
		hs_ep->ep.name, req_buf, hs_req->req.length);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

1202 1203 1204 1205
static void
dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
					 struct dwc2_hsotg_ep *hs_ep,
					 struct dwc2_hsotg_req *hs_req)
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1217
		       hs_req->req.actual);
1218 1219 1220 1221 1222 1223 1224 1225

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
/**
 * dwc2_gadget_target_frame_elapsed - Checks target frame
 * @hs_ep: The driver endpoint to check
 *
 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
 * corresponding transfer.
 */
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 target_frame = hs_ep->target_frame;
	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
	bool frame_overrun = hs_ep->frame_overrun;

	if (!frame_overrun && current_frame >= target_frame)
		return true;

	if (frame_overrun && current_frame >= target_frame &&
	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
		return true;

	return false;
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/*
 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
 * @hsotg: The driver state
 * @hs_ep: the ep descriptor chain is for
 *
 * Called to update EP0 structure's pointers depend on stage of
 * control transfer.
 */
static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
					  struct dwc2_hsotg_ep *hs_ep)
{
	switch (hsotg->ep0_state) {
	case DWC2_EP0_SETUP:
	case DWC2_EP0_STATUS_OUT:
		hs_ep->desc_list = hsotg->setup_desc[0];
		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
		break;
	case DWC2_EP0_DATA_IN:
	case DWC2_EP0_STATUS_IN:
		hs_ep->desc_list = hsotg->ctrl_in_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
		break;
	case DWC2_EP0_DATA_OUT:
		hs_ep->desc_list = hsotg->ctrl_out_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
		break;
	default:
		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
			hsotg->ep0_state);
		return -EINVAL;
	}

	return 0;
}

1285
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1286
			       gfp_t gfp_flags)
1287
{
1288 1289
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1290
	struct dwc2_hsotg *hs = hs_ep->parent;
1291
	bool first;
1292
	int ret;
1293 1294 1295 1296 1297

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

1298 1299 1300
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1301
			__func__);
1302 1303 1304
		return -EAGAIN;
	}

1305 1306 1307 1308 1309
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

1310
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1311 1312 1313
	if (ret)
		return ret;

1314 1315
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
1316
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1317 1318 1319
		if (ret)
			return ret;
	}
1320 1321 1322 1323 1324 1325
	/* If using descriptor DMA configure EP0 descriptor chain pointers */
	if (using_desc_dma(hs) && !hs_ep->index) {
		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
		if (ret)
			return ret;
	}
1326 1327 1328 1329

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	/*
	 * Handle DDMA isochronous transfers separately - just add new entry
	 * to the half of descriptor chain that is not processed by HW.
	 * Transfer will be started once SW gets either one of NAK or
	 * OutTknEpDis interrupts.
	 */
	if (using_desc_dma(hs) && hs_ep->isochronous &&
	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret)
			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);

		return 0;
	}

1346 1347 1348 1349 1350 1351 1352 1353
	if (first) {
		if (!hs_ep->isochronous) {
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
			return 0;
		}

		while (dwc2_gadget_target_frame_elapsed(hs_ep))
			dwc2_gadget_incr_frame_num(hs_ep);
1354

1355 1356 1357
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
	}
1358 1359 1360
	return 0;
}

1361
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1362
				    gfp_t gfp_flags)
1363
{
1364
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1365
	struct dwc2_hsotg *hs = hs_ep->parent;
1366 1367 1368 1369
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
1370
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1371 1372 1373 1374 1375
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

1376
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1377
				       struct usb_request *req)
1378
{
1379
	struct dwc2_hsotg_req *hs_req = our_req(req);
1380 1381 1382 1383 1384

	kfree(hs_req);
}

/**
1385
 * dwc2_hsotg_complete_oursetup - setup completion callback
1386 1387 1388 1389 1390 1391
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
1392
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1393
					 struct usb_request *req)
1394
{
1395
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1396
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1397 1398 1399

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

1400
	dwc2_hsotg_ep_free_request(ep, req);
1401 1402 1403 1404 1405 1406 1407 1408 1409
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
1410
 */
1411
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1412
					    u32 windex)
1413
{
1414
	struct dwc2_hsotg_ep *ep;
1415 1416 1417 1418 1419 1420
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

1421
	if (idx > hsotg->num_of_eps)
1422 1423
		return NULL;

1424 1425
	ep = index_to_ep(hsotg, idx, dir);

1426 1427 1428 1429 1430 1431
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

1432
/**
1433
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1434 1435 1436 1437
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
1438
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1439
{
1440
	int dctl = dwc2_readl(hsotg->regs + DCTL);
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
1454
	dwc2_writel(dctl, hsotg->regs + DCTL);
1455 1456 1457
	return 0;
}

1458
/**
1459
 * dwc2_hsotg_send_reply - send reply to control request
1460 1461 1462 1463 1464 1465 1466 1467
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
1468
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1469
				 struct dwc2_hsotg_ep *ep,
1470 1471 1472 1473 1474 1475 1476 1477
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

1478
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1479 1480 1481 1482 1483 1484 1485 1486
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
1487 1488 1489 1490 1491
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
1492
	req->complete = dwc2_hsotg_complete_oursetup;
1493 1494 1495 1496

	if (length)
		memcpy(req->buf, buff, length);

1497
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1498 1499 1500 1501 1502 1503 1504 1505 1506
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
1507
 * dwc2_hsotg_process_req_status - process request GET_STATUS
1508 1509 1510
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1511
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1512
					 struct usb_ctrlrequest *ctrl)
1513
{
1514 1515
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
1528 1529 1530 1531 1532
		/*
		 * bit 0 => self powered
		 * bit 1 => remote wakeup
		 */
		reply = cpu_to_le16(0);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1555
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1556 1557 1558 1559 1560 1561 1562 1563
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1564
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1565

1566 1567 1568 1569 1570 1571
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1572
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1573
{
1574 1575
	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
					queue);
1576 1577
}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1614
/**
1615
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1616 1617 1618
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1619
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1620
					  struct usb_ctrlrequest *ctrl)
1621
{
1622 1623
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1624
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1625
	struct dwc2_hsotg_ep *ep;
1626
	int ret;
1627
	bool halted;
1628 1629 1630
	u32 recip;
	u32 wValue;
	u32 wIndex;
1631 1632 1633 1634

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1649
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1663 1664
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1665
				__func__, wIndex);
1666 1667 1668
			return -ENOENT;
		}

1669
		switch (wValue) {
1670
		case USB_ENDPOINT_HALT:
1671 1672
			halted = ep->halted;

1673
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1674

1675
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1676 1677 1678 1679 1680
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1681

1682 1683 1684 1685 1686 1687
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1688 1689 1690 1691 1692 1693 1694 1695
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1696 1697 1698 1699 1700 1701
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1702 1703 1704
				}

				/* If we have pending request, then start it */
J
John Youn 已提交
1705
				if (!ep->req)
1706
					dwc2_gadget_start_next_request(ep);
1707 1708
			}

1709 1710 1711 1712 1713
			break;

		default:
			return -ENOENT;
		}
1714 1715 1716 1717
		break;
	default:
		return -ENOENT;
	}
1718 1719 1720
	return 1;
}

1721
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1722

1723
/**
1724
 * dwc2_hsotg_stall_ep0 - stall ep0
1725 1726 1727 1728
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1729
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1730
{
1731
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1743
	ctrl = dwc2_readl(hsotg->regs + reg);
1744 1745
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1746
	dwc2_writel(ctrl, hsotg->regs + reg);
1747 1748

	dev_dbg(hsotg->dev,
1749
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1750
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1751 1752 1753 1754 1755

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1756
	 dwc2_hsotg_enqueue_setup(hsotg);
1757 1758
}

1759
/**
1760
 * dwc2_hsotg_process_control - process a control request
1761 1762 1763 1764 1765 1766 1767
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1768
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1769
				       struct usb_ctrlrequest *ctrl)
1770
{
1771
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1772 1773 1774
	int ret = 0;
	u32 dcfg;

1775 1776 1777 1778
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1779

1780 1781 1782 1783
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1784
		ep0->dir_in = 1;
1785 1786 1787 1788 1789
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1790 1791 1792 1793

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1794
			hsotg->connected = 1;
1795
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1796
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1797 1798
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1799
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1800 1801 1802

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1803
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1804 1805 1806
			return;

		case USB_REQ_GET_STATUS:
1807
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1808 1809 1810 1811
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1812
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1813 1814 1815 1816 1817 1818 1819
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1820
		spin_unlock(&hsotg->lock);
1821
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1822
		spin_lock(&hsotg->lock);
1823 1824 1825 1826
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1827 1828
	/*
	 * the request is either unhandlable, or is not formatted correctly
1829 1830 1831
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1832
	if (ret < 0)
1833
		dwc2_hsotg_stall_ep0(hsotg);
1834 1835 1836
}

/**
1837
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1838 1839 1840 1841 1842 1843
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1844
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1845
				      struct usb_request *req)
1846
{
1847
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1848
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1849 1850 1851 1852 1853 1854

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1855
	spin_lock(&hsotg->lock);
1856
	if (req->actual == 0)
1857
		dwc2_hsotg_enqueue_setup(hsotg);
1858
	else
1859
		dwc2_hsotg_process_control(hsotg, req->buf);
1860
	spin_unlock(&hsotg->lock);
1861 1862 1863
}

/**
1864
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1865 1866 1867 1868 1869
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1870
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1871 1872
{
	struct usb_request *req = hsotg->ctrl_req;
1873
	struct dwc2_hsotg_req *hs_req = our_req(req);
1874 1875 1876 1877 1878 1879 1880
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1881
	req->complete = dwc2_hsotg_complete_setup;
1882 1883 1884 1885 1886 1887

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1888
	hsotg->eps_out[0]->dir_in = 0;
1889
	hsotg->eps_out[0]->send_zlp = 0;
1890
	hsotg->ep0_state = DWC2_EP0_SETUP;
1891

1892
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1893 1894
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1895 1896 1897 1898
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1899 1900 1901
	}
}

1902
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1903
				   struct dwc2_hsotg_ep *hs_ep)
1904 1905 1906 1907 1908 1909
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1910 1911
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1912
			index);
1913 1914
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1915 1916 1917 1918
			index);
	if (using_desc_dma(hsotg)) {
		/* Not specific buffer needed for ep0 ZLP */
		dma_addr_t dma = hs_ep->desc_list_dma;
1919

1920 1921 1922
		if (!index)
			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);

1923 1924 1925 1926 1927 1928
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
	} else {
		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			    epsiz_reg);
	}
1929

1930
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1931 1932 1933
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1934
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1935 1936
}

1937
/**
1938
 * dwc2_hsotg_complete_request - complete a request given to us
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1949
 */
1950
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1951
					struct dwc2_hsotg_ep *hs_ep,
1952
				       struct dwc2_hsotg_req *hs_req,
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
				       int result)
{
	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1963 1964 1965 1966
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1967 1968 1969 1970

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1971 1972 1973
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1974
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1975

1976 1977 1978
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1979 1980 1981 1982
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1983 1984

	if (hs_req->req.complete) {
1985
		spin_unlock(&hsotg->lock);
1986
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1987
		spin_lock(&hsotg->lock);
1988 1989
	}

1990 1991 1992 1993
	/* In DDMA don't need to proceed to starting of next ISOC request */
	if (using_desc_dma(hsotg) && hs_ep->isochronous)
		return;

1994 1995
	/*
	 * Look to see if there is anything else to do. Note, the completion
1996
	 * of the previous request may have caused a new request to be started
1997 1998
	 * so be careful when doing this.
	 */
1999

J
John Youn 已提交
2000
	if (!hs_ep->req && result >= 0)
2001
		dwc2_gadget_start_next_request(hs_ep);
2002 2003
}

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
/*
 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
 * @hs_ep: The endpoint the request was on.
 *
 * Get first request from the ep queue, determine descriptor on which complete
 * happened. SW based on isoc_chain_num discovers which half of the descriptor
 * chain is currently in use by HW, adjusts dma_address and calculates index
 * of completed descriptor based on the value of DEPDMA register. Update actual
 * length of request, giveback to gadget.
 */
static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	struct usb_request *ureq;
	int index;
	dma_addr_t dma_addr;
	u32 dma_reg;
	u32 depdma;
	u32 desc_sts;
	u32 mask;

	hs_req = get_ep_head(hs_ep);
	if (!hs_req) {
		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
		return;
	}
	ureq = &hs_req->req;

	dma_addr = hs_ep->desc_list_dma;

	/*
	 * If lower half of  descriptor chain is currently use by SW,
	 * that means higher half is being processed by HW, so shift
	 * DMA address to higher half of descriptor chain.
	 */
	if (!hs_ep->isoc_chain_num)
		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2);

	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
	depdma = dwc2_readl(hsotg->regs + dma_reg);

	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
	desc_sts = hs_ep->desc_list[index].status;

	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
	       DEV_DMA_ISOC_RX_NBYTES_MASK;
	ureq->actual = ureq->length -
		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);

2055 2056 2057 2058
	/* Adjust actual length for ISOC Out if length is not align of 4 */
	if (!hs_ep->dir_in && ureq->length & 0x3)
		ureq->actual += 4 - (ureq->length & 0x3);

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
}

/*
 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
 * @hs_ep: The isochronous endpoint to be re-enabled.
 *
 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
 * BNA (OUT endpoint) check the status of other half of descriptor chain that
 * was under SW control till HW was busy and restart the endpoint if needed.
 */
static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 depctl;
	u32 dma_reg;
	u32 ctrl;
	u32 dma_addr = hs_ep->desc_list_dma;
	unsigned char index = hs_ep->index;

	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);

	ctrl = dwc2_readl(hsotg->regs + depctl);

	/*
	 * EP was disabled if HW has processed last descriptor or BNA was set.
	 * So restart ep if SW has prepared new descriptor chain in ep_queue
	 * routine while HW was busy.
	 */
	if (!(ctrl & DXEPCTL_EPENA)) {
		if (!hs_ep->next_desc) {
			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
				__func__);
			return;
		}

		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
			    hs_ep->isoc_chain_num;
		dwc2_writel(dma_addr, hsotg->regs + dma_reg);

		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
		dwc2_writel(ctrl, hsotg->regs + depctl);

		/* Switch ISOC descriptor chain number being processed by SW*/
		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
		hs_ep->next_desc = 0;

		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
			__func__);
	}
}

2113
/**
2114
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2115 2116 2117 2118 2119 2120 2121 2122
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
2123
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2124
{
2125 2126
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2127
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2128 2129 2130 2131 2132
	int to_read;
	int max_req;
	int read_ptr;

	if (!hs_req) {
2133
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2134 2135
		int ptr;

2136
		dev_dbg(hsotg->dev,
2137
			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2138 2139 2140 2141
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
2142
			(void)dwc2_readl(fifo);
2143 2144 2145 2146 2147 2148 2149 2150

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

2151 2152 2153
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

2154
	if (to_read > max_req) {
2155 2156
		/*
		 * more data appeared than we where willing
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

2168 2169 2170 2171
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
2172
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2173 2174 2175
}

/**
2176
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2177
 * @hsotg: The device instance
2178
 * @dir_in: If IN zlp
2179 2180 2181 2182 2183
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
2184
 * currently believed that we do not need to wait for any space in
2185 2186
 * the TxFIFO.
 */
2187
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2188
{
2189
	/* eps_out[0] is used in both directions */
2190 2191
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2192

2193
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2194 2195
}

2196
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2197
					    u32 epctl_reg)
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
/*
 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
 * @hs_ep - The endpoint on which transfer went
 *
 * Iterate over endpoints descriptor chain and get info on bytes remained
 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
 */
static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	unsigned int bytes_rem = 0;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	int i;
	u32 status;

	if (!desc)
		return -EINVAL;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		status = desc->status;
		bytes_rem += status & DEV_DMA_NBYTES_MASK;

		if (status & DEV_DMA_STS_MASK)
			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
				i, status & DEV_DMA_STS_MASK);
	}

	return bytes_rem;
}

2239
/**
2240
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2241 2242 2243 2244 2245 2246
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
2247
 */
2248
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2249
{
2250
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2251 2252
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2253
	struct usb_request *req = &hs_req->req;
2254
	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2255 2256 2257 2258 2259 2260 2261
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

2262 2263
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
2264 2265
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
2266 2267 2268
		return;
	}

2269 2270 2271
	if (using_desc_dma(hsotg))
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);

2272
	if (using_dma(hsotg)) {
2273
		unsigned int size_done;
2274

2275 2276
		/*
		 * Calculate the size of the transfer by checking how much
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

2290 2291
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
2292
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2293 2294 2295
		return;
	}

2296 2297 2298 2299
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

2300 2301 2302 2303
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
2304 2305
	}

2306 2307 2308
	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
	if (!using_desc_dma(hsotg) && epnum == 0 &&
	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2309
		/* Move to STATUS IN */
2310
		dwc2_hsotg_ep0_zlp(hsotg, true);
2311
		return;
2312 2313
	}

2314 2315 2316 2317 2318 2319 2320
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2321 2322
		else if (hs_ep->isochronous && hs_ep->interval > 1)
			dwc2_gadget_incr_frame_num(hs_ep);
2323 2324
	}

2325
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2326 2327 2328
}

/**
2329
 * dwc2_hsotg_handle_rx - RX FIFO has data
2330 2331 2332 2333 2334 2335
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
2336
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2337 2338 2339 2340 2341 2342 2343
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
2344
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2345
{
2346
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2347 2348 2349 2350
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

2351 2352
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
2353

2354 2355
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
2356

2357
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2358
		__func__, grxstsr, size, epnum);
2359

2360 2361 2362
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2363 2364
		break;

2365
	case GRXSTS_PKTSTS_OUTDONE:
2366
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2367
			dwc2_hsotg_read_frameno(hsotg));
2368 2369

		if (!using_dma(hsotg))
2370
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2371 2372
		break;

2373
	case GRXSTS_PKTSTS_SETUPDONE:
2374 2375
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2376
			dwc2_hsotg_read_frameno(hsotg),
2377
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2378
		/*
2379
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2380 2381 2382 2383
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2384
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2385 2386
		break;

2387
	case GRXSTS_PKTSTS_OUTRX:
2388
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2389 2390
		break;

2391
	case GRXSTS_PKTSTS_SETUPRX:
2392 2393
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2394
			dwc2_hsotg_read_frameno(hsotg),
2395
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2396

2397 2398
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

2399
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2400 2401 2402 2403 2404 2405
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

2406
		dwc2_hsotg_dump(hsotg);
2407 2408 2409 2410 2411
		break;
	}
}

/**
2412
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2413
 * @mps: The maximum packet size in bytes.
2414
 */
2415
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2416 2417 2418
{
	switch (mps) {
	case 64:
2419
		return D0EPCTL_MPS_64;
2420
	case 32:
2421
		return D0EPCTL_MPS_32;
2422
	case 16:
2423
		return D0EPCTL_MPS_16;
2424
	case 8:
2425
		return D0EPCTL_MPS_8;
2426 2427 2428 2429 2430 2431 2432 2433
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
2434
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2435 2436 2437
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
2438
 * @mc: The multicount value
2439 2440 2441 2442
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
2443
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2444 2445
					unsigned int ep, unsigned int mps,
					unsigned int mc, unsigned int dir_in)
2446
{
2447
	struct dwc2_hsotg_ep *hs_ep;
2448 2449 2450
	void __iomem *regs = hsotg->regs;
	u32 reg;

2451 2452 2453 2454
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

2455
	if (ep == 0) {
2456 2457
		u32 mps_bytes = mps;

2458
		/* EP0 is a special case */
2459 2460
		mps = dwc2_hsotg_ep0_mps(mps_bytes);
		if (mps > 3)
2461
			goto bad_mps;
2462
		hs_ep->ep.maxpacket = mps_bytes;
2463
		hs_ep->mc = 1;
2464
	} else {
2465
		if (mps > 1024)
2466
			goto bad_mps;
2467 2468
		hs_ep->mc = mc;
		if (mc > 3)
2469
			goto bad_mps;
2470
		hs_ep->ep.maxpacket = mps;
2471 2472
	}

2473
	if (dir_in) {
2474
		reg = dwc2_readl(regs + DIEPCTL(ep));
2475
		reg &= ~DXEPCTL_MPS_MASK;
2476
		reg |= mps;
2477
		dwc2_writel(reg, regs + DIEPCTL(ep));
2478
	} else {
2479
		reg = dwc2_readl(regs + DOEPCTL(ep));
2480
		reg &= ~DXEPCTL_MPS_MASK;
2481
		reg |= mps;
2482
		dwc2_writel(reg, regs + DOEPCTL(ep));
2483
	}
2484 2485 2486 2487 2488 2489 2490

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

2491
/**
2492
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2493 2494 2495
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
2496
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2497 2498 2499 2500
{
	int timeout;
	int val;

2501 2502
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
2503 2504 2505 2506 2507

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
2508
		val = dwc2_readl(hsotg->regs + GRSTCTL);
2509

2510
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
2511 2512 2513 2514 2515 2516
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
2517
			break;
2518 2519 2520 2521 2522
		}

		udelay(1);
	}
}
2523 2524

/**
2525
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2526 2527 2528 2529 2530 2531
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
2532
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2533
			    struct dwc2_hsotg_ep *hs_ep)
2534
{
2535
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2536

2537 2538 2539 2540 2541 2542
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
2543
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2544
					      hs_ep->dir_in, 0);
2545
		return 0;
2546
	}
2547 2548 2549 2550

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
2551
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2552 2553 2554 2555 2556 2557
	}

	return 0;
}

/**
2558
 * dwc2_hsotg_complete_in - complete IN transfer
2559 2560 2561 2562 2563 2564
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
2565
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2566
				   struct dwc2_hsotg_ep *hs_ep)
2567
{
2568
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2569
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2570 2571 2572 2573 2574 2575 2576
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

2577
	/* Finish ZLP handling for IN EP0 transactions */
2578 2579
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
2580 2581 2582 2583 2584 2585 2586

		/*
		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
		 * changed to IN. Change back to complete OUT transfer request
		 */
		hs_ep->dir_in = 0;

2587
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2588 2589 2590
		if (hsotg->test_mode) {
			int ret;

2591
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2592 2593
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2594
					hsotg->test_mode);
2595
				dwc2_hsotg_stall_ep0(hsotg);
2596 2597 2598
				return;
			}
		}
2599
		dwc2_hsotg_enqueue_setup(hsotg);
2600 2601 2602
		return;
	}

2603 2604
	/*
	 * Calculate the size of the transfer by checking how much is left
2605 2606 2607 2608 2609 2610 2611
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */
2612 2613 2614 2615 2616 2617 2618 2619
	if (using_desc_dma(hsotg)) {
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
		if (size_left < 0)
			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
				size_left);
	} else {
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
	}
2620 2621 2622 2623 2624 2625 2626 2627 2628

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
2629 2630 2631
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

2632 2633
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2634
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2635 2636 2637
		return;
	}

2638
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2639
	if (hs_ep->send_zlp) {
2640
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2641
		hs_ep->send_zlp = 0;
2642 2643 2644 2645
		/* transfer will be completed on next complete interrupt */
		return;
	}

2646 2647
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
2648
		dwc2_hsotg_ep0_zlp(hsotg, false);
2649 2650 2651
		return;
	}

2652
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2653 2654
}

2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
/**
 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This interrupt indicates that the endpoint has been disabled per the
 * application's request.
 *
 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
 * in case of ISOC completes current request.
 *
 * For ISOC-OUT endpoints completes expired requests. If there is remaining
 * request starts it.
 */
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	unsigned char idx = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	int dctl = dwc2_readl(hsotg->regs + DCTL);

	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

	if (dir_in) {
		int epctl = dwc2_readl(hsotg->regs + epctl_reg);

		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);

		if (hs_ep->isochronous) {
			dwc2_hsotg_complete_in(hsotg, hs_ep);
			return;
		}

		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
			int dctl = dwc2_readl(hsotg->regs + DCTL);

			dctl |= DCTL_CGNPINNAK;
			dwc2_writel(dctl, hsotg->regs + DCTL);
		}
		return;
	}

	if (dctl & DCTL_GOUTNAKSTS) {
		dctl |= DCTL_CGOUTNAK;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}

	if (!hs_ep->isochronous)
		return;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
			__func__, hs_ep);
		return;
	}

	do {
		hs_req = get_ep_head(hs_ep);
		if (hs_req)
			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
						    -ENODATA);
		dwc2_gadget_incr_frame_num(hs_ep);
	} while (dwc2_gadget_target_frame_elapsed(hs_ep));

	dwc2_gadget_start_next_request(hs_ep);
}

2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;
2767
	u32 tmp;
2768 2769 2770 2771

	if (dir_in || !ep->isochronous)
		return;

2772 2773 2774 2775 2776 2777
	/*
	 * Store frame in which irq was asserted here, as
	 * it can change while completing request below.
	 */
	tmp = dwc2_hsotg_read_frameno(hsotg);

2778 2779
	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);

2780 2781 2782 2783 2784 2785 2786 2787 2788
	if (using_desc_dma(hsotg)) {
		if (ep->target_frame == TARGET_FRAME_INITIAL) {
			/* Start first ISO Out */
			ep->target_frame = tmp;
			dwc2_gadget_start_isoc_ddma(ep);
		}
		return;
	}

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 dsts;
		u32 ctrl;

		dsts = dwc2_readl(hsotg->regs + DSTS);
		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(ep);

		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
	}

	dwc2_gadget_start_next_request(ep);
	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
}

/**
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
 * dwc2_gadget_handle_nak - handle NAK interrupt
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-IN transfer, synchronization done with
 * first IN token received from host while corresponding EP is disabled.
 *
 * Device does not know when first one token will arrive from host. On first
 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
 * sent in response to that as there was no data in FIFO. SW is basing on this
 * interrupt to obtain frame in which token has come and then based on the
 * interval calculates next frame for transfer.
 */
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2837 2838 2839 2840 2841 2842

		if (using_desc_dma(hsotg)) {
			dwc2_gadget_start_isoc_ddma(hs_ep);
			return;
		}

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
		if (hs_ep->interval > 1) {
			u32 ctrl = dwc2_readl(hsotg->regs +
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

	dwc2_gadget_incr_frame_num(hs_ep);
}

2861
/**
2862
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2863 2864 2865 2866 2867
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2868
 */
2869
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2870
			     int dir_in)
2871
{
2872
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2873 2874 2875
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2876
	u32 ints;
2877
	u32 ctrl;
2878

2879
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2880
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2881

2882
	/* Clear endpoint interrupts */
2883
	dwc2_writel(ints, hsotg->regs + epint_reg);
2884

2885 2886
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2887
			__func__, idx, dir_in ? "in" : "out");
2888 2889 2890
		return;
	}

2891 2892 2893
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2894 2895 2896 2897
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
	/*
	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
	 * stage and xfercomplete was generated without SETUP phase done
	 * interrupt. SW should parse received setup packet only after host's
	 * exit from setup phase of control transfer.
	 */
	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
		ints &= ~DXEPINT_XFERCOMPL;

2908
	if (ints & DXEPINT_XFERCOMPL) {
2909
		dev_dbg(hsotg->dev,
2910
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2911 2912
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2913

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
		/* In DDMA handle isochronous requests separately */
		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
			/* Try to start next isoc request */
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
		} else if (dir_in) {
			/*
			 * We get OutDone from the FIFO, so we only
			 * need to look at completing IN requests here
			 * if operating slave mode
			 */
2925 2926 2927
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);

2928
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2929 2930
			if (ints & DXEPINT_NAKINTRPT)
				ints &= ~DXEPINT_NAKINTRPT;
2931

2932
			if (idx == 0 && !hs_ep->req)
2933
				dwc2_hsotg_enqueue_setup(hsotg);
2934
		} else if (using_dma(hsotg)) {
2935 2936 2937 2938
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2939 2940
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);
2941

2942
			dwc2_hsotg_handle_outdone(hsotg, idx);
2943 2944 2945
		}
	}

2946 2947
	if (ints & DXEPINT_EPDISBLD)
		dwc2_gadget_handle_ep_disabled(hs_ep);
2948

2949 2950 2951 2952 2953 2954
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2955
	if (ints & DXEPINT_AHBERR)
2956 2957
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2958
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2959 2960 2961
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2962 2963
			/*
			 * this is the notification we've received a
2964 2965
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2966 2967
			 * the setup here.
			 */
2968 2969 2970 2971

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2972
				dwc2_hsotg_handle_outdone(hsotg, 0);
2973 2974 2975
		}
	}

2976
	if (ints & DXEPINT_STSPHSERCVD) {
2977 2978
		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);

2979 2980 2981 2982 2983 2984 2985
		/* Safety check EP0 state when STSPHSERCVD asserted */
		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
			/* Move to STATUS IN for DDMA */
			if (using_desc_dma(hsotg))
				dwc2_hsotg_ep0_zlp(hsotg, true);
		}

2986 2987
	}

2988
	if (ints & DXEPINT_BACK2BACKSETUP)
2989 2990
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	if (ints & DXEPINT_BNAINTR) {
		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);

		/*
		 * Try to start next isoc request, if any.
		 * Sometimes the endpoint remains enabled after BNA interrupt
		 * assertion, which is not expected, hence we can enter here
		 * couple of times.
		 */
		if (hs_ep->isochronous)
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
	}

3004
	if (dir_in && !hs_ep->isochronous) {
3005
		/* not sure if this is important, but we'll clear it anyway */
3006
		if (ints & DXEPINT_INTKNTXFEMP) {
3007 3008 3009 3010 3011
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
3012
		if (ints & DXEPINT_INTKNEPMIS) {
3013 3014 3015
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
3016 3017 3018

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
3019
		    ints & DXEPINT_TXFEMP) {
3020 3021
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
3022
			if (!using_dma(hsotg))
3023
				dwc2_hsotg_trytx(hsotg, hs_ep);
3024
		}
3025 3026 3027 3028
	}
}

/**
3029
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3030 3031 3032 3033
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
3034
 */
3035
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3036
{
3037
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3038
	int ep0_mps = 0, ep_mps = 8;
3039

3040 3041
	/*
	 * This should signal the finish of the enumeration phase
3042
	 * of the USB handshaking, so we should now know what rate
3043 3044
	 * we connected at.
	 */
3045 3046 3047

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

3048 3049
	/*
	 * note, since we're limited by the size of transfer on EP0, and
3050
	 * it seems IN transfers must be a even number of packets we do
3051 3052
	 * not advertise a 64byte MPS on EP0.
	 */
3053 3054

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3055
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3056 3057
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
3058 3059
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
3060
		ep_mps = 1023;
3061 3062
		break;

3063
	case DSTS_ENUMSPD_HS:
3064 3065
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
3066
		ep_mps = 1024;
3067 3068
		break;

3069
	case DSTS_ENUMSPD_LS:
3070
		hsotg->gadget.speed = USB_SPEED_LOW;
3071 3072
		ep0_mps = 8;
		ep_mps = 8;
3073 3074
		/*
		 * note, we don't actually support LS in this driver at the
3075 3076 3077 3078 3079
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
3080 3081
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
3082

3083 3084 3085 3086
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
3087 3088 3089

	if (ep0_mps) {
		int i;
3090
		/* Initialize ep0 for both in and out directions */
3091 3092
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3093 3094
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
3095 3096
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 1);
3097
			if (hsotg->eps_out[i])
3098 3099
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 0);
3100
		}
3101 3102 3103 3104
	}

	/* ensure after enumeration our EP0 is active */

3105
	dwc2_hsotg_enqueue_setup(hsotg);
3106 3107

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3108 3109
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
3121
static void kill_all_requests(struct dwc2_hsotg *hsotg,
3122
			      struct dwc2_hsotg_ep *ep,
3123
			      int result)
3124
{
3125
	struct dwc2_hsotg_req *req, *treq;
3126
	unsigned int size;
3127

3128
	ep->req = NULL;
3129

3130
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3131
		dwc2_hsotg_complete_request(hsotg, ep, req,
3132
					    result);
3133

3134 3135
	if (!hsotg->dedicated_fifos)
		return;
3136
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3137
	if (size < ep->fifo_size)
3138
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3139 3140 3141
}

/**
3142
 * dwc2_hsotg_disconnect - disconnect service
3143 3144
 * @hsotg: The device state.
 *
3145 3146 3147
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
3148
 */
3149
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3150
{
3151
	unsigned int ep;
3152

3153 3154 3155 3156
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
3157
	hsotg->test_mode = 0;
3158 3159 3160 3161

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
3162
					  -ESHUTDOWN);
3163 3164
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
3165
					  -ESHUTDOWN);
3166
	}
3167 3168

	call_gadget(hsotg, disconnect);
3169
	hsotg->lx_state = DWC2_L3;
J
John Stultz 已提交
3170 3171

	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3172 3173 3174
}

/**
3175
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3176 3177 3178
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
3179
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3180
{
3181
	struct dwc2_hsotg_ep *ep;
3182 3183 3184
	int epno, ret;

	/* look through for any more data to transmit */
3185
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3186 3187 3188 3189
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
3190 3191 3192 3193 3194 3195 3196 3197

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

3198
		ret = dwc2_hsotg_trytx(hsotg, ep);
3199 3200 3201 3202 3203 3204
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
3205 3206 3207
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
3208

3209
/**
3210
 * dwc2_hsotg_core_init - issue softreset to the core
3211 3212 3213 3214
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
3215
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3216
				       bool is_usb_reset)
3217
{
3218
	u32 intmsk;
3219
	u32 val;
3220
	u32 usbcfg;
3221
	u32 dcfg = 0;
3222

3223 3224 3225
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

3226
	if (!is_usb_reset)
3227
		if (dwc2_core_reset(hsotg, true))
3228
			return;
3229 3230 3231 3232 3233 3234

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

3235 3236 3237
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3238
		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3239

3240
	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3241 3242
	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3243 3244 3245 3246 3247 3248 3249 3250
		/* FS/LS Dedicated Transceiver Interface */
		usbcfg |= GUSBCFG_PHYSEL;
	} else {
		/* set the PLL on, remove the HNP/SRP and set the PHY */
		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
			(val << GUSBCFG_USBTRDTIM_SHIFT);
	}
3251
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3252

3253
	dwc2_hsotg_init_fifo(hsotg);
3254

3255 3256
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3257

3258
	dcfg |= DCFG_EPMISCNT(1);
3259 3260 3261 3262 3263 3264

	switch (hsotg->params.speed) {
	case DWC2_SPEED_PARAM_LOW:
		dcfg |= DCFG_DEVSPD_LS;
		break;
	case DWC2_SPEED_PARAM_FULL:
3265 3266 3267 3268
		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
			dcfg |= DCFG_DEVSPD_FS48;
		else
			dcfg |= DCFG_DEVSPD_FS;
3269 3270
		break;
	default:
3271 3272
		dcfg |= DCFG_DEVSPD_HS;
	}
3273

3274
	dwc2_writel(dcfg,  hsotg->regs + DCFG);
3275 3276

	/* Clear any pending OTG interrupts */
3277
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3278 3279

	/* Clear any pending interrupts */
3280
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3281
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3282
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3283 3284
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3285 3286 3287 3288
		GINTSTS_USBSUSP | GINTSTS_WKUPINT;

	if (!using_desc_dma(hsotg))
		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3289

J
John Youn 已提交
3290
	if (!hsotg->params.external_id_pin_ctl)
3291 3292 3293
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3294

3295
	if (using_dma(hsotg)) {
3296 3297 3298
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
3299 3300 3301 3302 3303 3304

		/* Set DDMA mode support in the core if needed */
		if (using_desc_dma(hsotg))
			__orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);

	} else {
3305 3306 3307 3308
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3309
	}
3310 3311

	/*
3312 3313 3314
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
3315 3316
	 */

3317
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3318
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3319
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3320
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3321
		hsotg->regs + DIEPMSK);
3322 3323 3324

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3325
	 * DMA mode we may need this and StsPhseRcvd.
3326
	 */
3327 3328
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
		DOEPMSK_STSPHSERCVDMSK) : 0) |
3329
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3330
		DOEPMSK_SETUPMSK,
3331
		hsotg->regs + DOEPMSK);
3332

3333 3334 3335 3336
	/* Enable BNA interrupt for DDMA */
	if (using_desc_dma(hsotg))
		__orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);

3337
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3338 3339

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3340 3341
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3342 3343

	/* enable in and out endpoint interrupts */
3344
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3345 3346 3347 3348 3349 3350 3351

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
3352
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3353 3354

	/* Enable interrupts for EP0 in and out */
3355 3356
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3357

3358 3359 3360 3361 3362
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
3363

3364
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3365 3366

	/*
3367
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3368 3369 3370 3371
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
3372
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3373
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3374

3375
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3376 3377
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
3378
	       hsotg->regs + DOEPCTL0);
3379 3380

	/* enable, but don't activate EP0in */
3381
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3382
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3383 3384

	/* clear global NAKs */
3385 3386 3387 3388
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
3389 3390 3391 3392

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

3393
	hsotg->lx_state = DWC2_L0;
3394 3395 3396 3397 3398 3399

	dwc2_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3400 3401
}

3402
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3403 3404 3405 3406
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
3407

3408
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3409
{
3410
	/* remove the soft-disconnect and let's go */
3411
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3412 3413
}

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
/**
 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted IN Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
 */
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hsotg_ep *hs_ep;
	u32 epctrl;
	u32 idx;

	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_in[idx];
		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			epctrl |= DXEPCTL_SNAK;
			epctrl |= DXEPCTL_EPDIS;
			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
}

/**
 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted OUT Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
 */
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
{
	u32 gintsts;
	u32 gintmsk;
	u32 epctrl;
	struct dwc2_hsotg_ep *hs_ep;
	int idx;

	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_out[idx];
		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			/* Unmask GOUTNAKEFF interrupt */
			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_GOUTNAKEFF;
			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
			if (!(gintsts & GINTSTS_GOUTNAKEFF))
				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
}

3493
/**
3494
 * dwc2_hsotg_irq - handle device interrupt
3495 3496 3497
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
3498
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3499
{
3500
	struct dwc2_hsotg *hsotg = pw;
3501 3502 3503 3504
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

3505 3506 3507
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

3508
	spin_lock(&hsotg->lock);
3509
irq_retry:
3510 3511
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3512 3513 3514 3515 3516 3517

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

3543 3544 3545
		/* Reset device address to zero */
		__bic32(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);

3546 3547 3548 3549
		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

3550
	if (gintsts & GINTSTS_ENUMDONE) {
3551
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3552

3553
		dwc2_hsotg_irq_enumdone(hsotg);
3554 3555
	}

3556
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3557 3558
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3559
		u32 daint_out, daint_in;
3560 3561
		int ep;

3562
		daint &= daintmsk;
3563 3564
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3565

3566 3567
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

3568 3569
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
3570
			if (daint_out & 1)
3571
				dwc2_hsotg_epint(hsotg, ep, 0);
3572 3573
		}

3574 3575
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
3576
			if (daint_in & 1)
3577
				dwc2_hsotg_epint(hsotg, ep, 1);
3578 3579 3580 3581 3582
		}
	}

	/* check both FIFOs */

3583
	if (gintsts & GINTSTS_NPTXFEMP) {
3584 3585
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

3586 3587
		/*
		 * Disable the interrupt to stop it happening again
3588
		 * unless one of these endpoint routines decides that
3589 3590
		 * it needs re-enabling
		 */
3591

3592 3593
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
3594 3595
	}

3596
	if (gintsts & GINTSTS_PTXFEMP) {
3597 3598
		dev_dbg(hsotg->dev, "PTxFEmp\n");

3599
		/* See note in GINTSTS_NPTxFEmp */
3600

3601 3602
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
3603 3604
	}

3605
	if (gintsts & GINTSTS_RXFLVL) {
3606 3607
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3608
		 * we need to retry dwc2_hsotg_handle_rx if this is still
3609 3610
		 * set.
		 */
3611

3612
		dwc2_hsotg_handle_rx(hsotg);
3613 3614
	}

3615
	if (gintsts & GINTSTS_ERLYSUSP) {
3616
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3617
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3618 3619
	}

3620 3621
	/*
	 * these next two seem to crop-up occasionally causing the core
3622
	 * to shutdown the USB transfer, so try clearing them and logging
3623 3624
	 * the occurrence.
	 */
3625

3626
	if (gintsts & GINTSTS_GOUTNAKEFF) {
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
		u8 idx;
		u32 epctrl;
		u32 gintmsk;
		struct dwc2_hsotg_ep *hs_ep;

		/* Mask this interrupt */
		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
		gintmsk &= ~GINTSTS_GOUTNAKEFF;
		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];
			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));

			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
				epctrl |= DXEPCTL_SNAK;
				epctrl |= DXEPCTL_EPDIS;
				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
			}
		}
3648

3649
		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3650 3651
	}

3652
	if (gintsts & GINTSTS_GINNAKEFF) {
3653 3654
		dev_info(hsotg->dev, "GINNakEff triggered\n");

3655
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3656

3657
		dwc2_hsotg_dump(hsotg);
3658 3659
	}

3660 3661
	if (gintsts & GINTSTS_INCOMPL_SOIN)
		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3662

3663 3664
	if (gintsts & GINTSTS_INCOMPL_SOOUT)
		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3665

3666 3667 3668 3669
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
3670 3671

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3672
		goto irq_retry;
3673

3674 3675
	spin_unlock(&hsotg->lock);

3676 3677 3678
	return IRQ_HANDLED;
}

3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
				   u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
				   struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
		hs_ep->name);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos || hs_ep->periodic) {
			__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						    DXEPINT_INEPNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout DIEPINT.NAKEFF\n",
					 __func__);
		} else {
			__orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
						    GINTSTS_GINNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout GINTSTS.GINNAKEFF\n",
					 __func__);
		}
	} else {
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
					    GINTSTS_GOUTNAKEFF, 100))
			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
				 __func__);
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			 "%s: timeout DOEPCTL.EPDisable\n", __func__);

	/* Clear EPDISBLD interrupt */
	__orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);

	if (hs_ep->dir_in) {
		unsigned short fifo_index;

		if (hsotg->dedicated_fifos || hs_ep->periodic)
			fifo_index = hs_ep->fifo_index;
		else
			fifo_index = 0;

		/* Flush TX FIFO */
		dwc2_flush_tx_fifo(hsotg, fifo_index);

		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
			__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);

	} else {
		/* Remove global NAKs */
		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
	}
}

3768
/**
3769
 * dwc2_hsotg_ep_enable - enable the given endpoint
3770 3771 3772 3773
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
3774
 */
3775
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3776
				const struct usb_endpoint_descriptor *desc)
3777
{
3778
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3779
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3780
	unsigned long flags;
3781
	unsigned int index = hs_ep->index;
3782 3783 3784
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
3785
	u32 mc;
3786
	u32 mask;
3787 3788
	unsigned int dir_in;
	unsigned int i, val, size;
3789
	int ret = 0;
3790 3791 3792 3793 3794 3795 3796

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
3797 3798 3799 3800
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
3801 3802 3803 3804 3805 3806 3807

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

3808
	mps = usb_endpoint_maxp(desc);
3809
	mc = usb_endpoint_maxp_mult(desc);
3810

3811
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3812

3813
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3814
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3815 3816 3817 3818

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

3819
	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3820 3821
	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3822 3823
			MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
3824
			&hs_ep->desc_list_dma, GFP_ATOMIC);
3825 3826 3827 3828 3829 3830
		if (!hs_ep->desc_list) {
			ret = -ENOMEM;
			goto error2;
		}
	}

3831
	spin_lock_irqsave(&hsotg->lock, flags);
3832

3833 3834
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
3835

3836 3837 3838 3839
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
3840
	epctrl |= DXEPCTL_USBACTEP;
3841 3842

	/* update the endpoint state */
3843
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3844 3845

	/* default, set to non-periodic */
3846
	hs_ep->isochronous = 0;
3847
	hs_ep->periodic = 0;
3848
	hs_ep->halted = 0;
3849
	hs_ep->interval = desc->bInterval;
3850

3851 3852
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
3853 3854
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
3855
		hs_ep->isochronous = 1;
3856
		hs_ep->interval = 1 << (desc->bInterval - 1);
3857
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3858 3859
		hs_ep->isoc_chain_num = 0;
		hs_ep->next_desc = 0;
3860
		if (dir_in) {
3861
			hs_ep->periodic = 1;
3862 3863 3864 3865 3866 3867 3868 3869
			mask = dwc2_readl(hsotg->regs + DIEPMSK);
			mask |= DIEPMSK_NAKMSK;
			dwc2_writel(mask, hsotg->regs + DIEPMSK);
		} else {
			mask = dwc2_readl(hsotg->regs + DOEPMSK);
			mask |= DOEPMSK_OUTTKNEPDISMSK;
			dwc2_writel(mask, hsotg->regs + DOEPMSK);
		}
3870
		break;
3871 3872

	case USB_ENDPOINT_XFER_BULK:
3873
		epctrl |= DXEPCTL_EPTYPE_BULK;
3874 3875 3876
		break;

	case USB_ENDPOINT_XFER_INT:
3877
		if (dir_in)
3878 3879
			hs_ep->periodic = 1;

3880 3881 3882
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

3883
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3884 3885 3886
		break;

	case USB_ENDPOINT_XFER_CONTROL:
3887
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3888 3889 3890
		break;
	}

3891 3892
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
3893 3894
	 * a unique tx-fifo even if it is non-periodic.
	 */
3895
	if (dir_in && hsotg->dedicated_fifos) {
3896 3897
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
3898 3899

		size = hs_ep->ep.maxpacket * hs_ep->mc;
3900
		for (i = 1; i < hsotg->num_of_eps; ++i) {
3901
			if (hsotg->fifo_map & (1 << i))
3902
				continue;
3903
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3904
			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3905 3906
			if (val < size)
				continue;
3907 3908 3909 3910 3911
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
3912
		}
3913
		if (!fifo_index) {
3914 3915
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
3916
			ret = -ENOMEM;
3917
			goto error1;
3918
		}
3919 3920 3921 3922
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
3923
	}
3924

3925
	/* for non control endpoints, set PID to D0 */
3926
	if (index && !hs_ep->isochronous)
3927
		epctrl |= DXEPCTL_SETD0PID;
3928 3929 3930 3931

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

3932
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3933
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3934
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3935 3936

	/* enable the endpoint interrupt */
3937
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3938

3939
error1:
3940
	spin_unlock_irqrestore(&hsotg->lock, flags);
3941 3942 3943

error2:
	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3944
		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3945 3946 3947 3948 3949
			sizeof(struct dwc2_dma_desc),
			hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3950
	return ret;
3951 3952
}

3953
/**
3954
 * dwc2_hsotg_ep_disable - disable given endpoint
3955 3956
 * @ep: The endpoint to disable.
 */
3957
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3958
{
3959
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3960
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3961 3962 3963 3964 3965 3966
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

3967
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3968

3969
	if (ep == &hsotg->eps_out[0]->ep) {
3970 3971
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
3972 3973 3974 3975 3976
	}

	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
		return -EINVAL;
3977 3978
	}

3979
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3980

3981
	spin_lock_irqsave(&hsotg->lock, flags);
3982

3983
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3984 3985 3986 3987

	if (ctrl & DXEPCTL_EPENA)
		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);

3988 3989 3990
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
3991 3992

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3993
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3994 3995

	/* disable endpoint interrupts */
3996
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3997

3998 3999 4000
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

4001 4002 4003 4004
	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;

4005
	spin_unlock_irqrestore(&hsotg->lock, flags);
4006 4007 4008 4009 4010 4011 4012
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
4013
 */
4014
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4015
{
4016
	struct dwc2_hsotg_req *req, *treq;
4017 4018 4019 4020 4021 4022 4023 4024 4025

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

4026
/**
4027
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4028 4029 4030
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
4031
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4032
{
4033 4034
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4035
	struct dwc2_hsotg *hs = hs_ep->parent;
4036 4037
	unsigned long flags;

4038
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4039

4040
	spin_lock_irqsave(&hs->lock, flags);
4041 4042

	if (!on_list(hs_ep, hs_req)) {
4043
		spin_unlock_irqrestore(&hs->lock, flags);
4044 4045 4046
		return -EINVAL;
	}

4047 4048 4049 4050
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

4051
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4052
	spin_unlock_irqrestore(&hs->lock, flags);
4053 4054 4055 4056

	return 0;
}

4057
/**
4058
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4059 4060
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
4061 4062 4063 4064 4065
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
4066
 */
4067
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4068
{
4069
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4070
	struct dwc2_hsotg *hs = hs_ep->parent;
4071 4072 4073
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
4074
	u32 xfertype;
4075 4076 4077

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

4078 4079
	if (index == 0) {
		if (value)
4080
			dwc2_hsotg_stall_ep0(hs);
4081 4082 4083 4084 4085 4086
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

4087 4088 4089 4090 4091
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

4092 4093 4094 4095 4096 4097
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

4098 4099
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
4100
		epctl = dwc2_readl(hs->regs + epreg);
4101 4102

		if (value) {
4103
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4104 4105 4106 4107 4108 4109
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4110
			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4111
				epctl |= DXEPCTL_SETD0PID;
4112
		}
4113
		dwc2_writel(epctl, hs->regs + epreg);
4114
	} else {
4115
		epreg = DOEPCTL(index);
4116
		epctl = dwc2_readl(hs->regs + epreg);
4117

J
John Youn 已提交
4118
		if (value) {
4119
			epctl |= DXEPCTL_STALL;
J
John Youn 已提交
4120
		} else {
4121 4122 4123
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4124
			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4125
				epctl |= DXEPCTL_SETD0PID;
4126
		}
4127
		dwc2_writel(epctl, hs->regs + epreg);
4128
	}
4129

4130 4131
	hs_ep->halted = value;

4132 4133 4134
	return 0;
}

4135
/**
4136
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4137 4138 4139
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
4140
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4141
{
4142
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4143
	struct dwc2_hsotg *hs = hs_ep->parent;
4144 4145 4146 4147
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
4148
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4149 4150 4151 4152 4153
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

4154
static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4155 4156 4157 4158 4159 4160 4161
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
4162
	/* note, don't believe we have any call for the fifo routines */
4163 4164
};

4165
/**
4166
 * dwc2_hsotg_init - initialize the usb core
4167 4168
 * @hsotg: The driver state
 */
4169
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4170
{
4171
	u32 trdtim;
4172
	u32 usbcfg;
4173 4174
	/* unmask subset of endpoint interrupts */

4175 4176 4177
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
4178

4179 4180 4181
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
4182

4183
	dwc2_writel(0, hsotg->regs + DAINTMSK);
4184 4185

	/* Be in disconnected state until gadget is registered */
4186
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4187 4188 4189 4190

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4191 4192
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4193

4194
	dwc2_hsotg_init_fifo(hsotg);
4195

4196 4197 4198
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4199
		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4200

4201
	/* set the PLL on, remove the HNP/SRP and set the PHY */
4202
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4203 4204 4205
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4206

4207 4208
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4209 4210
}

4211
/**
4212
 * dwc2_hsotg_udc_start - prepare the udc for work
4213 4214 4215 4216 4217 4218
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
4219
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4220
				struct usb_gadget_driver *driver)
4221
{
4222
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4223
	unsigned long flags;
4224 4225 4226
	int ret;

	if (!hsotg) {
4227
		pr_err("%s: called with no device\n", __func__);
4228 4229 4230 4231 4232 4233 4234 4235
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

4236
	if (driver->max_speed < USB_SPEED_FULL)
4237 4238
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

4239
	if (!driver->setup) {
4240 4241 4242 4243 4244 4245 4246 4247
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
4248
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4249 4250
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

4251 4252 4253 4254
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
4255 4256
	}

4257 4258
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4259

4260
	spin_lock_irqsave(&hsotg->lock, flags);
4261 4262 4263 4264 4265
	if (dwc2_hw_is_device(hsotg)) {
		dwc2_hsotg_init(hsotg);
		dwc2_hsotg_core_init_disconnected(hsotg, false);
	}

4266
	hsotg->enabled = 0;
4267 4268
	spin_unlock_irqrestore(&hsotg->lock, flags);

4269
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4270

4271 4272 4273 4274 4275 4276 4277
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

4278
/**
4279
 * dwc2_hsotg_udc_stop - stop the udc
4280 4281 4282 4283 4284
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
4285
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4286
{
4287
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4288
	unsigned long flags = 0;
4289 4290 4291 4292 4293 4294
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
4295 4296
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
4297
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4298
		if (hsotg->eps_out[ep])
4299
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4300
	}
4301

4302 4303
	spin_lock_irqsave(&hsotg->lock, flags);

4304
	hsotg->driver = NULL;
4305
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4306
	hsotg->enabled = 0;
4307

4308 4309
	spin_unlock_irqrestore(&hsotg->lock, flags);

4310 4311
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
4312

4313 4314
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
4315 4316 4317 4318

	return 0;
}

4319
/**
4320
 * dwc2_hsotg_gadget_getframe - read the frame number
4321 4322 4323 4324
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
4325
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4326
{
4327
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4328 4329
}

4330
/**
4331
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4332 4333 4334 4335 4336
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
4337
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4338
{
4339
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4340 4341
	unsigned long flags = 0;

4342
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4343
		hsotg->op_state);
4344 4345 4346 4347 4348 4349

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
4350 4351 4352

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
4353
		hsotg->enabled = 1;
4354 4355
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
4356
	} else {
4357 4358
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4359
		hsotg->enabled = 0;
4360 4361 4362 4363 4364 4365 4366 4367
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

4368
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4369 4370 4371 4372 4373 4374 4375
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

4376 4377 4378 4379 4380 4381 4382
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

4383
	if (is_active) {
4384
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4385

4386
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4387
		if (hsotg->enabled)
4388
			dwc2_hsotg_core_connect(hsotg);
4389
	} else {
4390 4391
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4392 4393 4394 4395 4396 4397
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

4398
/**
4399
 * dwc2_hsotg_vbus_draw - report bMaxPower field
4400 4401 4402 4403 4404
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
4405
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4406 4407 4408 4409 4410 4411 4412 4413
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

4414 4415 4416 4417 4418 4419 4420
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
4421 4422 4423
};

/**
4424
 * dwc2_hsotg_initep - initialise a single endpoint
4425 4426 4427 4428 4429 4430 4431 4432
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
4433
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4434
			      struct dwc2_hsotg_ep *hs_ep,
4435 4436
				       int epnum,
				       bool dir_in)
4437 4438 4439 4440 4441
{
	char *dir;

	if (epnum == 0)
		dir = "";
4442
	else if (dir_in)
4443
		dir = "in";
4444 4445
	else
		dir = "out";
4446

4447
	hs_ep->dir_in = dir_in;
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
4461 4462 4463 4464 4465 4466

	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
	else
		usb_ep_set_maxpacket_limit(&hs_ep->ep,
					   epnum ? 1024 : EP0_MPS_LIMIT);
4467
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4468

4469 4470 4471
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
4472 4473 4474 4475
		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
			hs_ep->ep.caps.type_iso = true;
			hs_ep->ep.caps.type_bulk = true;
		}
4476 4477 4478 4479 4480 4481 4482 4483
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

4484 4485
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
4486 4487 4488 4489
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
4490
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4491

4492
		if (dir_in)
4493
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4494
		else
4495
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4496 4497 4498
	}
}

4499
/**
4500
 * dwc2_hsotg_hw_cfg - read HW configuration registers
4501 4502 4503 4504
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
4505
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4506
{
4507 4508 4509 4510
	u32 cfg;
	u32 ep_type;
	u32 i;

4511
	/* check hardware configuration */
4512

4513 4514
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

4515 4516
	/* Add ep0 */
	hsotg->num_of_eps++;
4517

4518 4519 4520
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
					sizeof(struct dwc2_hsotg_ep),
					GFP_KERNEL);
4521 4522
	if (!hsotg->eps_in[0])
		return -ENOMEM;
4523
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4524 4525
	hsotg->eps_out[0] = hsotg->eps_in[0];

4526
	cfg = hsotg->hw_params.dev_ep_dirs;
4527
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4528 4529 4530 4531
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4532
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4533 4534 4535 4536 4537 4538
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4539
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4540 4541 4542 4543 4544
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

4545 4546
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4547

4548 4549 4550 4551
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
4552
	return 0;
4553 4554
}

4555
/**
4556
 * dwc2_hsotg_dump - dump state of the udc
4557 4558
 * @param: The device state
 */
4559
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4560
{
M
Mark Brown 已提交
4561
#ifdef DEBUG
4562 4563 4564 4565 4566 4567
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4568 4569
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
4570

4571
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4572
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4573 4574

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4575
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4576 4577 4578

	/* show periodic fifo settings */

4579
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4580
		val = dwc2_readl(regs + DPTXFSIZN(idx));
4581
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4582 4583
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
4584 4585
	}

4586
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4587 4588
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4589 4590 4591
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
4592

4593
		val = dwc2_readl(regs + DOEPCTL(idx));
4594 4595
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4596 4597 4598
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
4599 4600 4601
	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4602
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
4603
#endif
4604 4605
}

4606
/**
4607 4608 4609
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
4610
 */
4611
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4612
{
4613
	struct device *dev = hsotg->dev;
4614 4615
	int epnum;
	int ret;
4616

4617 4618
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4619 4620
		hsotg->params.g_np_tx_fifo_size);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4621

4622
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4623
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4624
	hsotg->gadget.name = dev_name(dev);
4625 4626
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
4627 4628
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4629

4630
	ret = dwc2_hsotg_hw_cfg(hsotg);
4631 4632
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4633
		return ret;
4634 4635
	}

4636 4637
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4638
	if (!hsotg->ctrl_buff)
4639
		return -ENOMEM;
4640 4641 4642

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4643
	if (!hsotg->ep0_buff)
4644
		return -ENOMEM;
4645

4646 4647 4648 4649 4650 4651
	if (using_desc_dma(hsotg)) {
		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
		if (ret < 0)
			return ret;
	}

4652
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4653
			       dev_name(hsotg->dev), hsotg);
4654
	if (ret < 0) {
4655
		dev_err(dev, "cannot claim IRQ for gadget\n");
4656
		return ret;
4657 4658
	}

4659 4660 4661 4662
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
4663
		return -EINVAL;
4664 4665 4666 4667 4668
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4669
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4670 4671 4672

	/* allocate EP0 request */

4673
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4674 4675 4676
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
4677
		return -ENOMEM;
4678
	}
4679 4680

	/* initialise the endpoints now the core has been initialised */
4681 4682
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
4683
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4684
					  epnum, 1);
4685
		if (hsotg->eps_out[epnum])
4686
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4687
					  epnum, 0);
4688
	}
4689

4690
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4691
	if (ret)
4692
		return ret;
4693

4694
	dwc2_hsotg_dump(hsotg);
4695 4696 4697 4698

	return 0;
}

4699
/**
4700
 * dwc2_hsotg_remove - remove function for hsotg driver
4701 4702
 * @pdev: The platform information for the driver
 */
4703
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4704
{
4705
	usb_del_gadget_udc(&hsotg->gadget);
4706

4707 4708 4709
	return 0;
}

4710
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4711 4712 4713
{
	unsigned long flags;

4714
	if (hsotg->lx_state != DWC2_L0)
4715
		return 0;
4716

4717 4718 4719
	if (hsotg->driver) {
		int ep;

4720 4721 4722
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

4723 4724
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
4725 4726
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4727 4728
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
4729

4730 4731
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
4732
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4733
			if (hsotg->eps_out[ep])
4734
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4735
		}
4736 4737
	}

4738
	return 0;
4739 4740
}

4741
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4742 4743 4744
{
	unsigned long flags;

4745
	if (hsotg->lx_state == DWC2_L2)
4746
		return 0;
4747

4748 4749 4750
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
4751

4752
		spin_lock_irqsave(&hsotg->lock, flags);
4753
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4754
		if (hsotg->enabled)
4755
			dwc2_hsotg_core_connect(hsotg);
4756 4757
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
4758

4759
	return 0;
4760
}
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}