mmu.c 113.1 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31 32
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
33
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
34
#include <linux/hugetlb.h>
35
#include <linux/compiler.h>
36
#include <linux/srcu.h>
37
#include <linux/slab.h>
38
#include <linux/uaccess.h>
A
Avi Kivity 已提交
39

A
Avi Kivity 已提交
40 41
#include <asm/page.h>
#include <asm/cmpxchg.h>
42
#include <asm/io.h>
43
#include <asm/vmx.h>
A
Avi Kivity 已提交
44

45 46 47 48 49 50 51
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
52
bool tdp_enabled = false;
53

54 55 56 57
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
58 59 60
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
61
};
62

63
#undef MMU_DEBUG
64 65 66 67 68 69 70 71 72 73 74 75 76

#ifdef MMU_DEBUG

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)

#else

#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)

#endif

77
#ifdef MMU_DEBUG
78
static bool dbg = 0;
79
module_param(dbg, bool, 0644);
80
#endif
A
Avi Kivity 已提交
81

82 83 84
#ifndef MMU_DEBUG
#define ASSERT(x) do { } while (0)
#else
A
Avi Kivity 已提交
85 86 87 88 89
#define ASSERT(x)							\
	if (!(x)) {							\
		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
		       __FILE__, __LINE__, #x);				\
	}
90
#endif
A
Avi Kivity 已提交
91

92 93
#define PTE_PREFETCH_NUM		8

94
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
95 96 97 98 99
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
100
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
101 102 103 104 105 106 107 108

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
109
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
110

111 112 113
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
114 115 116 117 118

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


119
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
120 121
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
122 123 124 125 126 127
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
128 129 130 131

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 133 134
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
135

136 137
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
138

139 140 141 142 143
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

144 145
#include <trace/events/kvm.h>

146 147 148
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

149 150
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
151

152 153
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

154 155 156
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

157 158 159
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
160 161
};

162 163 164 165
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
166
	int level;
167 168 169 170 171 172 173 174
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

175 176 177 178 179 180
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

181
static struct kmem_cache *pte_list_desc_cache;
182
static struct kmem_cache *mmu_page_header_cache;
183
static struct percpu_counter kvm_total_used_mmu_pages;
184

S
Sheng Yang 已提交
185 186 187 188 189
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
190 191 192
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
193
static void mmu_free_roots(struct kvm_vcpu *vcpu);
194 195 196 197 198 199 200

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

201
/*
202 203 204 205 206 207 208
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
209
 */
210
#define MMIO_SPTE_GEN_LOW_SHIFT		2
211 212
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

213 214 215
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
216 217
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
#define MMIO_MAX_GEN			((1 << MMIO_GEN_SHIFT) - 1)
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

	WARN_ON(gen > MMIO_MAX_GEN);

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

241 242
static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
{
243
	return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
244 245
}

246 247
static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
			   unsigned access)
248
{
249 250
	unsigned int gen = kvm_current_mmio_generation(kvm);
	u64 mask = generation_mmio_spte_mask(gen);
251

252
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
253 254
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

255
	trace_mark_mmio_spte(sptep, gfn, access, gen);
256
	mmu_spte_set(sptep, mask);
257 258 259 260 261 262 263 264 265
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
266 267
	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
	return (spte & ~mask) >> PAGE_SHIFT;
268 269 270 271
}

static unsigned get_mmio_spte_access(u64 spte)
{
272 273
	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
	return (spte & ~mask) & ~PAGE_MASK;
274 275
}

276 277
static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			  pfn_t pfn, unsigned access)
278 279
{
	if (unlikely(is_noslot_pfn(pfn))) {
280
		mark_mmio_spte(kvm, sptep, gfn, access);
281 282 283 284 285
		return true;
	}

	return false;
}
286

287 288
static bool check_mmio_spte(struct kvm *kvm, u64 spte)
{
289 290 291 292 293 294 295
	unsigned int kvm_gen, spte_gen;

	kvm_gen = kvm_current_mmio_generation(kvm);
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
296 297
}

S
Sheng Yang 已提交
298
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
299
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
300 301 302 303 304 305 306 307 308
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
309 310 311 312 313
static int is_cpuid_PSE36(void)
{
	return 1;
}

314 315
static int is_nx(struct kvm_vcpu *vcpu)
{
316
	return vcpu->arch.efer & EFER_NX;
317 318
}

319 320
static int is_shadow_present_pte(u64 pte)
{
321
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
322 323
}

M
Marcelo Tosatti 已提交
324 325 326 327 328
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

329
static int is_rmap_spte(u64 pte)
330
{
331
	return is_shadow_present_pte(pte);
332 333
}

334 335 336 337
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
338
	if (is_large_pte(pte))
339 340 341 342
		return 1;
	return 0;
}

343
static pfn_t spte_to_pfn(u64 pte)
344
{
345
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
346 347
}

348 349 350 351 352 353 354
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

355
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
356
static void __set_spte(u64 *sptep, u64 spte)
357
{
358
	*sptep = spte;
359 360
}

361
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
362
{
363 364 365 366 367 368 369
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
370 371 372 373 374

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
375 376 377 378 379 380

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	/* It is valid if the spte is zapped. */
	return spte == 0ull;
}
381
#else
382 383 384 385 386 387 388
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
389

390 391 392 393 394 395 396 397 398 399 400 401
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

402 403 404
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
405

406 407 408 409 410 411 412 413 414 415 416 417 418
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
419 420
}

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
437
	count_spte_clear(sptep, spte);
438 439 440 441 442 443 444 445 446 447 448
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
449 450
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
451
	count_spte_clear(sptep, spte);
452 453 454

	return orig.spte;
}
455 456 457 458

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
459 460 461 462 463 464 465 466 467 468 469 470 471 472
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	union split_spte sspte = (union split_spte)spte;
	u32 high_mmio_mask = shadow_mmio_mask >> 32;

	/* It is valid if the spte is zapped. */
	if (spte == 0ull)
		return true;

	/* It is valid if the spte is being zapped. */
	if (sspte.spte_low == 0ull &&
	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
		return true;

	return false;
}
513 514
#endif

515 516
static bool spte_is_locklessly_modifiable(u64 spte)
{
517 518
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
519 520
}

521 522
static bool spte_has_volatile_bits(u64 spte)
{
523 524 525 526 527 528 529 530 531
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

532 533 534 535 536 537
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

538 539
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
540 541 542 543 544
		return false;

	return true;
}

545 546 547 548 549
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

550 551 552 553 554 555 556 557 558 559 560 561 562 563
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
564 565 566 567 568 569
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
570
 */
571
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
572
{
573
	u64 old_spte = *sptep;
574
	bool ret = false;
575 576

	WARN_ON(!is_rmap_spte(new_spte));
577

578 579 580 581
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
582

583
	if (!spte_has_volatile_bits(old_spte))
584
		__update_clear_spte_fast(sptep, new_spte);
585
	else
586
		old_spte = __update_clear_spte_slow(sptep, new_spte);
587

588 589 590 591 592
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
593 594
	if (spte_is_locklessly_modifiable(old_spte) &&
	      !is_writable_pte(new_spte))
595 596
		ret = true;

597
	if (!shadow_accessed_mask)
598
		return ret;
599 600 601 602 603

	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
604 605

	return ret;
606 607
}

608 609 610 611 612 613 614 615 616 617 618
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
	pfn_t pfn;
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
619
		__update_clear_spte_fast(sptep, 0ull);
620
	else
621
		old_spte = __update_clear_spte_slow(sptep, 0ull);
622 623 624 625 626

	if (!is_rmap_spte(old_spte))
		return 0;

	pfn = spte_to_pfn(old_spte);
627 628 629 630 631 632 633 634

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
	WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));

635 636 637 638 639 640 641 642 643 644 645 646 647 648
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
649
	__update_clear_spte_fast(sptep, 0ull);
650 651
}

652 653 654 655 656 657 658
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
659 660 661 662 663 664 665 666 667 668 669
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
670 671 672 673
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
674 675 676 677 678 679 680 681
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
682 683
}

684
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
685
				  struct kmem_cache *base_cache, int min)
686 687 688 689
{
	void *obj;

	if (cache->nobjs >= min)
690
		return 0;
691
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
692
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
693
		if (!obj)
694
			return -ENOMEM;
695 696
		cache->objects[cache->nobjs++] = obj;
	}
697
	return 0;
698 699
}

700 701 702 703 704
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

705 706
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
707 708
{
	while (mc->nobjs)
709
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
710 711
}

A
Avi Kivity 已提交
712
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
713
				       int min)
A
Avi Kivity 已提交
714
{
715
	void *page;
A
Avi Kivity 已提交
716 717 718 719

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
720
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
721 722
		if (!page)
			return -ENOMEM;
723
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
724 725 726 727 728 729 730
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
731
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
732 733
}

734
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
735
{
736 737
	int r;

738
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
739
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
740 741
	if (r)
		goto out;
742
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
743 744
	if (r)
		goto out;
745
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
746
				   mmu_page_header_cache, 4);
747 748
out:
	return r;
749 750 751 752
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
753 754
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
755
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
756 757
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
758 759
}

760
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
761 762 763 764 765 766 767 768
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

769
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
770
{
771
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
772 773
}

774
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
775
{
776
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
777 778
}

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
795
/*
796 797
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
798
 */
799 800 801
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
802 803 804
{
	unsigned long idx;

805
	idx = gfn_to_index(gfn, slot->base_gfn, level);
806
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
807 808 809 810
}

static void account_shadowed(struct kvm *kvm, gfn_t gfn)
{
811
	struct kvm_memory_slot *slot;
812
	struct kvm_lpage_info *linfo;
813
	int i;
M
Marcelo Tosatti 已提交
814

A
Avi Kivity 已提交
815
	slot = gfn_to_memslot(kvm, gfn);
816 817
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
818 819
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count += 1;
820
	}
821
	kvm->arch.indirect_shadow_pages++;
M
Marcelo Tosatti 已提交
822 823 824 825
}

static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
{
826
	struct kvm_memory_slot *slot;
827
	struct kvm_lpage_info *linfo;
828
	int i;
M
Marcelo Tosatti 已提交
829

A
Avi Kivity 已提交
830
	slot = gfn_to_memslot(kvm, gfn);
831 832
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
833 834 835
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count -= 1;
		WARN_ON(linfo->write_count < 0);
836
	}
837
	kvm->arch.indirect_shadow_pages--;
M
Marcelo Tosatti 已提交
838 839
}

840 841 842
static int has_wrprotected_page(struct kvm *kvm,
				gfn_t gfn,
				int level)
M
Marcelo Tosatti 已提交
843
{
844
	struct kvm_memory_slot *slot;
845
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
846

A
Avi Kivity 已提交
847
	slot = gfn_to_memslot(kvm, gfn);
M
Marcelo Tosatti 已提交
848
	if (slot) {
849 850
		linfo = lpage_info_slot(gfn, slot, level);
		return linfo->write_count;
M
Marcelo Tosatti 已提交
851 852 853 854 855
	}

	return 1;
}

856
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
857
{
J
Joerg Roedel 已提交
858
	unsigned long page_size;
859
	int i, ret = 0;
M
Marcelo Tosatti 已提交
860

J
Joerg Roedel 已提交
861
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
862

863 864 865 866 867 868 869 870
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

871
	return ret;
M
Marcelo Tosatti 已提交
872 873
}

874 875 876
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
877 878
{
	struct kvm_memory_slot *slot;
879 880 881 882 883 884 885 886 887 888 889

	slot = gfn_to_memslot(vcpu->kvm, gfn);
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
	      (no_dirty_log && slot->dirty_bitmap))
		slot = NULL;

	return slot;
}

static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
890
	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
891 892 893 894 895
}

static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
	int host_level, level, max_level;
M
Marcelo Tosatti 已提交
896

897 898 899 900 901
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
902
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
903 904

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
905 906 907 908
		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
909 910
}

911
/*
912
 * Pte mapping structures:
913
 *
914
 * If pte_list bit zero is zero, then pte_list point to the spte.
915
 *
916 917
 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 * pte_list_desc containing more mappings.
918
 *
919
 * Returns the number of pte entries before the spte was added or zero if
920 921
 * the spte was not added.
 *
922
 */
923 924
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
			unsigned long *pte_list)
925
{
926
	struct pte_list_desc *desc;
927
	int i, count = 0;
928

929 930 931 932 933 934 935
	if (!*pte_list) {
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
		*pte_list = (unsigned long)spte;
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
		desc->sptes[0] = (u64 *)*pte_list;
A
Avi Kivity 已提交
936
		desc->sptes[1] = spte;
937
		*pte_list = (unsigned long)desc | 1;
938
		++count;
939
	} else {
940 941 942
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
943
			desc = desc->more;
944
			count += PTE_LIST_EXT;
945
		}
946 947
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
948 949
			desc = desc->more;
		}
A
Avi Kivity 已提交
950
		for (i = 0; desc->sptes[i]; ++i)
951
			++count;
A
Avi Kivity 已提交
952
		desc->sptes[i] = spte;
953
	}
954
	return count;
955 956
}

957 958 959
static void
pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
			   int i, struct pte_list_desc *prev_desc)
960 961 962
{
	int j;

963
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
964
		;
A
Avi Kivity 已提交
965 966
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
967 968 969
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
970
		*pte_list = (unsigned long)desc->sptes[0];
971 972 973 974
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
975 976
			*pte_list = (unsigned long)desc->more | 1;
	mmu_free_pte_list_desc(desc);
977 978
}

979
static void pte_list_remove(u64 *spte, unsigned long *pte_list)
980
{
981 982
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
983 984
	int i;

985 986
	if (!*pte_list) {
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
987
		BUG();
988 989 990 991
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
		if ((u64 *)*pte_list != spte) {
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
992 993
			BUG();
		}
994
		*pte_list = 0;
995
	} else {
996 997
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
998 999
		prev_desc = NULL;
		while (desc) {
1000
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
A
Avi Kivity 已提交
1001
				if (desc->sptes[i] == spte) {
1002
					pte_list_desc_remove_entry(pte_list,
1003
							       desc, i,
1004 1005 1006 1007 1008 1009
							       prev_desc);
					return;
				}
			prev_desc = desc;
			desc = desc->more;
		}
1010
		pr_err("pte_list_remove: %p many->many\n", spte);
1011 1012 1013 1014
		BUG();
	}
}

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
typedef void (*pte_list_walk_fn) (u64 *spte);
static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
	struct pte_list_desc *desc;
	int i;

	if (!*pte_list)
		return;

	if (!(*pte_list & 1))
		return fn((u64 *)*pte_list);

	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
	while (desc) {
		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
			fn(desc->sptes[i]);
		desc = desc->more;
	}
}

1035
static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1036
				    struct kvm_memory_slot *slot)
1037
{
1038
	unsigned long idx;
1039

1040
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1041
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1042 1043
}

1044 1045 1046 1047 1048 1049 1050 1051
/*
 * Take gfn and return the reverse mapping to it.
 */
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
{
	struct kvm_memory_slot *slot;

	slot = gfn_to_memslot(kvm, gfn);
1052
	return __gfn_to_rmap(gfn, level, slot);
1053 1054
}

1055 1056 1057 1058 1059 1060 1061 1062
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
	return pte_list_add(vcpu, spte, rmapp);
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
	pte_list_remove(spte, rmapp);
}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
{
	if (!rmap)
		return NULL;

	if (!(rmap & 1)) {
		iter->desc = NULL;
		return (u64 *)rmap;
	}

	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
	iter->pos = 0;
	return iter->desc->sptes[iter->pos];
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			u64 *sptep;

			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
				return sptep;
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
			return iter->desc->sptes[iter->pos];
		}
	}

	return NULL;
}

1147
static void drop_spte(struct kvm *kvm, u64 *sptep)
1148
{
1149
	if (mmu_spte_clear_track_bits(sptep))
1150
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1151 1152
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1174
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1175
 * spte write-protection is caused by protecting shadow page table.
1176
 *
T
Tiejun Chen 已提交
1177
 * Note: write protection is difference between dirty logging and spte
1178 1179 1180 1181 1182
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1183
 *
1184
 * Return true if tlb need be flushed.
1185
 */
1186
static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1187 1188 1189
{
	u64 spte = *sptep;

1190 1191
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1192 1193 1194 1195
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1196 1197
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1198
	spte = spte & ~PT_WRITABLE_MASK;
1199

1200
	return mmu_spte_update(sptep, spte);
1201 1202
}

1203
static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1204
				 bool pt_protect)
1205
{
1206 1207
	u64 *sptep;
	struct rmap_iterator iter;
1208
	bool flush = false;
1209

1210 1211
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1212

1213
		flush |= spte_write_protect(kvm, sptep, pt_protect);
1214
		sptep = rmap_get_next(&iter);
1215
	}
1216

1217
	return flush;
1218 1219
}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
/**
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1233 1234 1235
{
	unsigned long *rmapp;

1236
	while (mask) {
1237 1238
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
1239
		__rmap_write_protect(kvm, rmapp, false);
M
Marcelo Tosatti 已提交
1240

1241 1242 1243
		/* clear the first set bit */
		mask &= mask - 1;
	}
1244 1245
}

1246
static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1247 1248
{
	struct kvm_memory_slot *slot;
1249 1250
	unsigned long *rmapp;
	int i;
1251
	bool write_protected = false;
1252 1253

	slot = gfn_to_memslot(kvm, gfn);
1254 1255 1256 1257

	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		rmapp = __gfn_to_rmap(gfn, i, slot);
1258
		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1259 1260 1261
	}

	return write_protected;
1262 1263
}

F
Frederik Deweerdt 已提交
1264
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1265
			   struct kvm_memory_slot *slot, unsigned long data)
1266
{
1267 1268
	u64 *sptep;
	struct rmap_iterator iter;
1269 1270
	int need_tlb_flush = 0;

1271 1272 1273 1274 1275
	while ((sptep = rmap_get_first(*rmapp, &iter))) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);

		drop_spte(kvm, sptep);
1276 1277
		need_tlb_flush = 1;
	}
1278

1279 1280 1281
	return need_tlb_flush;
}

F
Frederik Deweerdt 已提交
1282
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1283
			     struct kvm_memory_slot *slot, unsigned long data)
1284
{
1285 1286
	u64 *sptep;
	struct rmap_iterator iter;
1287
	int need_flush = 0;
1288
	u64 new_spte;
1289 1290 1291 1292 1293
	pte_t *ptep = (pte_t *)data;
	pfn_t new_pfn;

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1294 1295 1296 1297 1298

	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!is_shadow_present_pte(*sptep));
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);

1299
		need_flush = 1;
1300

1301
		if (pte_write(*ptep)) {
1302 1303
			drop_spte(kvm, sptep);
			sptep = rmap_get_first(*rmapp, &iter);
1304
		} else {
1305
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1306 1307 1308 1309
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1310
			new_spte &= ~shadow_accessed_mask;
1311 1312 1313 1314

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
			sptep = rmap_get_next(&iter);
1315 1316
		}
	}
1317

1318 1319 1320 1321 1322 1323
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1324 1325 1326 1327 1328 1329
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
1330
					       struct kvm_memory_slot *slot,
1331
					       unsigned long data))
1332
{
1333
	int j;
1334
	int ret = 0;
1335
	struct kvm_memslots *slots;
1336
	struct kvm_memory_slot *memslot;
1337

1338
	slots = kvm_memslots(kvm);
1339

1340
	kvm_for_each_memslot(memslot, slots) {
1341
		unsigned long hva_start, hva_end;
1342
		gfn_t gfn_start, gfn_end;
1343

1344 1345 1346 1347 1348 1349 1350
		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1351
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1352
		 */
1353
		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1354
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1355

1356 1357 1358 1359
		for (j = PT_PAGE_TABLE_LEVEL;
		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
			unsigned long idx, idx_end;
			unsigned long *rmapp;
1360

1361 1362 1363 1364 1365 1366
			/*
			 * {idx(page_j) | page_j intersects with
			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
			 */
			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1367

1368
			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1369

1370 1371
			for (; idx <= idx_end; ++idx)
				ret |= handler(kvm, rmapp++, memslot, data);
1372 1373 1374
		}
	}

1375
	return ret;
1376 1377
}

1378 1379 1380
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1381
					 struct kvm_memory_slot *slot,
1382 1383 1384
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1385 1386 1387 1388
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1389 1390 1391
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1392 1393 1394 1395 1396
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1397 1398
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1399
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1400 1401
}

F
Frederik Deweerdt 已提交
1402
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1403
			 struct kvm_memory_slot *slot, unsigned long data)
1404
{
1405
	u64 *sptep;
1406
	struct rmap_iterator uninitialized_var(iter);
1407 1408
	int young = 0;

1409
	/*
1410 1411
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
1412 1413 1414 1415 1416
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
1417 1418 1419 1420
	if (!shadow_accessed_mask) {
		young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
		goto out;
	}
1421

1422 1423
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1424
		BUG_ON(!is_shadow_present_pte(*sptep));
1425

1426
		if (*sptep & shadow_accessed_mask) {
1427
			young = 1;
1428 1429
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1430 1431
		}
	}
1432 1433 1434
out:
	/* @data has hva passed to kvm_age_hva(). */
	trace_kvm_age_page(data, slot, young);
1435 1436 1437
	return young;
}

A
Andrea Arcangeli 已提交
1438
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1439
			      struct kvm_memory_slot *slot, unsigned long data)
A
Andrea Arcangeli 已提交
1440
{
1441 1442
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1453 1454
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1455
		BUG_ON(!is_shadow_present_pte(*sptep));
1456

1457
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1458 1459 1460 1461 1462 1463 1464 1465
			young = 1;
			break;
		}
	}
out:
	return young;
}

1466 1467
#define RMAP_RECYCLE_THRESHOLD 1000

1468
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1469 1470
{
	unsigned long *rmapp;
1471 1472 1473
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1474

1475
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1476

1477
	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1478 1479 1480
	kvm_flush_remote_tlbs(vcpu->kvm);
}

1481 1482
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
{
1483
	return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1484 1485
}

A
Andrea Arcangeli 已提交
1486 1487 1488 1489 1490
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1491
#ifdef MMU_DEBUG
1492
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1493
{
1494 1495 1496
	u64 *pos;
	u64 *end;

1497
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1498
		if (is_shadow_present_pte(*pos)) {
1499
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1500
			       pos, *pos);
A
Avi Kivity 已提交
1501
			return 0;
1502
		}
A
Avi Kivity 已提交
1503 1504
	return 1;
}
1505
#endif
A
Avi Kivity 已提交
1506

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1519
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1520
{
1521
	ASSERT(is_empty_shadow_page(sp->spt));
1522
	hlist_del(&sp->hash_link);
1523 1524
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1525 1526
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1527
	kmem_cache_free(mmu_page_header_cache, sp);
1528 1529
}

1530 1531
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1532
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1533 1534
}

1535
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1536
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1537 1538 1539 1540
{
	if (!parent_pte)
		return;

1541
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1542 1543
}

1544
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1545 1546
				       u64 *parent_pte)
{
1547
	pte_list_remove(parent_pte, &sp->parent_ptes);
1548 1549
}

1550 1551 1552 1553
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1554
	mmu_spte_clear_no_track(parent_pte);
1555 1556
}

1557 1558
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
					       u64 *parent_pte, int direct)
M
Marcelo Tosatti 已提交
1559
{
1560
	struct kvm_mmu_page *sp;
1561

1562 1563
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1564
	if (!direct)
1565
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1566
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1567 1568 1569 1570 1571 1572

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1573 1574 1575 1576 1577
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	sp->parent_ptes = 0;
	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1578 1579
}

1580
static void mark_unsync(u64 *spte);
1581
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1582
{
1583
	pte_list_walk(&sp->parent_ptes, mark_unsync);
1584 1585
}

1586
static void mark_unsync(u64 *spte)
1587
{
1588
	struct kvm_mmu_page *sp;
1589
	unsigned int index;
1590

1591
	sp = page_header(__pa(spte));
1592 1593
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1594
		return;
1595
	if (sp->unsync_children++)
1596
		return;
1597
	kvm_mmu_mark_parents_unsync(sp);
1598 1599
}

1600
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1601
			       struct kvm_mmu_page *sp)
1602 1603 1604 1605
{
	return 1;
}

M
Marcelo Tosatti 已提交
1606 1607 1608 1609
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1610 1611
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1612
				 const void *pte)
1613 1614 1615 1616
{
	WARN_ON(1);
}

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1627 1628
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1629
{
1630
	int i;
1631

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1647

1648
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1649
		struct kvm_mmu_page *child;
1650 1651
		u64 ent = sp->spt[i];

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
			goto clear_child_bitmap;

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
			if (!ret)
				goto clear_child_bitmap;
			else if (ret > 0)
				nr_unsync_leaf += ret;
			else
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
			 goto clear_child_bitmap;

		continue;

clear_child_bitmap:
		__clear_bit(i, sp->unsync_child_bitmap);
		sp->unsync_children--;
		WARN_ON((int)sp->unsync_children < 0);
1681 1682 1683
	}


1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	return nr_unsync_leaf;
}

static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	if (!sp->unsync_children)
		return 0;

	mmu_pages_add(pvec, sp, 0);
	return __mmu_unsync_walk(sp, pvec);
1695 1696 1697 1698 1699
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1700
	trace_kvm_mmu_sync_page(sp);
1701 1702 1703 1704
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1705 1706 1707 1708
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1709

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1720 1721 1722 1723 1724 1725 1726 1727
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1728

1729
/* @sp->gfn should be write-protected at the call site */
1730
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1731
			   struct list_head *invalid_list, bool clear_unsync)
1732
{
1733
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1734
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1735 1736 1737
		return 1;
	}

1738
	if (clear_unsync)
1739 1740
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1741
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1742
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1743 1744 1745
		return 1;
	}

1746
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1747 1748 1749
	return 0;
}

1750 1751 1752
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1753
	LIST_HEAD(invalid_list);
1754 1755
	int ret;

1756
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1757
	if (ret)
1758 1759
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1760 1761 1762
	return ret;
}

1763 1764 1765 1766 1767 1768 1769
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1770 1771
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1772
{
1773
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1774 1775
}

1776 1777 1778 1779
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1780
	LIST_HEAD(invalid_list);
1781 1782
	bool flush = false;

1783
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1784
		if (!s->unsync)
1785 1786 1787
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1788
		kvm_unlink_unsync_page(vcpu->kvm, s);
1789
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1790
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1791
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1792 1793 1794 1795 1796
			continue;
		}
		flush = true;
	}

1797
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1798
	if (flush)
1799
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1800 1801
}

1802 1803 1804
struct mmu_page_path {
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
	unsigned int idx[PT64_ROOT_LEVEL-1];
1805 1806
};

1807 1808 1809 1810 1811 1812
#define for_each_sp(pvec, sp, parents, i)			\
		for (i = mmu_pages_next(&pvec, &parents, -1),	\
			sp = pvec.page[i].sp;			\
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1813 1814 1815
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;

		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
			parents->idx[0] = pvec->page[n].idx;
			return n;
		}

		parents->parent[sp->role.level-2] = sp;
		parents->idx[sp->role.level-1] = pvec->page[n].idx;
	}

	return n;
}

1834
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1835
{
1836 1837 1838 1839 1840
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
1841

1842 1843 1844 1845 1846 1847 1848 1849 1850
		sp = parents->parent[level];
		if (!sp)
			return;

		--sp->unsync_children;
		WARN_ON((int)sp->unsync_children < 0);
		__clear_bit(idx, sp->unsync_child_bitmap);
		level++;
	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1851 1852
}

1853 1854 1855
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
			       struct mmu_page_path *parents,
			       struct kvm_mmu_pages *pvec)
1856
{
1857 1858 1859
	parents->parent[parent->role.level-1] = NULL;
	pvec->nr = 0;
}
1860

1861 1862 1863 1864 1865 1866 1867
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1868
	LIST_HEAD(invalid_list);
1869 1870 1871

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
1872
		bool protected = false;
1873 1874 1875 1876 1877 1878 1879

		for_each_sp(pages, sp, parents, i)
			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

1880
		for_each_sp(pages, sp, parents, i) {
1881
			kvm_sync_page(vcpu, sp, &invalid_list);
1882 1883
			mmu_pages_clear_parents(&parents);
		}
1884
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1885
		cond_resched_lock(&vcpu->kvm->mmu_lock);
1886 1887
		kvm_mmu_pages_init(parent, &parents, &pages);
	}
1888 1889
}

1890 1891 1892 1893 1894 1895 1896 1897
static void init_shadow_page_table(struct kvm_mmu_page *sp)
{
	int i;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		sp->spt[i] = 0ull;
}

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
	sp->write_flooding_count = 0;
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

1910 1911 1912 1913 1914
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

1915 1916 1917 1918
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
1919
					     int direct,
1920
					     unsigned access,
1921
					     u64 *parent_pte)
1922 1923 1924
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
1925 1926
	struct kvm_mmu_page *sp;
	bool need_sync = false;
1927

1928
	role = vcpu->arch.mmu.base_role;
1929
	role.level = level;
1930
	role.direct = direct;
1931
	if (role.direct)
1932
		role.cr4_pae = 0;
1933
	role.access = access;
1934 1935
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1936 1937 1938 1939
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
1940
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1941 1942 1943
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

1944 1945
		if (!need_sync && sp->unsync)
			need_sync = true;
1946

1947 1948
		if (sp->role.word != role.word)
			continue;
1949

1950 1951
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
1952

1953 1954
		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
		if (sp->unsync_children) {
1955
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1956 1957 1958
			kvm_mmu_mark_parents_unsync(sp);
		} else if (sp->unsync)
			kvm_mmu_mark_parents_unsync(sp);
1959

1960
		__clear_sp_write_flooding_count(sp);
1961 1962 1963
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
A
Avi Kivity 已提交
1964
	++vcpu->kvm->stat.mmu_cache_miss;
1965
	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1966 1967 1968 1969
	if (!sp)
		return sp;
	sp->gfn = gfn;
	sp->role = role;
1970 1971
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1972
	if (!direct) {
1973 1974
		if (rmap_write_protect(vcpu->kvm, gfn))
			kvm_flush_remote_tlbs(vcpu->kvm);
1975 1976 1977
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);

1978 1979
		account_shadowed(vcpu->kvm, gfn);
	}
1980
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1981
	init_shadow_page_table(sp);
A
Avi Kivity 已提交
1982
	trace_kvm_mmu_get_page(sp, true);
1983
	return sp;
1984 1985
}

1986 1987 1988 1989 1990 1991
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
1992 1993 1994 1995 1996 1997

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2012

2013 2014 2015 2016 2017
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2018 2019
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2020
{
2021
	if (is_last_spte(spte, iterator->level)) {
2022 2023 2024 2025
		iterator->level = 0;
		return;
	}

2026
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2027 2028 2029
	--iterator->level;
}

2030 2031 2032 2033 2034
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2035
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2036 2037 2038
{
	u64 spte;

2039 2040 2041
	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

X
Xiao Guangrong 已提交
2042
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2043 2044 2045 2046
	       shadow_user_mask | shadow_x_mask;

	if (accessed)
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2047

2048
	mmu_spte_set(sptep, spte);
2049 2050
}

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2068
		drop_parent_pte(child, sptep);
2069 2070 2071 2072
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2073
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2074 2075 2076 2077 2078 2079 2080
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2081
		if (is_last_spte(pte, sp->role.level)) {
2082
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2083 2084 2085
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2086
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2087
			drop_parent_pte(child, spte);
2088
		}
X
Xiao Guangrong 已提交
2089 2090 2091 2092
		return true;
	}

	if (is_mmio_spte(pte))
2093
		mmu_spte_clear_no_track(spte);
2094

X
Xiao Guangrong 已提交
2095
	return false;
2096 2097
}

2098
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2099
					 struct kvm_mmu_page *sp)
2100
{
2101 2102
	unsigned i;

2103 2104
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2105 2106
}

2107
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2108
{
2109
	mmu_page_remove_parent_pte(sp, parent_pte);
2110 2111
}

2112
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2113
{
2114 2115
	u64 *sptep;
	struct rmap_iterator iter;
2116

2117 2118
	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
		drop_parent_pte(sp, sptep);
2119 2120
}

2121
static int mmu_zap_unsync_children(struct kvm *kvm,
2122 2123
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2124
{
2125 2126 2127
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2128

2129
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2130
		return 0;
2131 2132 2133 2134 2135 2136

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2137
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2138
			mmu_pages_clear_parents(&parents);
2139
			zapped++;
2140 2141 2142 2143 2144
		}
		kvm_mmu_pages_init(parent, &parents, &pages);
	}

	return zapped;
2145 2146
}

2147 2148
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2149
{
2150
	int ret;
A
Avi Kivity 已提交
2151

2152
	trace_kvm_mmu_prepare_zap_page(sp);
2153
	++kvm->stat.mmu_shadow_zapped;
2154
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2155
	kvm_mmu_page_unlink_children(kvm, sp);
2156
	kvm_mmu_unlink_parents(kvm, sp);
2157

2158
	if (!sp->role.invalid && !sp->role.direct)
A
Avi Kivity 已提交
2159
		unaccount_shadowed(kvm, sp->gfn);
2160

2161 2162
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2163
	if (!sp->root_count) {
2164 2165
		/* Count self */
		ret++;
2166
		list_move(&sp->link, invalid_list);
2167
		kvm_mod_used_mmu_pages(kvm, -1);
2168
	} else {
A
Avi Kivity 已提交
2169
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2170 2171 2172 2173 2174 2175 2176

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2177
	}
2178 2179

	sp->role.invalid = 1;
2180
	return ret;
2181 2182
}

2183 2184 2185
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2186
	struct kvm_mmu_page *sp, *nsp;
2187 2188 2189 2190

	if (list_empty(invalid_list))
		return;

2191 2192 2193 2194 2195
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2196

2197 2198 2199 2200 2201
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2202

2203
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2204
		WARN_ON(!sp->role.invalid || sp->root_count);
2205
		kvm_mmu_free_page(sp);
2206
	}
2207 2208
}

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

	sp = list_entry(kvm->arch.active_mmu_pages.prev,
			struct kvm_mmu_page, link);
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2224 2225
/*
 * Changing the number of mmu pages allocated to the vm
2226
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2227
 */
2228
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2229
{
2230
	LIST_HEAD(invalid_list);
2231

2232 2233
	spin_lock(&kvm->mmu_lock);

2234
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2235 2236 2237 2238
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2239

2240
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2241
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2242 2243
	}

2244
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2245 2246

	spin_unlock(&kvm->mmu_lock);
2247 2248
}

2249
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2250
{
2251
	struct kvm_mmu_page *sp;
2252
	LIST_HEAD(invalid_list);
2253 2254
	int r;

2255
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2256
	r = 0;
2257
	spin_lock(&kvm->mmu_lock);
2258
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2259
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2260 2261
			 sp->role.word);
		r = 1;
2262
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2263
	}
2264
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2265 2266
	spin_unlock(&kvm->mmu_lock);

2267
	return r;
2268
}
2269
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2270

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
/*
 * The function is based on mtrr_type_lookup() in
 * arch/x86/kernel/cpu/mtrr/generic.c
 */
static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
			 u64 start, u64 end)
{
	int i;
	u64 base, mask;
	u8 prev_match, curr_match;
	int num_var_ranges = KVM_NR_VAR_MTRR;

	if (!mtrr_state->enabled)
		return 0xFF;

	/* Make end inclusive end, instead of exclusive */
	end--;

	/* Look in fixed ranges. Just return the type as per start */
	if (mtrr_state->have_fixed && (start < 0x100000)) {
		int idx;

		if (start < 0x80000) {
			idx = 0;
			idx += (start >> 16);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0xC0000) {
			idx = 1 * 8;
			idx += ((start - 0x80000) >> 14);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0x1000000) {
			idx = 3 * 8;
			idx += ((start - 0xC0000) >> 12);
			return mtrr_state->fixed_ranges[idx];
		}
	}

	/*
	 * Look in variable ranges
	 * Look of multiple ranges matching this address and pick type
	 * as per MTRR precedence
	 */
	if (!(mtrr_state->enabled & 2))
		return mtrr_state->def_type;

	prev_match = 0xFF;
	for (i = 0; i < num_var_ranges; ++i) {
		unsigned short start_state, end_state;

		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
			continue;

		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);

		start_state = ((start & mask) == (base & mask));
		end_state = ((end & mask) == (base & mask));
		if (start_state != end_state)
			return 0xFE;

		if ((start & mask) != (base & mask))
			continue;

		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
		if (prev_match == 0xFF) {
			prev_match = curr_match;
			continue;
		}

		if (prev_match == MTRR_TYPE_UNCACHABLE ||
		    curr_match == MTRR_TYPE_UNCACHABLE)
			return MTRR_TYPE_UNCACHABLE;

		if ((prev_match == MTRR_TYPE_WRBACK &&
		     curr_match == MTRR_TYPE_WRTHROUGH) ||
		    (prev_match == MTRR_TYPE_WRTHROUGH &&
		     curr_match == MTRR_TYPE_WRBACK)) {
			prev_match = MTRR_TYPE_WRTHROUGH;
			curr_match = MTRR_TYPE_WRTHROUGH;
		}

		if (prev_match != curr_match)
			return MTRR_TYPE_UNCACHABLE;
	}

	if (prev_match != 0xFF)
		return prev_match;

	return mtrr_state->def_type;
}

2364
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2365 2366 2367 2368 2369 2370 2371 2372 2373
{
	u8 mtrr;

	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
	if (mtrr == 0xfe || mtrr == 0xff)
		mtrr = MTRR_TYPE_WRBACK;
	return mtrr;
}
2374
EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2375

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2386 2387
{
	struct kvm_mmu_page *s;
2388

2389
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2390
		if (s->unsync)
2391
			continue;
2392 2393
		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
		__kvm_unsync_page(vcpu, s);
2394 2395 2396 2397 2398 2399
	}
}

static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				  bool can_unsync)
{
2400 2401 2402
	struct kvm_mmu_page *s;
	bool need_unsync = false;

2403
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2404 2405 2406
		if (!can_unsync)
			return 1;

2407
		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2408
			return 1;
2409

G
Gleb Natapov 已提交
2410
		if (!s->unsync)
2411
			need_unsync = true;
2412
	}
2413 2414
	if (need_unsync)
		kvm_unsync_pages(vcpu, gfn);
2415 2416 2417
	return 0;
}

A
Avi Kivity 已提交
2418
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2419
		    unsigned pte_access, int level,
2420
		    gfn_t gfn, pfn_t pfn, bool speculative,
2421
		    bool can_unsync, bool host_writable)
2422
{
2423
	u64 spte;
M
Marcelo Tosatti 已提交
2424
	int ret = 0;
S
Sheng Yang 已提交
2425

2426
	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2427 2428
		return 0;

2429
	spte = PT_PRESENT_MASK;
2430
	if (!speculative)
2431
		spte |= shadow_accessed_mask;
2432

S
Sheng Yang 已提交
2433 2434 2435 2436
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2437

2438
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2439
		spte |= shadow_user_mask;
2440

2441
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2442
		spte |= PT_PAGE_SIZE_MASK;
2443
	if (tdp_enabled)
2444 2445
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
			kvm_is_mmio_pfn(pfn));
2446

2447
	if (host_writable)
2448
		spte |= SPTE_HOST_WRITEABLE;
2449 2450
	else
		pte_access &= ~ACC_WRITE_MASK;
2451

2452
	spte |= (u64)pfn << PAGE_SHIFT;
2453

2454
	if (pte_access & ACC_WRITE_MASK) {
2455

X
Xiao Guangrong 已提交
2456
		/*
2457 2458 2459 2460
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2461
		 */
2462
		if (level > PT_PAGE_TABLE_LEVEL &&
X
Xiao Guangrong 已提交
2463
		    has_wrprotected_page(vcpu->kvm, gfn, level))
A
Avi Kivity 已提交
2464
			goto done;
2465

2466
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2467

2468 2469 2470 2471 2472 2473
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2474
		if (!can_unsync && is_writable_pte(*sptep))
2475 2476
			goto set_pte;

2477
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2478
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2479
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2480
			ret = 1;
2481
			pte_access &= ~ACC_WRITE_MASK;
2482
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2483 2484 2485 2486 2487 2488
		}
	}

	if (pte_access & ACC_WRITE_MASK)
		mark_page_dirty(vcpu->kvm, gfn);

2489
set_pte:
2490
	if (mmu_spte_update(sptep, spte))
2491
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2492
done:
M
Marcelo Tosatti 已提交
2493 2494 2495
	return ret;
}

A
Avi Kivity 已提交
2496
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2497 2498 2499
			 unsigned pte_access, int write_fault, int *emulate,
			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
			 bool host_writable)
M
Marcelo Tosatti 已提交
2500 2501
{
	int was_rmapped = 0;
2502
	int rmap_count;
M
Marcelo Tosatti 已提交
2503

2504 2505
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2506

A
Avi Kivity 已提交
2507
	if (is_rmap_spte(*sptep)) {
M
Marcelo Tosatti 已提交
2508 2509 2510 2511
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2512 2513
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2514
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2515
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2516 2517

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2518
			drop_parent_pte(child, sptep);
2519
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2520
		} else if (pfn != spte_to_pfn(*sptep)) {
2521
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2522
				 spte_to_pfn(*sptep), pfn);
2523
			drop_spte(vcpu->kvm, sptep);
2524
			kvm_flush_remote_tlbs(vcpu->kvm);
2525 2526
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2527
	}
2528

2529 2530
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2531
		if (write_fault)
2532
			*emulate = 1;
2533
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2534
	}
M
Marcelo Tosatti 已提交
2535

2536 2537 2538
	if (unlikely(is_mmio_spte(*sptep) && emulate))
		*emulate = 1;

A
Avi Kivity 已提交
2539
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2540
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2541
		 is_large_pte(*sptep)? "2MB" : "4kB",
2542 2543
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2544
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2545 2546
		++vcpu->kvm->stat.lpages;

2547 2548 2549 2550 2551 2552
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2553
	}
2554

X
Xiao Guangrong 已提交
2555
	kvm_release_pfn_clean(pfn);
2556 2557
}

2558 2559 2560 2561 2562
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2563
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2564
	if (!slot)
2565
		return KVM_PFN_ERR_FAULT;
2566

2567
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2580
	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2581 2582 2583 2584 2585 2586 2587
		return -1;

	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2588
		mmu_set_spte(vcpu, start, access, 0, NULL,
2589 2590
			     sp->role.level, gfn, page_to_pfn(pages[i]),
			     true, true);
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2607
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2638
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2639 2640
			int map_writable, int level, gfn_t gfn, pfn_t pfn,
			bool prefault)
2641
{
2642
	struct kvm_shadow_walk_iterator iterator;
2643
	struct kvm_mmu_page *sp;
2644
	int emulate = 0;
2645
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2646

2647 2648 2649
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2650
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2651
		if (iterator.level == level) {
2652
			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2653 2654
				     write, &emulate, level, gfn, pfn,
				     prefault, map_writable);
2655
			direct_pte_prefetch(vcpu, iterator.sptep);
2656 2657
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2658 2659
		}

2660
		drop_large_spte(vcpu, iterator.sptep);
2661
		if (!is_shadow_present_pte(*iterator.sptep)) {
2662 2663 2664 2665
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2666 2667 2668
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
					      iterator.level - 1,
					      1, ACC_ALL, iterator.sptep);
2669

2670
			link_shadow_page(iterator.sptep, sp, true);
2671 2672
		}
	}
2673
	return emulate;
A
Avi Kivity 已提交
2674 2675
}

H
Huang Ying 已提交
2676
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2677
{
H
Huang Ying 已提交
2678 2679 2680 2681 2682 2683 2684
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2685

H
Huang Ying 已提交
2686
	send_sig_info(SIGBUS, &info, tsk);
2687 2688
}

2689
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2690
{
X
Xiao Guangrong 已提交
2691 2692 2693 2694 2695 2696 2697 2698 2699
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2700
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2701
		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2702
		return 0;
2703
	}
2704

2705
	return -EFAULT;
2706 2707
}

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2721
	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2743
			kvm_get_pfn(pfn);
2744 2745 2746 2747 2748
			*pfnp = pfn;
		}
	}
}

2749 2750 2751 2752 2753 2754
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
				pfn_t pfn, unsigned access, int *ret_val)
{
	bool ret = true;

	/* The pfn is invalid, report the error! */
2755
	if (unlikely(is_error_pfn(pfn))) {
2756 2757 2758 2759
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
		goto exit;
	}

2760
	if (unlikely(is_noslot_pfn(pfn)))
2761 2762 2763 2764 2765 2766 2767
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

	ret = false;
exit:
	return ret;
}

2768
static bool page_fault_can_be_fast(u32 error_code)
2769
{
2770 2771 2772 2773 2774 2775 2776
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
2790 2791
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			u64 *sptep, u64 spte)
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
		mark_page_dirty(vcpu->kvm, gfn);

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
2818
	struct kvm_mmu_page *sp;
2819 2820 2821
	bool ret = false;
	u64 spte = 0ull;

2822 2823 2824
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

2825
	if (!page_fault_can_be_fast(error_code))
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
	if (!is_rmap_spte(spte)) {
		ret = true;
		goto exit;
	}

2842 2843
	sp = page_header(__pa(iterator.sptep));
	if (!is_last_spte(spte, sp->role.level))
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
	/*
	 * Do not fix write-permission on the large spte since we only dirty
	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
	 * that means other pages are missed if its slot is dirty-logged.
	 *
	 * Instead, we let the slow page fault path create a normal spte to
	 * fix the access.
	 *
	 * See the comments in kvm_arch_commit_memory_region().
	 */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		goto exit;

2877 2878 2879 2880 2881
	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
2882
	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2883
exit:
X
Xiao Guangrong 已提交
2884 2885
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2886 2887 2888 2889 2890
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2891
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2892
			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2893
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2894

2895 2896
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
2897 2898
{
	int r;
2899
	int level;
2900
	int force_pt_level;
2901
	pfn_t pfn;
2902
	unsigned long mmu_seq;
2903
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2904

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
2915

2916 2917 2918
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
2919

2920 2921 2922
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

2923
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2924
	smp_rmb();
2925

2926
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2927
		return 0;
2928

2929 2930
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
2931

2932
	spin_lock(&vcpu->kvm->mmu_lock);
2933
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2934
		goto out_unlock;
2935
	make_mmu_pages_available(vcpu);
2936 2937
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2938 2939
	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
			 prefault);
2940 2941 2942
	spin_unlock(&vcpu->kvm->mmu_lock);


2943
	return r;
2944 2945 2946 2947 2948

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
2949 2950 2951
}


2952 2953 2954
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
2955
	struct kvm_mmu_page *sp;
2956
	LIST_HEAD(invalid_list);
2957

2958
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
2959
		return;
2960

2961 2962 2963
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
2964
		hpa_t root = vcpu->arch.mmu.root_hpa;
2965

2966
		spin_lock(&vcpu->kvm->mmu_lock);
2967 2968
		sp = page_header(root);
		--sp->root_count;
2969 2970 2971 2972
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
2973
		spin_unlock(&vcpu->kvm->mmu_lock);
2974
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2975 2976
		return;
	}
2977 2978

	spin_lock(&vcpu->kvm->mmu_lock);
2979
	for (i = 0; i < 4; ++i) {
2980
		hpa_t root = vcpu->arch.mmu.pae_root[i];
2981

A
Avi Kivity 已提交
2982 2983
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
2984 2985
			sp = page_header(root);
			--sp->root_count;
2986
			if (!sp->root_count && sp->role.invalid)
2987 2988
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
2989
		}
2990
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2991
	}
2992
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2993
	spin_unlock(&vcpu->kvm->mmu_lock);
2994
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2995 2996
}

2997 2998 2999 3000 3001
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3002
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3003 3004 3005 3006 3007 3008
		ret = 1;
	}

	return ret;
}

3009 3010 3011
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3012
	unsigned i;
3013 3014 3015

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3016
		make_mmu_pages_available(vcpu);
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
				      1, ACC_ALL, NULL);
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

			ASSERT(!VALID_PAGE(root));
			spin_lock(&vcpu->kvm->mmu_lock);
3028
			make_mmu_pages_available(vcpu);
3029 3030
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30,
3031 3032 3033 3034 3035 3036 3037
					      PT32_ROOT_LEVEL, 1, ACC_ALL,
					      NULL);
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3038
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3039 3040 3041 3042 3043 3044 3045
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3046
{
3047
	struct kvm_mmu_page *sp;
3048 3049 3050
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3051

3052
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3053

3054 3055 3056 3057 3058 3059 3060 3061
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3062
		hpa_t root = vcpu->arch.mmu.root_hpa;
3063 3064

		ASSERT(!VALID_PAGE(root));
3065

3066
		spin_lock(&vcpu->kvm->mmu_lock);
3067
		make_mmu_pages_available(vcpu);
3068 3069
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
				      0, ACC_ALL, NULL);
3070 3071
		root = __pa(sp->spt);
		++sp->root_count;
3072
		spin_unlock(&vcpu->kvm->mmu_lock);
3073
		vcpu->arch.mmu.root_hpa = root;
3074
		return 0;
3075
	}
3076

3077 3078
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3079 3080
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3081
	 */
3082 3083 3084 3085
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3086
	for (i = 0; i < 4; ++i) {
3087
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3088 3089

		ASSERT(!VALID_PAGE(root));
3090
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3091
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3092
			if (!is_present_gpte(pdptr)) {
3093
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3094 3095
				continue;
			}
A
Avi Kivity 已提交
3096
			root_gfn = pdptr >> PAGE_SHIFT;
3097 3098
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3099
		}
3100
		spin_lock(&vcpu->kvm->mmu_lock);
3101
		make_mmu_pages_available(vcpu);
3102
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3103
				      PT32_ROOT_LEVEL, 0,
3104
				      ACC_ALL, NULL);
3105 3106
		root = __pa(sp->spt);
		++sp->root_count;
3107 3108
		spin_unlock(&vcpu->kvm->mmu_lock);

3109
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3110
	}
3111
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3138
	return 0;
3139 3140
}

3141 3142 3143 3144 3145 3146 3147 3148
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3149 3150 3151 3152 3153
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3154 3155 3156
	if (vcpu->arch.mmu.direct_map)
		return;

3157 3158
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3159

3160
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3161
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3162
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3163 3164 3165
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3166
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3167 3168 3169 3170 3171
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3172
		if (root && VALID_PAGE(root)) {
3173 3174 3175 3176 3177
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3178
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3179 3180 3181 3182 3183 3184
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3185
	spin_unlock(&vcpu->kvm->mmu_lock);
3186
}
N
Nadav Har'El 已提交
3187
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3188

3189
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3190
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3191
{
3192 3193
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3194 3195 3196
	return vaddr;
}

3197
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3198 3199
					 u32 access,
					 struct x86_exception *exception)
3200
{
3201 3202
	if (exception)
		exception->error_code = 0;
3203
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3204 3205
}

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}


/*
 * On direct hosts, the last spte is only allows two states
 * for mmio page fault:
 *   - It is the mmio spte
 *   - It is zapped or it is being zapped.
 *
 * This function completely checks the spte when the last spte
 * is not the mmio spte.
 */
static bool check_direct_spte_mmio_pf(u64 spte)
{
	return __check_direct_spte_mmio_pf(spte);
}

static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte = 0ull;

3234 3235 3236
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return spte;

3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
		if (!is_shadow_present_pte(spte))
			break;
	walk_shadow_page_lockless_end(vcpu);

	return spte;
}

int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	u64 spte;

	if (quickly_check_mmio_pf(vcpu, addr, direct))
3251
		return RET_MMIO_PF_EMULATE;
3252 3253 3254 3255 3256 3257 3258

	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3259 3260 3261
		if (!check_mmio_spte(vcpu->kvm, spte))
			return RET_MMIO_PF_INVALID;

3262 3263
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3264 3265

		trace_handle_mmio_page_fault(addr, gfn, access);
3266
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3267
		return RET_MMIO_PF_EMULATE;
3268 3269 3270 3271 3272 3273 3274
	}

	/*
	 * It's ok if the gva is remapped by other cpus on shadow guest,
	 * it's a BUG if the gfn is not a mmio page.
	 */
	if (direct && !check_direct_spte_mmio_pf(spte))
3275
		return RET_MMIO_PF_BUG;
3276 3277 3278 3279 3280

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3281
	return RET_MMIO_PF_RETRY;
3282 3283 3284 3285 3286 3287 3288 3289 3290
}
EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);

static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
				  u32 error_code, bool direct)
{
	int ret;

	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3291
	WARN_ON(ret == RET_MMIO_PF_BUG);
3292 3293 3294
	return ret;
}

A
Avi Kivity 已提交
3295
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3296
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3297
{
3298
	gfn_t gfn;
3299
	int r;
A
Avi Kivity 已提交
3300

3301
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3302

3303 3304 3305 3306 3307 3308
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gva, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3309

3310 3311 3312
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3313

A
Avi Kivity 已提交
3314
	ASSERT(vcpu);
3315
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3316

3317
	gfn = gva >> PAGE_SHIFT;
A
Avi Kivity 已提交
3318

3319
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3320
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3321 3322
}

3323
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3324 3325
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3326

3327
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3328
	arch.gfn = gfn;
3329
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3330
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3331

3332
	return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3344
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3345
			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3346 3347 3348
{
	bool async;

3349
	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3350 3351 3352 3353

	if (!async)
		return false; /* *pfn has correct page already */

3354
	if (!prefault && can_do_async_pf(vcpu)) {
3355
		trace_kvm_try_async_get_page(gva, gfn);
3356 3357 3358 3359 3360 3361 3362 3363
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3364
	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3365 3366 3367 3368

	return false;
}

G
Gleb Natapov 已提交
3369
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3370
			  bool prefault)
3371
{
3372
	pfn_t pfn;
3373
	int r;
3374
	int level;
3375
	int force_pt_level;
M
Marcelo Tosatti 已提交
3376
	gfn_t gfn = gpa >> PAGE_SHIFT;
3377
	unsigned long mmu_seq;
3378 3379
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3380 3381 3382 3383

	ASSERT(vcpu);
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));

3384 3385 3386 3387 3388 3389
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3390

3391 3392 3393 3394
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3395 3396 3397 3398 3399 3400
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
3401

3402 3403 3404
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3405
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3406
	smp_rmb();
3407

3408
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3409 3410
		return 0;

3411 3412 3413
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3414
	spin_lock(&vcpu->kvm->mmu_lock);
3415
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3416
		goto out_unlock;
3417
	make_mmu_pages_available(vcpu);
3418 3419
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3420
	r = __direct_map(vcpu, gpa, write, map_writable,
3421
			 level, gfn, pfn, prefault);
3422 3423 3424
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3425 3426 3427 3428 3429

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3430 3431
}

3432 3433
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3434 3435 3436
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3437
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3438
	context->invlpg = nonpaging_invlpg;
3439
	context->update_pte = nonpaging_update_pte;
3440
	context->root_level = 0;
A
Avi Kivity 已提交
3441
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3442
	context->root_hpa = INVALID_PAGE;
3443
	context->direct_map = true;
3444
	context->nx = false;
A
Avi Kivity 已提交
3445 3446
}

3447
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3448
{
3449
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3450 3451
}

3452 3453
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3454
	return kvm_read_cr3(vcpu);
3455 3456
}

3457 3458
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3459
{
3460
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3461 3462
}

3463 3464
static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			   unsigned access, int *nr_present)
3465 3466 3467 3468 3469 3470 3471 3472
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3473
		mark_mmio_spte(kvm, sptep, gfn, access);
3474 3475 3476 3477 3478 3479
		return true;
	}

	return false;
}

A
Avi Kivity 已提交
3480 3481 3482 3483 3484 3485 3486 3487 3488
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

3489 3490 3491 3492 3493
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3494 3495 3496 3497 3498 3499 3500 3501
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3502
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3503
				  struct kvm_mmu *context)
3504 3505 3506
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	u64 exb_bit_rsvd = 0;
3507
	u64 gbpages_bit_rsvd = 0;
3508
	u64 nonleaf_bit8_rsvd = 0;
3509

3510 3511
	context->bad_mt_xwr = 0;

3512
	if (!context->nx)
3513
		exb_bit_rsvd = rsvd_bits(63, 63);
3514 3515
	if (!guest_cpuid_has_gbpages(vcpu))
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3516 3517 3518 3519 3520 3521 3522 3523

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
	if (guest_cpuid_is_amd(vcpu))
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3524
	switch (context->root_level) {
3525 3526 3527 3528
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
		context->rsvd_bits_mask[0][1] = 0;
		context->rsvd_bits_mask[0][0] = 0;
3529 3530 3531 3532 3533 3534 3535
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

		if (!is_pse(vcpu)) {
			context->rsvd_bits_mask[1][1] = 0;
			break;
		}

3536 3537 3538 3539 3540 3541 3542 3543
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
		else
			/* 32 bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
		break;
	case PT32E_ROOT_LEVEL:
3544 3545
		context->rsvd_bits_mask[0][2] =
			rsvd_bits(maxphyaddr, 63) |
3546
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3547
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3548
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3549 3550 3551 3552 3553
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3554
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3555 3556 3557
		break;
	case PT64_ROOT_LEVEL:
		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3558
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3559
		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3560
			nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3561
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3562
			rsvd_bits(maxphyaddr, 51);
3563 3564 3565
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3566
		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3567
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3568
			rsvd_bits(13, 29);
3569
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3570 3571
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3572
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3573 3574 3575 3576
		break;
	}
}

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	int pte;

	context->rsvd_bits_mask[0][3] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
	context->rsvd_bits_mask[0][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);

	/* large page */
	context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
	context->rsvd_bits_mask[1][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
	context->rsvd_bits_mask[1][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
	context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

	for (pte = 0; pte < 64; pte++) {
		int rwx_bits = pte & 7;
		int mt = pte >> 3;
		if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
				rwx_bits == 0x2 || rwx_bits == 0x6 ||
				(rwx_bits == 0x4 && !execonly))
			context->bad_mt_xwr |= (1ull << pte);
	}
}

F
Feng Wu 已提交
3609
void update_permission_bitmask(struct kvm_vcpu *vcpu,
3610
		struct kvm_mmu *mmu, bool ept)
3611 3612 3613
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
3614
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3615

F
Feng Wu 已提交
3616
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
3617
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3618 3619 3620 3621 3622 3623
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
3624 3625 3626 3627 3628 3629
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
3630 3631 3632 3633 3634
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3635 3636 3637 3638 3639 3640
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
3641
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
3662 3663 3664
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3665

F
Feng Wu 已提交
3666 3667
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
3668 3669 3670 3671 3672 3673
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3692 3693 3694
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
3695
{
3696
	context->nx = is_nx(vcpu);
3697
	context->root_level = level;
3698

3699
	reset_rsvds_bits_mask(vcpu, context);
3700
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3701
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3702 3703 3704 3705

	ASSERT(is_pae(vcpu));
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3706
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3707
	context->invlpg = paging64_invlpg;
3708
	context->update_pte = paging64_update_pte;
3709
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3710
	context->root_hpa = INVALID_PAGE;
3711
	context->direct_map = false;
A
Avi Kivity 已提交
3712 3713
}

3714 3715
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
3716
{
3717
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3718 3719
}

3720 3721
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3722
{
3723
	context->nx = false;
3724
	context->root_level = PT32_ROOT_LEVEL;
3725

3726
	reset_rsvds_bits_mask(vcpu, context);
3727
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3728
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3729 3730 3731

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
3732
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3733
	context->invlpg = paging32_invlpg;
3734
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3735
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3736
	context->root_hpa = INVALID_PAGE;
3737
	context->direct_map = false;
A
Avi Kivity 已提交
3738 3739
}

3740 3741
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3742
{
3743
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3744 3745
}

3746
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3747
{
3748
	struct kvm_mmu *context = vcpu->arch.walk_mmu;
3749

3750
	context->base_role.word = 0;
3751
	context->page_fault = tdp_page_fault;
3752
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3753
	context->invlpg = nonpaging_invlpg;
3754
	context->update_pte = nonpaging_update_pte;
3755
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3756
	context->root_hpa = INVALID_PAGE;
3757
	context->direct_map = true;
3758
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3759
	context->get_cr3 = get_cr3;
3760
	context->get_pdptr = kvm_pdptr_read;
3761
	context->inject_page_fault = kvm_inject_page_fault;
3762 3763

	if (!is_paging(vcpu)) {
3764
		context->nx = false;
3765 3766 3767
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3768
		context->nx = is_nx(vcpu);
3769
		context->root_level = PT64_ROOT_LEVEL;
3770 3771
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3772
	} else if (is_pae(vcpu)) {
3773
		context->nx = is_nx(vcpu);
3774
		context->root_level = PT32E_ROOT_LEVEL;
3775 3776
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3777
	} else {
3778
		context->nx = false;
3779
		context->root_level = PT32_ROOT_LEVEL;
3780 3781
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
3782 3783
	}

3784
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3785
	update_last_pte_bitmap(vcpu, context);
3786 3787
}

3788
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
A
Avi Kivity 已提交
3789
{
3790
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
A
Avi Kivity 已提交
3791
	ASSERT(vcpu);
3792
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3793 3794

	if (!is_paging(vcpu))
3795
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
3796
	else if (is_long_mode(vcpu))
3797
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
3798
	else if (is_pae(vcpu))
3799
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
3800
	else
3801
		paging32_init_context(vcpu, context);
3802

3803
	vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3804
	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3805
	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3806 3807
	vcpu->arch.mmu.base_role.smep_andnot_wp
		= smep && !is_write_protection(vcpu);
3808 3809 3810
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

3811
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
N
Nadav Har'El 已提交
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
		bool execonly)
{
	ASSERT(vcpu);
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

3834
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3835
{
3836
	kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3837 3838
	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
	vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3839
	vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3840
	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
3841 3842
}

3843
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3844 3845 3846 3847
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
3848
	g_context->get_pdptr         = kvm_pdptr_read;
3849 3850 3851 3852 3853 3854 3855 3856 3857
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
	 * translation of l2_gpa to l1_gpa addresses is done using the
	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
	 * functions between mmu and nested_mmu are swapped.
	 */
	if (!is_paging(vcpu)) {
3858
		g_context->nx = false;
3859 3860 3861
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
3862
		g_context->nx = is_nx(vcpu);
3863
		g_context->root_level = PT64_ROOT_LEVEL;
3864
		reset_rsvds_bits_mask(vcpu, g_context);
3865 3866
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
3867
		g_context->nx = is_nx(vcpu);
3868
		g_context->root_level = PT32E_ROOT_LEVEL;
3869
		reset_rsvds_bits_mask(vcpu, g_context);
3870 3871
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
3872
		g_context->nx = false;
3873
		g_context->root_level = PT32_ROOT_LEVEL;
3874
		reset_rsvds_bits_mask(vcpu, g_context);
3875 3876 3877
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

3878
	update_permission_bitmask(vcpu, g_context, false);
A
Avi Kivity 已提交
3879
	update_last_pte_bitmap(vcpu, g_context);
3880 3881
}

3882
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3883
{
3884 3885 3886
	if (mmu_is_nested(vcpu))
		return init_kvm_nested_mmu(vcpu);
	else if (tdp_enabled)
3887 3888 3889 3890 3891
		return init_kvm_tdp_mmu(vcpu);
	else
		return init_kvm_softmmu(vcpu);
}

3892
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3893 3894 3895
{
	ASSERT(vcpu);

3896
	kvm_mmu_unload(vcpu);
3897
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
3898
}
3899
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
3900 3901

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3902
{
3903 3904
	int r;

3905
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
3906 3907
	if (r)
		goto out;
3908
	r = mmu_alloc_roots(vcpu);
3909
	kvm_mmu_sync_roots(vcpu);
3910 3911
	if (r)
		goto out;
3912
	/* set_cr3() should ensure TLB has been flushed */
3913
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3914 3915
out:
	return r;
A
Avi Kivity 已提交
3916
}
A
Avi Kivity 已提交
3917 3918 3919 3920 3921
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
3922
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3923
}
3924
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
3925

3926
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3927 3928
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
3929
{
3930
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3931 3932
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
3933
        }
3934

A
Avi Kivity 已提交
3935
	++vcpu->kvm->stat.mmu_pte_updated;
3936
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3937 3938
}

3939 3940 3941 3942 3943 3944 3945 3946
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
3947 3948
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
3949 3950 3951
	return (old & ~new & PT64_PERM_MASK) != 0;
}

3952 3953
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
				    bool remote_flush, bool local_flush)
3954
{
3955 3956 3957 3958
	if (zap_page)
		return;

	if (remote_flush)
3959
		kvm_flush_remote_tlbs(vcpu->kvm);
3960
	else if (local_flush)
3961
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3962 3963
}

3964 3965
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
3966
{
3967 3968
	u64 gentry;
	int r;
3969 3970 3971

	/*
	 * Assume that the pte write on a page table of the same type
3972 3973
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
3974
	 */
3975
	if (is_pae(vcpu) && *bytes == 4) {
3976
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3977 3978
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
3979
		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3980 3981
		if (r)
			gentry = 0;
3982 3983 3984
		new = (const u8 *)&gentry;
	}

3985
	switch (*bytes) {
3986 3987 3988 3989 3990 3991 3992 3993 3994
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
3995 3996
	}

3997 3998 3999 4000 4001 4002 4003
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4004
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4005
{
4006 4007 4008 4009
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4010
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4011
		return false;
4012

4013
	return ++sp->write_flooding_count >= 3;
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4030 4031 4032 4033 4034 4035 4036 4037

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
		       const u8 *new, int bytes)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	union kvm_mmu_page_role mask = { .word = 0 };
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4084
	bool remote_flush, local_flush, zap_page;
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

	zap_page = remote_flush = local_flush = false;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4108
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4109

4110
	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4111
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4112
		if (detect_write_misaligned(sp, gpa, bytes) ||
4113
		      detect_write_flooding(sp)) {
4114
			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4115
						     &invalid_list);
A
Avi Kivity 已提交
4116
			++vcpu->kvm->stat.mmu_flooded;
4117 4118
			continue;
		}
4119 4120 4121 4122 4123

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4124
		local_flush = true;
4125
		while (npte--) {
4126
			entry = *spte;
4127
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4128 4129
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4130
			      & mask.word) && rmap_can_add(vcpu))
4131
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4132
			if (need_remote_flush(entry, *spte))
4133
				remote_flush = true;
4134
			++spte;
4135 4136
		}
	}
4137
	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4138
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4139
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4140
	spin_unlock(&vcpu->kvm->mmu_lock);
4141 4142
}

4143 4144
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4145 4146
	gpa_t gpa;
	int r;
4147

4148
	if (vcpu->arch.mmu.direct_map)
4149 4150
		return 0;

4151
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4152 4153

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4154

4155
	return r;
4156
}
4157
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4158

4159
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4160
{
4161
	LIST_HEAD(invalid_list);
4162

4163 4164 4165
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4166 4167 4168
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4169

A
Avi Kivity 已提交
4170
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4171
	}
4172
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4173 4174
}

4175 4176 4177 4178 4179 4180 4181 4182
static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
{
	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4183 4184
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4185
{
4186
	int r, emulation_type = EMULTYPE_RETRY;
4187 4188
	enum emulation_result er;

G
Gleb Natapov 已提交
4189
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4190 4191 4192 4193 4194 4195 4196 4197
	if (r < 0)
		goto out;

	if (!r) {
		r = 1;
		goto out;
	}

4198 4199 4200 4201
	if (is_mmio_page_fault(vcpu, cr2))
		emulation_type = 0;

	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4202 4203 4204 4205

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4206
	case EMULATE_USER_EXIT:
4207
		++vcpu->stat.mmio_exits;
4208
		/* fall through */
4209
	case EMULATE_FAIL:
4210
		return 0;
4211 4212 4213 4214 4215 4216 4217 4218
	default:
		BUG();
	}
out:
	return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4219 4220 4221
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4222
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4223 4224 4225 4226
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4227 4228 4229 4230 4231 4232
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4233 4234 4235 4236 4237 4238
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4239 4240
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4241
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4242 4243
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4244 4245 4246 4247
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4248
	struct page *page;
A
Avi Kivity 已提交
4249 4250 4251 4252
	int i;

	ASSERT(vcpu);

4253 4254 4255 4256 4257 4258 4259
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4260 4261
		return -ENOMEM;

4262
	vcpu->arch.mmu.pae_root = page_address(page);
4263
	for (i = 0; i < 4; ++i)
4264
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4265

A
Avi Kivity 已提交
4266 4267 4268
	return 0;
}

4269
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4270 4271
{
	ASSERT(vcpu);
4272 4273 4274 4275 4276

	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4277

4278 4279
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4280

4281
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4282 4283
{
	ASSERT(vcpu);
4284
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4285

4286
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4287 4288
}

4289
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
A
Avi Kivity 已提交
4290
{
4291 4292 4293
	struct kvm_memory_slot *memslot;
	gfn_t last_gfn;
	int i;
A
Avi Kivity 已提交
4294

4295 4296
	memslot = id_to_memslot(kvm->memslots, slot);
	last_gfn = memslot->base_gfn + memslot->npages - 1;
A
Avi Kivity 已提交
4297

4298 4299
	spin_lock(&kvm->mmu_lock);

4300 4301 4302 4303
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		unsigned long *rmapp;
		unsigned long last_index, index;
A
Avi Kivity 已提交
4304

4305 4306
		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4307

4308 4309 4310
		for (index = 0; index <= last_index; ++index, ++rmapp) {
			if (*rmapp)
				__rmap_write_protect(kvm, rmapp, false);
4311

4312
			if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4313
				cond_resched_lock(&kvm->mmu_lock);
4314
		}
A
Avi Kivity 已提交
4315
	}
4316

4317
	spin_unlock(&kvm->mmu_lock);
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
	kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4338
}
4339

X
Xiao Guangrong 已提交
4340
#define BATCH_ZAP_PAGES	10
4341 4342 4343
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4344
	int batch = 0;
4345 4346 4347 4348

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4349 4350
		int ret;

4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4366 4367 4368 4369
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4370
		if (batch >= BATCH_ZAP_PAGES &&
4371
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4372
			batch = 0;
4373 4374 4375
			goto restart;
		}

4376 4377
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4378 4379 4380
		batch += ret;

		if (ret)
4381 4382 4383
			goto restart;
	}

4384 4385 4386 4387
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4388
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4403
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4404 4405
	kvm->arch.mmu_valid_gen++;

4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4417 4418 4419 4420
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4421 4422 4423 4424 4425
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4426 4427 4428 4429 4430 4431
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4432
	if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4433
		printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4434
		kvm_mmu_invalidate_zap_all_pages(kvm);
4435
	}
4436 4437
}

4438 4439
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4440 4441
{
	struct kvm *kvm;
4442
	int nr_to_scan = sc->nr_to_scan;
4443
	unsigned long freed = 0;
4444

4445
	spin_lock(&kvm_lock);
4446 4447

	list_for_each_entry(kvm, &vm_list, vm_list) {
4448
		int idx;
4449
		LIST_HEAD(invalid_list);
4450

4451 4452 4453 4454 4455 4456 4457 4458
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4459 4460 4461 4462 4463 4464
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4465 4466
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4467 4468
			continue;

4469
		idx = srcu_read_lock(&kvm->srcu);
4470 4471
		spin_lock(&kvm->mmu_lock);

4472 4473 4474 4475 4476 4477
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4478 4479
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
4480
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4481

4482
unlock:
4483
		spin_unlock(&kvm->mmu_lock);
4484
		srcu_read_unlock(&kvm->srcu, idx);
4485

4486 4487 4488 4489 4490
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
4491 4492
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4493 4494
	}

4495
	spin_unlock(&kvm_lock);
4496 4497 4498 4499 4500 4501
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
4502
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4503 4504 4505
}

static struct shrinker mmu_shrinker = {
4506 4507
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
4508 4509 4510
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4511
static void mmu_destroy_caches(void)
4512
{
4513 4514
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4515 4516
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4517 4518 4519 4520
}

int kvm_mmu_module_init(void)
{
4521 4522
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4523
					    0, 0, NULL);
4524
	if (!pte_list_desc_cache)
4525 4526
		goto nomem;

4527 4528
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4529
						  0, 0, NULL);
4530 4531 4532
	if (!mmu_page_header_cache)
		goto nomem;

4533 4534 4535
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
		goto nomem;

4536 4537
	register_shrinker(&mmu_shrinker);

4538 4539 4540
	return 0;

nomem:
4541
	mmu_destroy_caches();
4542 4543 4544
	return -ENOMEM;
}

4545 4546 4547 4548 4549 4550 4551
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4552
	struct kvm_memslots *slots;
4553
	struct kvm_memory_slot *memslot;
4554

4555 4556
	slots = kvm_memslots(kvm);

4557 4558
	kvm_for_each_memslot(memslot, slots)
		nr_pages += memslot->npages;
4559 4560 4561 4562 4563 4564 4565 4566

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);

	return nr_mmu_pages;
}

4567 4568 4569
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
{
	struct kvm_shadow_walk_iterator iterator;
4570
	u64 spte;
4571 4572
	int nr_sptes = 0;

4573 4574 4575
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return nr_sptes;

4576 4577 4578
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		sptes[iterator.level-1] = spte;
4579
		nr_sptes++;
4580
		if (!is_shadow_present_pte(spte))
4581 4582
			break;
	}
4583
	walk_shadow_page_lockless_end(vcpu);
4584 4585 4586 4587 4588

	return nr_sptes;
}
EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);

4589 4590 4591 4592
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);

4593
	kvm_mmu_unload(vcpu);
4594 4595
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
4596 4597 4598 4599 4600 4601 4602
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
4603 4604
	mmu_audit_disable();
}