“25c0de2cc6c26cb99553c2444936a7951c120c09”上不存在“arch/x86/kvm/mmu.c”
mmu.c 110.7 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
A
Avi Kivity 已提交
25

26
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
27 28 29 30 31
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
32
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/compiler.h>
35
#include <linux/srcu.h>
36
#include <linux/slab.h>
37
#include <linux/uaccess.h>
A
Avi Kivity 已提交
38

A
Avi Kivity 已提交
39 40
#include <asm/page.h>
#include <asm/cmpxchg.h>
41
#include <asm/io.h>
42
#include <asm/vmx.h>
A
Avi Kivity 已提交
43

44 45 46 47 48 49 50
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
51
bool tdp_enabled = false;
52

53 54 55 56
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
57 58 59
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
60
};
61

62
#undef MMU_DEBUG
63 64 65 66 67 68 69 70 71 72 73 74 75

#ifdef MMU_DEBUG

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)

#else

#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)

#endif

76
#ifdef MMU_DEBUG
77
static bool dbg = 0;
78
module_param(dbg, bool, 0644);
79
#endif
A
Avi Kivity 已提交
80

81 82 83
#ifndef MMU_DEBUG
#define ASSERT(x) do { } while (0)
#else
A
Avi Kivity 已提交
84 85 86 87 88
#define ASSERT(x)							\
	if (!(x)) {							\
		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
		       __FILE__, __LINE__, #x);				\
	}
89
#endif
A
Avi Kivity 已提交
90

91 92
#define PTE_PREFETCH_NUM		8

93
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
94 95 96 97 98
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
99
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
100 101 102 103 104 105 106 107

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
108
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
109

110 111 112
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
113 114 115 116 117

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


118
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
119 120
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 122 123 124 125 126
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
127 128 129 130

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 132 133
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
134

135 136
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
137

138 139 140 141 142
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

143 144
#include <trace/events/kvm.h>

145 146 147
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

148 149
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150

151 152
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

153 154 155
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

156 157 158
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
159 160
};

161 162 163 164
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
165
	int level;
166 167 168 169 170 171 172 173
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

174 175 176 177 178 179
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

180
static struct kmem_cache *pte_list_desc_cache;
181
static struct kmem_cache *mmu_page_header_cache;
182
static struct percpu_counter kvm_total_used_mmu_pages;
183

S
Sheng Yang 已提交
184 185 186 187 188
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
189 190 191
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
192
static void mmu_free_roots(struct kvm_vcpu *vcpu);
193 194 195 196 197 198 199

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

200 201 202 203 204 205 206 207
/*
 * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
 * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
 * number.
 */
#define MMIO_SPTE_GEN_LOW_SHIFT		3
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

208
#define MMIO_GEN_SHIFT			19
209 210
#define MMIO_GEN_LOW_SHIFT		9
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 1)
211 212
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
#define MMIO_MAX_GEN			((1 << MMIO_GEN_SHIFT) - 1)
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

	WARN_ON(gen > MMIO_MAX_GEN);

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

236 237
static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
{
238 239 240 241 242 243
	/*
	 * Init kvm generation close to MMIO_MAX_GEN to easily test the
	 * code of handling generation number wrap-around.
	 */
	return (kvm_memslots(kvm)->generation +
		      MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
244 245
}

246 247
static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
			   unsigned access)
248
{
249 250
	unsigned int gen = kvm_current_mmio_generation(kvm);
	u64 mask = generation_mmio_spte_mask(gen);
251

252
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
253 254
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

255
	trace_mark_mmio_spte(sptep, gfn, access, gen);
256
	mmu_spte_set(sptep, mask);
257 258 259 260 261 262 263 264 265
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
266 267
	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
	return (spte & ~mask) >> PAGE_SHIFT;
268 269 270 271
}

static unsigned get_mmio_spte_access(u64 spte)
{
272 273
	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
	return (spte & ~mask) & ~PAGE_MASK;
274 275
}

276 277
static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			  pfn_t pfn, unsigned access)
278 279
{
	if (unlikely(is_noslot_pfn(pfn))) {
280
		mark_mmio_spte(kvm, sptep, gfn, access);
281 282 283 284 285
		return true;
	}

	return false;
}
286

287 288
static bool check_mmio_spte(struct kvm *kvm, u64 spte)
{
289 290 291 292 293 294 295
	unsigned int kvm_gen, spte_gen;

	kvm_gen = kvm_current_mmio_generation(kvm);
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
296 297
}

298 299 300 301 302
static inline u64 rsvd_bits(int s, int e)
{
	return ((1ULL << (e - s + 1)) - 1) << s;
}

S
Sheng Yang 已提交
303
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
304
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
305 306 307 308 309 310 311 312 313
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
314 315 316 317 318
static int is_cpuid_PSE36(void)
{
	return 1;
}

319 320
static int is_nx(struct kvm_vcpu *vcpu)
{
321
	return vcpu->arch.efer & EFER_NX;
322 323
}

324 325
static int is_shadow_present_pte(u64 pte)
{
326
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
327 328
}

M
Marcelo Tosatti 已提交
329 330 331 332 333
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

334
static int is_rmap_spte(u64 pte)
335
{
336
	return is_shadow_present_pte(pte);
337 338
}

339 340 341 342
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
343
	if (is_large_pte(pte))
344 345 346 347
		return 1;
	return 0;
}

348
static pfn_t spte_to_pfn(u64 pte)
349
{
350
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
351 352
}

353 354 355 356 357 358 359
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

360
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
361
static void __set_spte(u64 *sptep, u64 spte)
362
{
363
	*sptep = spte;
364 365
}

366
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367
{
368 369 370 371 372 373 374
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
375 376 377 378 379

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
380 381 382 383 384 385

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	/* It is valid if the spte is zapped. */
	return spte == 0ull;
}
386
#else
387 388 389 390 391 392 393
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
394

395 396 397 398 399 400 401 402 403 404 405 406
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

407 408 409
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
410

411 412 413 414 415 416 417 418 419 420 421 422 423
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
424 425
}

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
442
	count_spte_clear(sptep, spte);
443 444 445 446 447 448 449 450 451 452 453
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
454 455
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
456
	count_spte_clear(sptep, spte);
457 458 459

	return orig.spte;
}
460 461 462 463

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
464 465 466 467 468 469 470 471 472 473 474 475 476 477
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	union split_spte sspte = (union split_spte)spte;
	u32 high_mmio_mask = shadow_mmio_mask >> 32;

	/* It is valid if the spte is zapped. */
	if (spte == 0ull)
		return true;

	/* It is valid if the spte is being zapped. */
	if (sspte.spte_low == 0ull &&
	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
		return true;

	return false;
}
518 519
#endif

520 521
static bool spte_is_locklessly_modifiable(u64 spte)
{
522 523
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
524 525
}

526 527
static bool spte_has_volatile_bits(u64 spte)
{
528 529 530 531 532 533 534 535 536
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

537 538 539 540 541 542
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

543 544
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
545 546 547 548 549
		return false;

	return true;
}

550 551 552 553 554
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
569 570 571 572 573 574
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
575
 */
576
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
577
{
578
	u64 old_spte = *sptep;
579
	bool ret = false;
580 581

	WARN_ON(!is_rmap_spte(new_spte));
582

583 584 585 586
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
587

588
	if (!spte_has_volatile_bits(old_spte))
589
		__update_clear_spte_fast(sptep, new_spte);
590
	else
591
		old_spte = __update_clear_spte_slow(sptep, new_spte);
592

593 594 595 596 597
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
598 599 600
	if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
		ret = true;

601
	if (!shadow_accessed_mask)
602
		return ret;
603 604 605 606 607

	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
608 609

	return ret;
610 611
}

612 613 614 615 616 617 618 619 620 621 622
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
	pfn_t pfn;
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
623
		__update_clear_spte_fast(sptep, 0ull);
624
	else
625
		old_spte = __update_clear_spte_slow(sptep, 0ull);
626 627 628 629 630

	if (!is_rmap_spte(old_spte))
		return 0;

	pfn = spte_to_pfn(old_spte);
631 632 633 634 635 636 637 638

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
	WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));

639 640 641 642 643 644 645 646 647 648 649 650 651 652
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
653
	__update_clear_spte_fast(sptep, 0ull);
654 655
}

656 657 658 659 660 661 662
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
663 664 665 666 667 668 669 670 671 672 673
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
674 675 676 677
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
678 679 680 681 682 683 684 685
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
686 687
}

688
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
689
				  struct kmem_cache *base_cache, int min)
690 691 692 693
{
	void *obj;

	if (cache->nobjs >= min)
694
		return 0;
695
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
696
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
697
		if (!obj)
698
			return -ENOMEM;
699 700
		cache->objects[cache->nobjs++] = obj;
	}
701
	return 0;
702 703
}

704 705 706 707 708
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

709 710
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
711 712
{
	while (mc->nobjs)
713
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714 715
}

A
Avi Kivity 已提交
716
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
717
				       int min)
A
Avi Kivity 已提交
718
{
719
	void *page;
A
Avi Kivity 已提交
720 721 722 723

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
724
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
725 726
		if (!page)
			return -ENOMEM;
727
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
728 729 730 731 732 733 734
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
735
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
736 737
}

738
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
739
{
740 741
	int r;

742
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
743
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
744 745
	if (r)
		goto out;
746
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
747 748
	if (r)
		goto out;
749
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
750
				   mmu_page_header_cache, 4);
751 752
out:
	return r;
753 754 755 756
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
757 758
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
759
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
760 761
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
762 763
}

764
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
765 766 767 768 769 770 771 772
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

773
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
774
{
775
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
776 777
}

778
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
779
{
780
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
781 782
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
799
/*
800 801
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
802
 */
803 804 805
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
806 807 808
{
	unsigned long idx;

809
	idx = gfn_to_index(gfn, slot->base_gfn, level);
810
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
811 812 813 814
}

static void account_shadowed(struct kvm *kvm, gfn_t gfn)
{
815
	struct kvm_memory_slot *slot;
816
	struct kvm_lpage_info *linfo;
817
	int i;
M
Marcelo Tosatti 已提交
818

A
Avi Kivity 已提交
819
	slot = gfn_to_memslot(kvm, gfn);
820 821
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
822 823
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count += 1;
824
	}
825
	kvm->arch.indirect_shadow_pages++;
M
Marcelo Tosatti 已提交
826 827 828 829
}

static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
{
830
	struct kvm_memory_slot *slot;
831
	struct kvm_lpage_info *linfo;
832
	int i;
M
Marcelo Tosatti 已提交
833

A
Avi Kivity 已提交
834
	slot = gfn_to_memslot(kvm, gfn);
835 836
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
837 838 839
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count -= 1;
		WARN_ON(linfo->write_count < 0);
840
	}
841
	kvm->arch.indirect_shadow_pages--;
M
Marcelo Tosatti 已提交
842 843
}

844 845 846
static int has_wrprotected_page(struct kvm *kvm,
				gfn_t gfn,
				int level)
M
Marcelo Tosatti 已提交
847
{
848
	struct kvm_memory_slot *slot;
849
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
850

A
Avi Kivity 已提交
851
	slot = gfn_to_memslot(kvm, gfn);
M
Marcelo Tosatti 已提交
852
	if (slot) {
853 854
		linfo = lpage_info_slot(gfn, slot, level);
		return linfo->write_count;
M
Marcelo Tosatti 已提交
855 856 857 858 859
	}

	return 1;
}

860
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
861
{
J
Joerg Roedel 已提交
862
	unsigned long page_size;
863
	int i, ret = 0;
M
Marcelo Tosatti 已提交
864

J
Joerg Roedel 已提交
865
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
866

867 868 869 870 871 872 873 874
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

875
	return ret;
M
Marcelo Tosatti 已提交
876 877
}

878 879 880
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
881 882
{
	struct kvm_memory_slot *slot;
883 884 885 886 887 888 889 890 891 892 893

	slot = gfn_to_memslot(vcpu->kvm, gfn);
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
	      (no_dirty_log && slot->dirty_bitmap))
		slot = NULL;

	return slot;
}

static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
894
	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
895 896 897 898 899
}

static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
	int host_level, level, max_level;
M
Marcelo Tosatti 已提交
900

901 902 903 904 905
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
906
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
907 908

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
909 910 911 912
		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
913 914
}

915
/*
916
 * Pte mapping structures:
917
 *
918
 * If pte_list bit zero is zero, then pte_list point to the spte.
919
 *
920 921
 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 * pte_list_desc containing more mappings.
922
 *
923
 * Returns the number of pte entries before the spte was added or zero if
924 925
 * the spte was not added.
 *
926
 */
927 928
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
			unsigned long *pte_list)
929
{
930
	struct pte_list_desc *desc;
931
	int i, count = 0;
932

933 934 935 936 937 938 939
	if (!*pte_list) {
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
		*pte_list = (unsigned long)spte;
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
		desc->sptes[0] = (u64 *)*pte_list;
A
Avi Kivity 已提交
940
		desc->sptes[1] = spte;
941
		*pte_list = (unsigned long)desc | 1;
942
		++count;
943
	} else {
944 945 946
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
947
			desc = desc->more;
948
			count += PTE_LIST_EXT;
949
		}
950 951
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
952 953
			desc = desc->more;
		}
A
Avi Kivity 已提交
954
		for (i = 0; desc->sptes[i]; ++i)
955
			++count;
A
Avi Kivity 已提交
956
		desc->sptes[i] = spte;
957
	}
958
	return count;
959 960
}

961 962 963
static void
pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
			   int i, struct pte_list_desc *prev_desc)
964 965 966
{
	int j;

967
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
968
		;
A
Avi Kivity 已提交
969 970
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
971 972 973
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
974
		*pte_list = (unsigned long)desc->sptes[0];
975 976 977 978
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
979 980
			*pte_list = (unsigned long)desc->more | 1;
	mmu_free_pte_list_desc(desc);
981 982
}

983
static void pte_list_remove(u64 *spte, unsigned long *pte_list)
984
{
985 986
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
987 988
	int i;

989 990
	if (!*pte_list) {
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
991
		BUG();
992 993 994 995
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
		if ((u64 *)*pte_list != spte) {
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
996 997
			BUG();
		}
998
		*pte_list = 0;
999
	} else {
1000 1001
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1002 1003
		prev_desc = NULL;
		while (desc) {
1004
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
A
Avi Kivity 已提交
1005
				if (desc->sptes[i] == spte) {
1006
					pte_list_desc_remove_entry(pte_list,
1007
							       desc, i,
1008 1009 1010 1011 1012 1013
							       prev_desc);
					return;
				}
			prev_desc = desc;
			desc = desc->more;
		}
1014
		pr_err("pte_list_remove: %p many->many\n", spte);
1015 1016 1017 1018
		BUG();
	}
}

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
typedef void (*pte_list_walk_fn) (u64 *spte);
static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
	struct pte_list_desc *desc;
	int i;

	if (!*pte_list)
		return;

	if (!(*pte_list & 1))
		return fn((u64 *)*pte_list);

	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
	while (desc) {
		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
			fn(desc->sptes[i]);
		desc = desc->more;
	}
}

1039
static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1040
				    struct kvm_memory_slot *slot)
1041
{
1042
	unsigned long idx;
1043

1044
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1045
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1046 1047
}

1048 1049 1050 1051 1052 1053 1054 1055
/*
 * Take gfn and return the reverse mapping to it.
 */
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
{
	struct kvm_memory_slot *slot;

	slot = gfn_to_memslot(kvm, gfn);
1056
	return __gfn_to_rmap(gfn, level, slot);
1057 1058
}

1059 1060 1061 1062 1063 1064 1065 1066
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
	return pte_list_add(vcpu, spte, rmapp);
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
	pte_list_remove(spte, rmapp);
}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
{
	if (!rmap)
		return NULL;

	if (!(rmap & 1)) {
		iter->desc = NULL;
		return (u64 *)rmap;
	}

	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
	iter->pos = 0;
	return iter->desc->sptes[iter->pos];
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			u64 *sptep;

			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
				return sptep;
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
			return iter->desc->sptes[iter->pos];
		}
	}

	return NULL;
}

1151
static void drop_spte(struct kvm *kvm, u64 *sptep)
1152
{
1153
	if (mmu_spte_clear_track_bits(sptep))
1154
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1155 1156
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1178
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1179 1180
 * spte writ-protection is caused by protecting shadow page table.
 * @flush indicates whether tlb need be flushed.
1181 1182 1183 1184 1185 1186 1187
 *
 * Note: write protection is difference between drity logging and spte
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1188
 *
1189
 * Return true if the spte is dropped.
1190
 */
1191 1192
static bool
spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1193 1194 1195
{
	u64 spte = *sptep;

1196 1197
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1198 1199 1200 1201
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1202 1203 1204 1205 1206
	if (__drop_large_spte(kvm, sptep)) {
		*flush |= true;
		return true;
	}

1207 1208
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1209
	spte = spte & ~PT_WRITABLE_MASK;
1210

1211 1212
	*flush |= mmu_spte_update(sptep, spte);
	return false;
1213 1214
}

1215
static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1216
				 bool pt_protect)
1217
{
1218 1219
	u64 *sptep;
	struct rmap_iterator iter;
1220
	bool flush = false;
1221

1222 1223
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1224 1225 1226 1227
		if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
			sptep = rmap_get_first(*rmapp, &iter);
			continue;
		}
1228

1229
		sptep = rmap_get_next(&iter);
1230
	}
1231

1232
	return flush;
1233 1234
}

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
/**
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1248 1249 1250
{
	unsigned long *rmapp;

1251
	while (mask) {
1252 1253
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
1254
		__rmap_write_protect(kvm, rmapp, false);
M
Marcelo Tosatti 已提交
1255

1256 1257 1258
		/* clear the first set bit */
		mask &= mask - 1;
	}
1259 1260
}

1261
static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1262 1263
{
	struct kvm_memory_slot *slot;
1264 1265
	unsigned long *rmapp;
	int i;
1266
	bool write_protected = false;
1267 1268

	slot = gfn_to_memslot(kvm, gfn);
1269 1270 1271 1272

	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		rmapp = __gfn_to_rmap(gfn, i, slot);
1273
		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1274 1275 1276
	}

	return write_protected;
1277 1278
}

F
Frederik Deweerdt 已提交
1279
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1280
			   struct kvm_memory_slot *slot, unsigned long data)
1281
{
1282 1283
	u64 *sptep;
	struct rmap_iterator iter;
1284 1285
	int need_tlb_flush = 0;

1286 1287 1288 1289 1290
	while ((sptep = rmap_get_first(*rmapp, &iter))) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);

		drop_spte(kvm, sptep);
1291 1292
		need_tlb_flush = 1;
	}
1293

1294 1295 1296
	return need_tlb_flush;
}

F
Frederik Deweerdt 已提交
1297
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1298
			     struct kvm_memory_slot *slot, unsigned long data)
1299
{
1300 1301
	u64 *sptep;
	struct rmap_iterator iter;
1302
	int need_flush = 0;
1303
	u64 new_spte;
1304 1305 1306 1307 1308
	pte_t *ptep = (pte_t *)data;
	pfn_t new_pfn;

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1309 1310 1311 1312 1313

	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!is_shadow_present_pte(*sptep));
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);

1314
		need_flush = 1;
1315

1316
		if (pte_write(*ptep)) {
1317 1318
			drop_spte(kvm, sptep);
			sptep = rmap_get_first(*rmapp, &iter);
1319
		} else {
1320
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1321 1322 1323 1324
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1325
			new_spte &= ~shadow_accessed_mask;
1326 1327 1328 1329

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
			sptep = rmap_get_next(&iter);
1330 1331
		}
	}
1332

1333 1334 1335 1336 1337 1338
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1339 1340 1341 1342 1343 1344
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
1345
					       struct kvm_memory_slot *slot,
1346
					       unsigned long data))
1347
{
1348
	int j;
1349
	int ret = 0;
1350
	struct kvm_memslots *slots;
1351
	struct kvm_memory_slot *memslot;
1352

1353
	slots = kvm_memslots(kvm);
1354

1355
	kvm_for_each_memslot(memslot, slots) {
1356
		unsigned long hva_start, hva_end;
1357
		gfn_t gfn_start, gfn_end;
1358

1359 1360 1361 1362 1363 1364 1365
		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1366
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1367
		 */
1368
		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1369
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1370

1371 1372 1373 1374
		for (j = PT_PAGE_TABLE_LEVEL;
		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
			unsigned long idx, idx_end;
			unsigned long *rmapp;
1375

1376 1377 1378 1379 1380 1381
			/*
			 * {idx(page_j) | page_j intersects with
			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
			 */
			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1382

1383
			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1384

1385 1386
			for (; idx <= idx_end; ++idx)
				ret |= handler(kvm, rmapp++, memslot, data);
1387 1388 1389
		}
	}

1390
	return ret;
1391 1392
}

1393 1394 1395
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1396
					 struct kvm_memory_slot *slot,
1397 1398 1399
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1400 1401 1402 1403
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1404 1405 1406
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1407 1408 1409 1410 1411
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1412 1413
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1414
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1415 1416
}

F
Frederik Deweerdt 已提交
1417
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1418
			 struct kvm_memory_slot *slot, unsigned long data)
1419
{
1420
	u64 *sptep;
1421
	struct rmap_iterator uninitialized_var(iter);
1422 1423
	int young = 0;

1424
	/*
1425 1426
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
1427 1428 1429 1430 1431
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
1432 1433 1434 1435
	if (!shadow_accessed_mask) {
		young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
		goto out;
	}
1436

1437 1438
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1439
		BUG_ON(!is_shadow_present_pte(*sptep));
1440

1441
		if (*sptep & shadow_accessed_mask) {
1442
			young = 1;
1443 1444
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1445 1446
		}
	}
1447 1448 1449
out:
	/* @data has hva passed to kvm_age_hva(). */
	trace_kvm_age_page(data, slot, young);
1450 1451 1452
	return young;
}

A
Andrea Arcangeli 已提交
1453
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1454
			      struct kvm_memory_slot *slot, unsigned long data)
A
Andrea Arcangeli 已提交
1455
{
1456 1457
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1468 1469
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1470
		BUG_ON(!is_shadow_present_pte(*sptep));
1471

1472
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1473 1474 1475 1476 1477 1478 1479 1480
			young = 1;
			break;
		}
	}
out:
	return young;
}

1481 1482
#define RMAP_RECYCLE_THRESHOLD 1000

1483
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1484 1485
{
	unsigned long *rmapp;
1486 1487 1488
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1489

1490
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1491

1492
	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1493 1494 1495
	kvm_flush_remote_tlbs(vcpu->kvm);
}

1496 1497
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
{
1498
	return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1499 1500
}

A
Andrea Arcangeli 已提交
1501 1502 1503 1504 1505
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1506
#ifdef MMU_DEBUG
1507
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1508
{
1509 1510 1511
	u64 *pos;
	u64 *end;

1512
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1513
		if (is_shadow_present_pte(*pos)) {
1514
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1515
			       pos, *pos);
A
Avi Kivity 已提交
1516
			return 0;
1517
		}
A
Avi Kivity 已提交
1518 1519
	return 1;
}
1520
#endif
A
Avi Kivity 已提交
1521

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1534
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1535
{
1536
	ASSERT(is_empty_shadow_page(sp->spt));
1537
	hlist_del(&sp->hash_link);
1538 1539
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1540 1541
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1542
	kmem_cache_free(mmu_page_header_cache, sp);
1543 1544
}

1545 1546
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1547
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1548 1549
}

1550
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1551
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1552 1553 1554 1555
{
	if (!parent_pte)
		return;

1556
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1557 1558
}

1559
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1560 1561
				       u64 *parent_pte)
{
1562
	pte_list_remove(parent_pte, &sp->parent_ptes);
1563 1564
}

1565 1566 1567 1568
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1569
	mmu_spte_clear_no_track(parent_pte);
1570 1571
}

1572 1573
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
					       u64 *parent_pte, int direct)
M
Marcelo Tosatti 已提交
1574
{
1575
	struct kvm_mmu_page *sp;
1576

1577 1578
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1579
	if (!direct)
1580
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1581
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1582 1583 1584 1585 1586 1587

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1588 1589 1590 1591 1592
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	sp->parent_ptes = 0;
	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1593 1594
}

1595
static void mark_unsync(u64 *spte);
1596
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1597
{
1598
	pte_list_walk(&sp->parent_ptes, mark_unsync);
1599 1600
}

1601
static void mark_unsync(u64 *spte)
1602
{
1603
	struct kvm_mmu_page *sp;
1604
	unsigned int index;
1605

1606
	sp = page_header(__pa(spte));
1607 1608
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1609
		return;
1610
	if (sp->unsync_children++)
1611
		return;
1612
	kvm_mmu_mark_parents_unsync(sp);
1613 1614
}

1615
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1616
			       struct kvm_mmu_page *sp)
1617 1618 1619 1620
{
	return 1;
}

M
Marcelo Tosatti 已提交
1621 1622 1623 1624
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1625 1626
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1627
				 const void *pte)
1628 1629 1630 1631
{
	WARN_ON(1);
}

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1642 1643
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1644
{
1645
	int i;
1646

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1662

1663
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1664
		struct kvm_mmu_page *child;
1665 1666
		u64 ent = sp->spt[i];

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
			goto clear_child_bitmap;

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
			if (!ret)
				goto clear_child_bitmap;
			else if (ret > 0)
				nr_unsync_leaf += ret;
			else
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
			 goto clear_child_bitmap;

		continue;

clear_child_bitmap:
		__clear_bit(i, sp->unsync_child_bitmap);
		sp->unsync_children--;
		WARN_ON((int)sp->unsync_children < 0);
1696 1697 1698
	}


1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	return nr_unsync_leaf;
}

static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	if (!sp->unsync_children)
		return 0;

	mmu_pages_add(pvec, sp, 0);
	return __mmu_unsync_walk(sp, pvec);
1710 1711 1712 1713 1714
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1715
	trace_kvm_mmu_sync_page(sp);
1716 1717 1718 1719
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1720 1721 1722 1723
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1724

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1735 1736 1737 1738 1739 1740 1741 1742
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1743

1744
/* @sp->gfn should be write-protected at the call site */
1745
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1746
			   struct list_head *invalid_list, bool clear_unsync)
1747
{
1748
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1749
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1750 1751 1752
		return 1;
	}

1753
	if (clear_unsync)
1754 1755
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1756
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1757
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1758 1759 1760 1761 1762 1763 1764
		return 1;
	}

	kvm_mmu_flush_tlb(vcpu);
	return 0;
}

1765 1766 1767
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1768
	LIST_HEAD(invalid_list);
1769 1770
	int ret;

1771
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1772
	if (ret)
1773 1774
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1775 1776 1777
	return ret;
}

1778 1779 1780 1781 1782 1783 1784
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1785 1786
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1787
{
1788
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1789 1790
}

1791 1792 1793 1794
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1795
	LIST_HEAD(invalid_list);
1796 1797
	bool flush = false;

1798
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1799
		if (!s->unsync)
1800 1801 1802
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1803
		kvm_unlink_unsync_page(vcpu->kvm, s);
1804
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1805
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1806
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1807 1808 1809 1810 1811
			continue;
		}
		flush = true;
	}

1812
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1813 1814 1815 1816
	if (flush)
		kvm_mmu_flush_tlb(vcpu);
}

1817 1818 1819
struct mmu_page_path {
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
	unsigned int idx[PT64_ROOT_LEVEL-1];
1820 1821
};

1822 1823 1824 1825 1826 1827
#define for_each_sp(pvec, sp, parents, i)			\
		for (i = mmu_pages_next(&pvec, &parents, -1),	\
			sp = pvec.page[i].sp;			\
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1828 1829 1830
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;

		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
			parents->idx[0] = pvec->page[n].idx;
			return n;
		}

		parents->parent[sp->role.level-2] = sp;
		parents->idx[sp->role.level-1] = pvec->page[n].idx;
	}

	return n;
}

1849
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1850
{
1851 1852 1853 1854 1855
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
1856

1857 1858 1859 1860 1861 1862 1863 1864 1865
		sp = parents->parent[level];
		if (!sp)
			return;

		--sp->unsync_children;
		WARN_ON((int)sp->unsync_children < 0);
		__clear_bit(idx, sp->unsync_child_bitmap);
		level++;
	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1866 1867
}

1868 1869 1870
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
			       struct mmu_page_path *parents,
			       struct kvm_mmu_pages *pvec)
1871
{
1872 1873 1874
	parents->parent[parent->role.level-1] = NULL;
	pvec->nr = 0;
}
1875

1876 1877 1878 1879 1880 1881 1882
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1883
	LIST_HEAD(invalid_list);
1884 1885 1886

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
1887
		bool protected = false;
1888 1889 1890 1891 1892 1893 1894

		for_each_sp(pages, sp, parents, i)
			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

1895
		for_each_sp(pages, sp, parents, i) {
1896
			kvm_sync_page(vcpu, sp, &invalid_list);
1897 1898
			mmu_pages_clear_parents(&parents);
		}
1899
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1900
		cond_resched_lock(&vcpu->kvm->mmu_lock);
1901 1902
		kvm_mmu_pages_init(parent, &parents, &pages);
	}
1903 1904
}

1905 1906 1907 1908 1909 1910 1911 1912
static void init_shadow_page_table(struct kvm_mmu_page *sp)
{
	int i;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		sp->spt[i] = 0ull;
}

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
	sp->write_flooding_count = 0;
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

1925 1926 1927 1928 1929
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

1930 1931 1932 1933
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
1934
					     int direct,
1935
					     unsigned access,
1936
					     u64 *parent_pte)
1937 1938 1939
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
1940 1941
	struct kvm_mmu_page *sp;
	bool need_sync = false;
1942

1943
	role = vcpu->arch.mmu.base_role;
1944
	role.level = level;
1945
	role.direct = direct;
1946
	if (role.direct)
1947
		role.cr4_pae = 0;
1948
	role.access = access;
1949 1950
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1951 1952 1953 1954
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
1955
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1956 1957 1958
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

1959 1960
		if (!need_sync && sp->unsync)
			need_sync = true;
1961

1962 1963
		if (sp->role.word != role.word)
			continue;
1964

1965 1966
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
1967

1968 1969
		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
		if (sp->unsync_children) {
1970
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1971 1972 1973
			kvm_mmu_mark_parents_unsync(sp);
		} else if (sp->unsync)
			kvm_mmu_mark_parents_unsync(sp);
1974

1975
		__clear_sp_write_flooding_count(sp);
1976 1977 1978
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
A
Avi Kivity 已提交
1979
	++vcpu->kvm->stat.mmu_cache_miss;
1980
	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1981 1982 1983 1984
	if (!sp)
		return sp;
	sp->gfn = gfn;
	sp->role = role;
1985 1986
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1987
	if (!direct) {
1988 1989
		if (rmap_write_protect(vcpu->kvm, gfn))
			kvm_flush_remote_tlbs(vcpu->kvm);
1990 1991 1992
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);

1993 1994
		account_shadowed(vcpu->kvm, gfn);
	}
1995
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1996
	init_shadow_page_table(sp);
A
Avi Kivity 已提交
1997
	trace_kvm_mmu_get_page(sp, true);
1998
	return sp;
1999 2000
}

2001 2002 2003 2004 2005 2006
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2007 2008 2009 2010 2011 2012

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2027

2028 2029 2030 2031 2032
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2033 2034
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2035
{
2036
	if (is_last_spte(spte, iterator->level)) {
2037 2038 2039 2040
		iterator->level = 0;
		return;
	}

2041
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2042 2043 2044
	--iterator->level;
}

2045 2046 2047 2048 2049
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2050
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2051 2052 2053
{
	u64 spte;

2054 2055 2056
	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

X
Xiao Guangrong 已提交
2057
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2058 2059 2060 2061
	       shadow_user_mask | shadow_x_mask;

	if (accessed)
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2062

2063
	mmu_spte_set(sptep, spte);
2064 2065
}

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2083
		drop_parent_pte(child, sptep);
2084 2085 2086 2087
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2088
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2089 2090 2091 2092 2093 2094 2095
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2096
		if (is_last_spte(pte, sp->role.level)) {
2097
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2098 2099 2100
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2101
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2102
			drop_parent_pte(child, spte);
2103
		}
X
Xiao Guangrong 已提交
2104 2105 2106 2107
		return true;
	}

	if (is_mmio_spte(pte))
2108
		mmu_spte_clear_no_track(spte);
2109

X
Xiao Guangrong 已提交
2110
	return false;
2111 2112
}

2113
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2114
					 struct kvm_mmu_page *sp)
2115
{
2116 2117
	unsigned i;

2118 2119
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2120 2121
}

2122
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2123
{
2124
	mmu_page_remove_parent_pte(sp, parent_pte);
2125 2126
}

2127
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2128
{
2129 2130
	u64 *sptep;
	struct rmap_iterator iter;
2131

2132 2133
	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
		drop_parent_pte(sp, sptep);
2134 2135
}

2136
static int mmu_zap_unsync_children(struct kvm *kvm,
2137 2138
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2139
{
2140 2141 2142
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2143

2144
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2145
		return 0;
2146 2147 2148 2149 2150 2151

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2152
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2153
			mmu_pages_clear_parents(&parents);
2154
			zapped++;
2155 2156 2157 2158 2159
		}
		kvm_mmu_pages_init(parent, &parents, &pages);
	}

	return zapped;
2160 2161
}

2162 2163
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2164
{
2165
	int ret;
A
Avi Kivity 已提交
2166

2167
	trace_kvm_mmu_prepare_zap_page(sp);
2168
	++kvm->stat.mmu_shadow_zapped;
2169
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2170
	kvm_mmu_page_unlink_children(kvm, sp);
2171
	kvm_mmu_unlink_parents(kvm, sp);
2172

2173
	if (!sp->role.invalid && !sp->role.direct)
A
Avi Kivity 已提交
2174
		unaccount_shadowed(kvm, sp->gfn);
2175

2176 2177
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2178
	if (!sp->root_count) {
2179 2180
		/* Count self */
		ret++;
2181
		list_move(&sp->link, invalid_list);
2182
		kvm_mod_used_mmu_pages(kvm, -1);
2183
	} else {
A
Avi Kivity 已提交
2184
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2185 2186 2187 2188 2189 2190 2191

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2192
	}
2193 2194

	sp->role.invalid = 1;
2195
	return ret;
2196 2197
}

2198 2199 2200
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2201
	struct kvm_mmu_page *sp, *nsp;
2202 2203 2204 2205

	if (list_empty(invalid_list))
		return;

2206 2207 2208 2209 2210
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2211

2212 2213 2214 2215 2216
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2217

2218
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2219
		WARN_ON(!sp->role.invalid || sp->root_count);
2220
		kvm_mmu_free_page(sp);
2221
	}
2222 2223
}

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

	sp = list_entry(kvm->arch.active_mmu_pages.prev,
			struct kvm_mmu_page, link);
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2239 2240
/*
 * Changing the number of mmu pages allocated to the vm
2241
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2242
 */
2243
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2244
{
2245
	LIST_HEAD(invalid_list);
2246

2247 2248
	spin_lock(&kvm->mmu_lock);

2249
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2250 2251 2252 2253
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2254

2255
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2256
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2257 2258
	}

2259
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2260 2261

	spin_unlock(&kvm->mmu_lock);
2262 2263
}

2264
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2265
{
2266
	struct kvm_mmu_page *sp;
2267
	LIST_HEAD(invalid_list);
2268 2269
	int r;

2270
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2271
	r = 0;
2272
	spin_lock(&kvm->mmu_lock);
2273
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2274
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2275 2276
			 sp->role.word);
		r = 1;
2277
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2278
	}
2279
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2280 2281
	spin_unlock(&kvm->mmu_lock);

2282
	return r;
2283
}
2284
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2285

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
/*
 * The function is based on mtrr_type_lookup() in
 * arch/x86/kernel/cpu/mtrr/generic.c
 */
static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
			 u64 start, u64 end)
{
	int i;
	u64 base, mask;
	u8 prev_match, curr_match;
	int num_var_ranges = KVM_NR_VAR_MTRR;

	if (!mtrr_state->enabled)
		return 0xFF;

	/* Make end inclusive end, instead of exclusive */
	end--;

	/* Look in fixed ranges. Just return the type as per start */
	if (mtrr_state->have_fixed && (start < 0x100000)) {
		int idx;

		if (start < 0x80000) {
			idx = 0;
			idx += (start >> 16);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0xC0000) {
			idx = 1 * 8;
			idx += ((start - 0x80000) >> 14);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0x1000000) {
			idx = 3 * 8;
			idx += ((start - 0xC0000) >> 12);
			return mtrr_state->fixed_ranges[idx];
		}
	}

	/*
	 * Look in variable ranges
	 * Look of multiple ranges matching this address and pick type
	 * as per MTRR precedence
	 */
	if (!(mtrr_state->enabled & 2))
		return mtrr_state->def_type;

	prev_match = 0xFF;
	for (i = 0; i < num_var_ranges; ++i) {
		unsigned short start_state, end_state;

		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
			continue;

		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);

		start_state = ((start & mask) == (base & mask));
		end_state = ((end & mask) == (base & mask));
		if (start_state != end_state)
			return 0xFE;

		if ((start & mask) != (base & mask))
			continue;

		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
		if (prev_match == 0xFF) {
			prev_match = curr_match;
			continue;
		}

		if (prev_match == MTRR_TYPE_UNCACHABLE ||
		    curr_match == MTRR_TYPE_UNCACHABLE)
			return MTRR_TYPE_UNCACHABLE;

		if ((prev_match == MTRR_TYPE_WRBACK &&
		     curr_match == MTRR_TYPE_WRTHROUGH) ||
		    (prev_match == MTRR_TYPE_WRTHROUGH &&
		     curr_match == MTRR_TYPE_WRBACK)) {
			prev_match = MTRR_TYPE_WRTHROUGH;
			curr_match = MTRR_TYPE_WRTHROUGH;
		}

		if (prev_match != curr_match)
			return MTRR_TYPE_UNCACHABLE;
	}

	if (prev_match != 0xFF)
		return prev_match;

	return mtrr_state->def_type;
}

2379
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2380 2381 2382 2383 2384 2385 2386 2387 2388
{
	u8 mtrr;

	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
	if (mtrr == 0xfe || mtrr == 0xff)
		mtrr = MTRR_TYPE_WRBACK;
	return mtrr;
}
2389
EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2390

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2401 2402
{
	struct kvm_mmu_page *s;
2403

2404
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2405
		if (s->unsync)
2406
			continue;
2407 2408
		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
		__kvm_unsync_page(vcpu, s);
2409 2410 2411 2412 2413 2414
	}
}

static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				  bool can_unsync)
{
2415 2416 2417
	struct kvm_mmu_page *s;
	bool need_unsync = false;

2418
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2419 2420 2421
		if (!can_unsync)
			return 1;

2422
		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2423
			return 1;
2424

G
Gleb Natapov 已提交
2425
		if (!s->unsync)
2426
			need_unsync = true;
2427
	}
2428 2429
	if (need_unsync)
		kvm_unsync_pages(vcpu, gfn);
2430 2431 2432
	return 0;
}

A
Avi Kivity 已提交
2433
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2434
		    unsigned pte_access, int level,
2435
		    gfn_t gfn, pfn_t pfn, bool speculative,
2436
		    bool can_unsync, bool host_writable)
2437
{
2438
	u64 spte;
M
Marcelo Tosatti 已提交
2439
	int ret = 0;
S
Sheng Yang 已提交
2440

2441
	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2442 2443
		return 0;

2444
	spte = PT_PRESENT_MASK;
2445
	if (!speculative)
2446
		spte |= shadow_accessed_mask;
2447

S
Sheng Yang 已提交
2448 2449 2450 2451
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2452

2453
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2454
		spte |= shadow_user_mask;
2455

2456
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2457
		spte |= PT_PAGE_SIZE_MASK;
2458
	if (tdp_enabled)
2459 2460
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
			kvm_is_mmio_pfn(pfn));
2461

2462
	if (host_writable)
2463
		spte |= SPTE_HOST_WRITEABLE;
2464 2465
	else
		pte_access &= ~ACC_WRITE_MASK;
2466

2467
	spte |= (u64)pfn << PAGE_SHIFT;
2468

2469
	if (pte_access & ACC_WRITE_MASK) {
2470

X
Xiao Guangrong 已提交
2471
		/*
2472 2473 2474 2475
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2476
		 */
2477
		if (level > PT_PAGE_TABLE_LEVEL &&
X
Xiao Guangrong 已提交
2478
		    has_wrprotected_page(vcpu->kvm, gfn, level))
A
Avi Kivity 已提交
2479
			goto done;
2480

2481
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2482

2483 2484 2485 2486 2487 2488
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2489
		if (!can_unsync && is_writable_pte(*sptep))
2490 2491
			goto set_pte;

2492
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2493
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2494
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2495
			ret = 1;
2496
			pte_access &= ~ACC_WRITE_MASK;
2497
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2498 2499 2500 2501 2502 2503
		}
	}

	if (pte_access & ACC_WRITE_MASK)
		mark_page_dirty(vcpu->kvm, gfn);

2504
set_pte:
2505
	if (mmu_spte_update(sptep, spte))
2506
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2507
done:
M
Marcelo Tosatti 已提交
2508 2509 2510
	return ret;
}

A
Avi Kivity 已提交
2511
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2512 2513 2514
			 unsigned pte_access, int write_fault, int *emulate,
			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
			 bool host_writable)
M
Marcelo Tosatti 已提交
2515 2516
{
	int was_rmapped = 0;
2517
	int rmap_count;
M
Marcelo Tosatti 已提交
2518

2519 2520
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2521

A
Avi Kivity 已提交
2522
	if (is_rmap_spte(*sptep)) {
M
Marcelo Tosatti 已提交
2523 2524 2525 2526
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2527 2528
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2529
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2530
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2531 2532

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2533
			drop_parent_pte(child, sptep);
2534
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2535
		} else if (pfn != spte_to_pfn(*sptep)) {
2536
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2537
				 spte_to_pfn(*sptep), pfn);
2538
			drop_spte(vcpu->kvm, sptep);
2539
			kvm_flush_remote_tlbs(vcpu->kvm);
2540 2541
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2542
	}
2543

2544 2545
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2546
		if (write_fault)
2547
			*emulate = 1;
2548
		kvm_mmu_flush_tlb(vcpu);
2549
	}
M
Marcelo Tosatti 已提交
2550

2551 2552 2553
	if (unlikely(is_mmio_spte(*sptep) && emulate))
		*emulate = 1;

A
Avi Kivity 已提交
2554
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2555
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2556
		 is_large_pte(*sptep)? "2MB" : "4kB",
2557 2558
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2559
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2560 2561
		++vcpu->kvm->stat.lpages;

2562 2563 2564 2565 2566 2567
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2568
	}
2569

X
Xiao Guangrong 已提交
2570
	kvm_release_pfn_clean(pfn);
2571 2572
}

2573 2574 2575 2576 2577
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2578
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2579
	if (!slot)
2580
		return KVM_PFN_ERR_FAULT;
2581

2582
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2595
	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2596 2597 2598 2599 2600 2601 2602
		return -1;

	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2603
		mmu_set_spte(vcpu, start, access, 0, NULL,
2604 2605
			     sp->role.level, gfn, page_to_pfn(pages[i]),
			     true, true);
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2622
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2653
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2654 2655
			int map_writable, int level, gfn_t gfn, pfn_t pfn,
			bool prefault)
2656
{
2657
	struct kvm_shadow_walk_iterator iterator;
2658
	struct kvm_mmu_page *sp;
2659
	int emulate = 0;
2660
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2661

2662
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2663
		if (iterator.level == level) {
2664
			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2665 2666
				     write, &emulate, level, gfn, pfn,
				     prefault, map_writable);
2667
			direct_pte_prefetch(vcpu, iterator.sptep);
2668 2669
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2670 2671
		}

2672
		if (!is_shadow_present_pte(*iterator.sptep)) {
2673 2674 2675 2676
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2677 2678 2679
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
					      iterator.level - 1,
					      1, ACC_ALL, iterator.sptep);
2680

2681
			link_shadow_page(iterator.sptep, sp, true);
2682 2683
		}
	}
2684
	return emulate;
A
Avi Kivity 已提交
2685 2686
}

H
Huang Ying 已提交
2687
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2688
{
H
Huang Ying 已提交
2689 2690 2691 2692 2693 2694 2695
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2696

H
Huang Ying 已提交
2697
	send_sig_info(SIGBUS, &info, tsk);
2698 2699
}

2700
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2701
{
X
Xiao Guangrong 已提交
2702 2703 2704 2705 2706 2707 2708 2709 2710
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2711
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2712
		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2713
		return 0;
2714
	}
2715

2716
	return -EFAULT;
2717 2718
}

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2732
	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2754
			kvm_get_pfn(pfn);
2755 2756 2757 2758 2759
			*pfnp = pfn;
		}
	}
}

2760 2761 2762 2763 2764 2765
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
				pfn_t pfn, unsigned access, int *ret_val)
{
	bool ret = true;

	/* The pfn is invalid, report the error! */
2766
	if (unlikely(is_error_pfn(pfn))) {
2767 2768 2769 2770
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
		goto exit;
	}

2771
	if (unlikely(is_noslot_pfn(pfn)))
2772 2773 2774 2775 2776 2777 2778
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

	ret = false;
exit:
	return ret;
}

2779
static bool page_fault_can_be_fast(u32 error_code)
2780
{
2781 2782 2783 2784 2785 2786 2787
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp = page_header(__pa(sptep));
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
		mark_page_dirty(vcpu->kvm, gfn);

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
	bool ret = false;
	u64 spte = 0ull;

2832
	if (!page_fault_can_be_fast(error_code))
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
	if (!is_rmap_spte(spte)) {
		ret = true;
		goto exit;
	}

	if (!is_last_spte(spte, level))
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
	ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
exit:
X
Xiao Guangrong 已提交
2877 2878
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2879 2880 2881 2882 2883
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2884
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2885
			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2886
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2887

2888 2889
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
2890 2891
{
	int r;
2892
	int level;
2893
	int force_pt_level;
2894
	pfn_t pfn;
2895
	unsigned long mmu_seq;
2896
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2897

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
2908

2909 2910 2911
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
2912

2913 2914 2915
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

2916
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2917
	smp_rmb();
2918

2919
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2920
		return 0;
2921

2922 2923
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
2924

2925
	spin_lock(&vcpu->kvm->mmu_lock);
2926
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2927
		goto out_unlock;
2928
	make_mmu_pages_available(vcpu);
2929 2930
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2931 2932
	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
			 prefault);
2933 2934 2935
	spin_unlock(&vcpu->kvm->mmu_lock);


2936
	return r;
2937 2938 2939 2940 2941

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
2942 2943 2944
}


2945 2946 2947
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
2948
	struct kvm_mmu_page *sp;
2949
	LIST_HEAD(invalid_list);
2950

2951
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
2952
		return;
2953

2954 2955 2956
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
2957
		hpa_t root = vcpu->arch.mmu.root_hpa;
2958

2959
		spin_lock(&vcpu->kvm->mmu_lock);
2960 2961
		sp = page_header(root);
		--sp->root_count;
2962 2963 2964 2965
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
2966
		spin_unlock(&vcpu->kvm->mmu_lock);
2967
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2968 2969
		return;
	}
2970 2971

	spin_lock(&vcpu->kvm->mmu_lock);
2972
	for (i = 0; i < 4; ++i) {
2973
		hpa_t root = vcpu->arch.mmu.pae_root[i];
2974

A
Avi Kivity 已提交
2975 2976
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
2977 2978
			sp = page_header(root);
			--sp->root_count;
2979
			if (!sp->root_count && sp->role.invalid)
2980 2981
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
2982
		}
2983
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2984
	}
2985
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2986
	spin_unlock(&vcpu->kvm->mmu_lock);
2987
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2988 2989
}

2990 2991 2992 2993 2994
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2995
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2996 2997 2998 2999 3000 3001
		ret = 1;
	}

	return ret;
}

3002 3003 3004
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3005
	unsigned i;
3006 3007 3008

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3009
		make_mmu_pages_available(vcpu);
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
				      1, ACC_ALL, NULL);
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

			ASSERT(!VALID_PAGE(root));
			spin_lock(&vcpu->kvm->mmu_lock);
3021
			make_mmu_pages_available(vcpu);
3022 3023
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30,
3024 3025 3026 3027 3028 3029 3030
					      PT32_ROOT_LEVEL, 1, ACC_ALL,
					      NULL);
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3031
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3032 3033 3034 3035 3036 3037 3038
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3039
{
3040
	struct kvm_mmu_page *sp;
3041 3042 3043
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3044

3045
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3046

3047 3048 3049 3050 3051 3052 3053 3054
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3055
		hpa_t root = vcpu->arch.mmu.root_hpa;
3056 3057

		ASSERT(!VALID_PAGE(root));
3058

3059
		spin_lock(&vcpu->kvm->mmu_lock);
3060
		make_mmu_pages_available(vcpu);
3061 3062
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
				      0, ACC_ALL, NULL);
3063 3064
		root = __pa(sp->spt);
		++sp->root_count;
3065
		spin_unlock(&vcpu->kvm->mmu_lock);
3066
		vcpu->arch.mmu.root_hpa = root;
3067
		return 0;
3068
	}
3069

3070 3071
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3072 3073
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3074
	 */
3075 3076 3077 3078
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3079
	for (i = 0; i < 4; ++i) {
3080
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3081 3082

		ASSERT(!VALID_PAGE(root));
3083
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3084
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3085
			if (!is_present_gpte(pdptr)) {
3086
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3087 3088
				continue;
			}
A
Avi Kivity 已提交
3089
			root_gfn = pdptr >> PAGE_SHIFT;
3090 3091
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3092
		}
3093
		spin_lock(&vcpu->kvm->mmu_lock);
3094
		make_mmu_pages_available(vcpu);
3095
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3096
				      PT32_ROOT_LEVEL, 0,
3097
				      ACC_ALL, NULL);
3098 3099
		root = __pa(sp->spt);
		++sp->root_count;
3100 3101
		spin_unlock(&vcpu->kvm->mmu_lock);

3102
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3103
	}
3104
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3131
	return 0;
3132 3133
}

3134 3135 3136 3137 3138 3139 3140 3141
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3142 3143 3144 3145 3146
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3147 3148 3149
	if (vcpu->arch.mmu.direct_map)
		return;

3150 3151
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3152

3153
	vcpu_clear_mmio_info(vcpu, ~0ul);
3154
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3155
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3156 3157 3158
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3159
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3160 3161 3162 3163 3164
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3165
		if (root && VALID_PAGE(root)) {
3166 3167 3168 3169 3170
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3171
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3172 3173 3174 3175 3176 3177
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3178
	spin_unlock(&vcpu->kvm->mmu_lock);
3179
}
N
Nadav Har'El 已提交
3180
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3181

3182
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3183
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3184
{
3185 3186
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3187 3188 3189
	return vaddr;
}

3190
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3191 3192
					 u32 access,
					 struct x86_exception *exception)
3193
{
3194 3195
	if (exception)
		exception->error_code = 0;
3196 3197 3198
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
}

3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}


/*
 * On direct hosts, the last spte is only allows two states
 * for mmio page fault:
 *   - It is the mmio spte
 *   - It is zapped or it is being zapped.
 *
 * This function completely checks the spte when the last spte
 * is not the mmio spte.
 */
static bool check_direct_spte_mmio_pf(u64 spte)
{
	return __check_direct_spte_mmio_pf(spte);
}

static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte = 0ull;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
		if (!is_shadow_present_pte(spte))
			break;
	walk_shadow_page_lockless_end(vcpu);

	return spte;
}

int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	u64 spte;

	if (quickly_check_mmio_pf(vcpu, addr, direct))
3241
		return RET_MMIO_PF_EMULATE;
3242 3243 3244 3245 3246 3247 3248

	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3249 3250 3251
		if (!check_mmio_spte(vcpu->kvm, spte))
			return RET_MMIO_PF_INVALID;

3252 3253
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3254 3255

		trace_handle_mmio_page_fault(addr, gfn, access);
3256
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3257
		return RET_MMIO_PF_EMULATE;
3258 3259 3260 3261 3262 3263 3264
	}

	/*
	 * It's ok if the gva is remapped by other cpus on shadow guest,
	 * it's a BUG if the gfn is not a mmio page.
	 */
	if (direct && !check_direct_spte_mmio_pf(spte))
3265
		return RET_MMIO_PF_BUG;
3266 3267 3268 3269 3270

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3271
	return RET_MMIO_PF_RETRY;
3272 3273 3274 3275 3276 3277 3278 3279 3280
}
EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);

static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
				  u32 error_code, bool direct)
{
	int ret;

	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3281
	WARN_ON(ret == RET_MMIO_PF_BUG);
3282 3283 3284
	return ret;
}

A
Avi Kivity 已提交
3285
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3286
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3287
{
3288
	gfn_t gfn;
3289
	int r;
A
Avi Kivity 已提交
3290

3291
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3292

3293 3294 3295 3296 3297 3298
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gva, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3299

3300 3301 3302
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3303

A
Avi Kivity 已提交
3304
	ASSERT(vcpu);
3305
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3306

3307
	gfn = gva >> PAGE_SHIFT;
A
Avi Kivity 已提交
3308

3309
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3310
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3311 3312
}

3313
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3314 3315
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3316

3317
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3318
	arch.gfn = gfn;
3319
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3320
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333

	return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3334
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3335
			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3336 3337 3338
{
	bool async;

3339
	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3340 3341 3342 3343

	if (!async)
		return false; /* *pfn has correct page already */

3344
	if (!prefault && can_do_async_pf(vcpu)) {
3345
		trace_kvm_try_async_get_page(gva, gfn);
3346 3347 3348 3349 3350 3351 3352 3353
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3354
	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3355 3356 3357 3358

	return false;
}

G
Gleb Natapov 已提交
3359
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3360
			  bool prefault)
3361
{
3362
	pfn_t pfn;
3363
	int r;
3364
	int level;
3365
	int force_pt_level;
M
Marcelo Tosatti 已提交
3366
	gfn_t gfn = gpa >> PAGE_SHIFT;
3367
	unsigned long mmu_seq;
3368 3369
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3370 3371 3372 3373

	ASSERT(vcpu);
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));

3374 3375 3376 3377 3378 3379
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3380

3381 3382 3383 3384
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3385 3386 3387 3388 3389 3390
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
3391

3392 3393 3394
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3395
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3396
	smp_rmb();
3397

3398
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3399 3400
		return 0;

3401 3402 3403
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3404
	spin_lock(&vcpu->kvm->mmu_lock);
3405
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3406
		goto out_unlock;
3407
	make_mmu_pages_available(vcpu);
3408 3409
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3410
	r = __direct_map(vcpu, gpa, write, map_writable,
3411
			 level, gfn, pfn, prefault);
3412 3413 3414
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3415 3416 3417 3418 3419

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3420 3421
}

3422 3423
static int nonpaging_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3424 3425 3426
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3427
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3428
	context->invlpg = nonpaging_invlpg;
3429
	context->update_pte = nonpaging_update_pte;
3430
	context->root_level = 0;
A
Avi Kivity 已提交
3431
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3432
	context->root_hpa = INVALID_PAGE;
3433
	context->direct_map = true;
3434
	context->nx = false;
A
Avi Kivity 已提交
3435 3436 3437
	return 0;
}

3438
void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3439
{
A
Avi Kivity 已提交
3440
	++vcpu->stat.tlb_flush;
3441
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
A
Avi Kivity 已提交
3442
}
N
Nadav Har'El 已提交
3443
EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
A
Avi Kivity 已提交
3444

3445
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3446
{
3447
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3448 3449
}

3450 3451
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3452
	return kvm_read_cr3(vcpu);
3453 3454
}

3455 3456
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3457
{
3458
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3459 3460
}

3461 3462
static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			   unsigned access, int *nr_present)
3463 3464 3465 3466 3467 3468 3469 3470
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3471
		mark_mmio_spte(kvm, sptep, gfn, access);
3472 3473 3474 3475 3476 3477
		return true;
	}

	return false;
}

A
Avi Kivity 已提交
3478 3479 3480 3481 3482 3483 3484 3485 3486
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

3487 3488 3489 3490 3491
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3492 3493 3494 3495 3496 3497 3498 3499
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3500
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3501
				  struct kvm_mmu *context)
3502 3503 3504 3505
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	u64 exb_bit_rsvd = 0;

3506 3507
	context->bad_mt_xwr = 0;

3508
	if (!context->nx)
3509
		exb_bit_rsvd = rsvd_bits(63, 63);
3510
	switch (context->root_level) {
3511 3512 3513 3514
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
		context->rsvd_bits_mask[0][1] = 0;
		context->rsvd_bits_mask[0][0] = 0;
3515 3516 3517 3518 3519 3520 3521
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

		if (!is_pse(vcpu)) {
			context->rsvd_bits_mask[1][1] = 0;
			break;
		}

3522 3523 3524 3525 3526 3527 3528 3529
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
		else
			/* 32 bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
		break;
	case PT32E_ROOT_LEVEL:
3530 3531 3532
		context->rsvd_bits_mask[0][2] =
			rsvd_bits(maxphyaddr, 63) |
			rsvd_bits(7, 8) | rsvd_bits(1, 2);	/* PDPTE */
3533
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3534
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3535 3536 3537 3538 3539
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3540
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3541 3542 3543 3544 3545 3546 3547
		break;
	case PT64_ROOT_LEVEL:
		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3548
			rsvd_bits(maxphyaddr, 51);
3549 3550 3551
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3552 3553 3554
		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 29);
3555
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3556 3557
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3558
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3559 3560 3561 3562
		break;
	}
}

3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	int pte;

	context->rsvd_bits_mask[0][3] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
	context->rsvd_bits_mask[0][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);

	/* large page */
	context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
	context->rsvd_bits_mask[1][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
	context->rsvd_bits_mask[1][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
	context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

	for (pte = 0; pte < 64; pte++) {
		int rwx_bits = pte & 7;
		int mt = pte >> 3;
		if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
				rwx_bits == 0x2 || rwx_bits == 0x6 ||
				(rwx_bits == 0x4 && !execonly))
			context->bad_mt_xwr |= (1ull << pte);
	}
}

static void update_permission_bitmask(struct kvm_vcpu *vcpu,
		struct kvm_mmu *mmu, bool ept)
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
{
	unsigned bit, byte, pfec;
	u8 map;
	bool fault, x, w, u, wf, uf, ff, smep;

	smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
				x &= !(smep && u && !uf);
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3624 3625 3626 3627 3628 3629 3630 3631

			fault = (ff && !x) || (uf && !u) || (wf && !w);
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3650 3651 3652
static int paging64_init_context_common(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context,
					int level)
A
Avi Kivity 已提交
3653
{
3654
	context->nx = is_nx(vcpu);
3655
	context->root_level = level;
3656

3657
	reset_rsvds_bits_mask(vcpu, context);
3658
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3659
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3660 3661 3662 3663

	ASSERT(is_pae(vcpu));
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3664
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3665
	context->invlpg = paging64_invlpg;
3666
	context->update_pte = paging64_update_pte;
3667
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3668
	context->root_hpa = INVALID_PAGE;
3669
	context->direct_map = false;
A
Avi Kivity 已提交
3670 3671 3672
	return 0;
}

3673 3674
static int paging64_init_context(struct kvm_vcpu *vcpu,
				 struct kvm_mmu *context)
3675
{
3676
	return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3677 3678
}

3679 3680
static int paging32_init_context(struct kvm_vcpu *vcpu,
				 struct kvm_mmu *context)
A
Avi Kivity 已提交
3681
{
3682
	context->nx = false;
3683
	context->root_level = PT32_ROOT_LEVEL;
3684

3685
	reset_rsvds_bits_mask(vcpu, context);
3686
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3687
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3688 3689 3690

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
3691
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3692
	context->invlpg = paging32_invlpg;
3693
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3694
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3695
	context->root_hpa = INVALID_PAGE;
3696
	context->direct_map = false;
A
Avi Kivity 已提交
3697 3698 3699
	return 0;
}

3700 3701
static int paging32E_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3702
{
3703
	return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3704 3705
}

3706 3707
static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
{
3708
	struct kvm_mmu *context = vcpu->arch.walk_mmu;
3709

3710
	context->base_role.word = 0;
3711
	context->page_fault = tdp_page_fault;
3712
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3713
	context->invlpg = nonpaging_invlpg;
3714
	context->update_pte = nonpaging_update_pte;
3715
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3716
	context->root_hpa = INVALID_PAGE;
3717
	context->direct_map = true;
3718
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3719
	context->get_cr3 = get_cr3;
3720
	context->get_pdptr = kvm_pdptr_read;
3721
	context->inject_page_fault = kvm_inject_page_fault;
3722 3723

	if (!is_paging(vcpu)) {
3724
		context->nx = false;
3725 3726 3727
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3728
		context->nx = is_nx(vcpu);
3729
		context->root_level = PT64_ROOT_LEVEL;
3730 3731
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3732
	} else if (is_pae(vcpu)) {
3733
		context->nx = is_nx(vcpu);
3734
		context->root_level = PT32E_ROOT_LEVEL;
3735 3736
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3737
	} else {
3738
		context->nx = false;
3739
		context->root_level = PT32_ROOT_LEVEL;
3740 3741
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
3742 3743
	}

3744
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3745
	update_last_pte_bitmap(vcpu, context);
3746

3747 3748 3749
	return 0;
}

3750
int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
A
Avi Kivity 已提交
3751
{
3752
	int r;
3753
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
A
Avi Kivity 已提交
3754
	ASSERT(vcpu);
3755
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3756 3757

	if (!is_paging(vcpu))
3758
		r = nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
3759
	else if (is_long_mode(vcpu))
3760
		r = paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
3761
	else if (is_pae(vcpu))
3762
		r = paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
3763
	else
3764
		r = paging32_init_context(vcpu, context);
3765

3766
	vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3767
	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3768
	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3769 3770
	vcpu->arch.mmu.base_role.smep_andnot_wp
		= smep && !is_write_protection(vcpu);
3771 3772 3773 3774 3775

	return r;
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

N
Nadav Har'El 已提交
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
int kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
		bool execonly)
{
	ASSERT(vcpu);
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);

	return 0;
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

3801 3802
static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
{
3803
	int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3804

3805 3806
	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
	vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3807
	vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3808
	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3809 3810

	return r;
A
Avi Kivity 已提交
3811 3812
}

3813 3814 3815 3816 3817
static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
3818
	g_context->get_pdptr         = kvm_pdptr_read;
3819 3820 3821 3822 3823 3824 3825 3826 3827
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
	 * translation of l2_gpa to l1_gpa addresses is done using the
	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
	 * functions between mmu and nested_mmu are swapped.
	 */
	if (!is_paging(vcpu)) {
3828
		g_context->nx = false;
3829 3830 3831
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
3832
		g_context->nx = is_nx(vcpu);
3833
		g_context->root_level = PT64_ROOT_LEVEL;
3834
		reset_rsvds_bits_mask(vcpu, g_context);
3835 3836
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
3837
		g_context->nx = is_nx(vcpu);
3838
		g_context->root_level = PT32E_ROOT_LEVEL;
3839
		reset_rsvds_bits_mask(vcpu, g_context);
3840 3841
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
3842
		g_context->nx = false;
3843
		g_context->root_level = PT32_ROOT_LEVEL;
3844
		reset_rsvds_bits_mask(vcpu, g_context);
3845 3846 3847
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

3848
	update_permission_bitmask(vcpu, g_context, false);
A
Avi Kivity 已提交
3849
	update_last_pte_bitmap(vcpu, g_context);
3850

3851 3852 3853
	return 0;
}

3854 3855
static int init_kvm_mmu(struct kvm_vcpu *vcpu)
{
3856 3857 3858
	if (mmu_is_nested(vcpu))
		return init_kvm_nested_mmu(vcpu);
	else if (tdp_enabled)
3859 3860 3861 3862 3863
		return init_kvm_tdp_mmu(vcpu);
	else
		return init_kvm_softmmu(vcpu);
}

A
Avi Kivity 已提交
3864 3865 3866
static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);
3867 3868 3869 3870
	if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
		mmu_free_roots(vcpu);
		WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
	}
A
Avi Kivity 已提交
3871 3872 3873
}

int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3874 3875
{
	destroy_kvm_mmu(vcpu);
3876
	return init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
3877
}
3878
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
3879 3880

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3881
{
3882 3883
	int r;

3884
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
3885 3886
	if (r)
		goto out;
3887
	r = mmu_alloc_roots(vcpu);
3888
	kvm_mmu_sync_roots(vcpu);
3889 3890
	if (r)
		goto out;
3891
	/* set_cr3() should ensure TLB has been flushed */
3892
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3893 3894
out:
	return r;
A
Avi Kivity 已提交
3895
}
A
Avi Kivity 已提交
3896 3897 3898 3899 3900 3901
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
}
3902
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
3903

3904
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3905 3906
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
3907
{
3908
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3909 3910
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
3911
        }
3912

A
Avi Kivity 已提交
3913
	++vcpu->kvm->stat.mmu_pte_updated;
3914
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3915 3916
}

3917 3918 3919 3920 3921 3922 3923 3924
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
3925 3926
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
3927 3928 3929
	return (old & ~new & PT64_PERM_MASK) != 0;
}

3930 3931
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
				    bool remote_flush, bool local_flush)
3932
{
3933 3934 3935 3936
	if (zap_page)
		return;

	if (remote_flush)
3937
		kvm_flush_remote_tlbs(vcpu->kvm);
3938
	else if (local_flush)
3939 3940 3941
		kvm_mmu_flush_tlb(vcpu);
}

3942 3943
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
3944
{
3945 3946
	u64 gentry;
	int r;
3947 3948 3949

	/*
	 * Assume that the pte write on a page table of the same type
3950 3951
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
3952
	 */
3953
	if (is_pae(vcpu) && *bytes == 4) {
3954
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3955 3956
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
3957
		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3958 3959
		if (r)
			gentry = 0;
3960 3961 3962
		new = (const u8 *)&gentry;
	}

3963
	switch (*bytes) {
3964 3965 3966 3967 3968 3969 3970 3971 3972
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
3973 3974
	}

3975 3976 3977 3978 3979 3980 3981
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
3982
static bool detect_write_flooding(struct kvm_mmu_page *sp)
3983
{
3984 3985 3986 3987
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
3988
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3989
		return false;
3990

3991
	return ++sp->write_flooding_count >= 3;
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4008 4009 4010 4011 4012 4013 4014 4015

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
		       const u8 *new, int bytes)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	union kvm_mmu_page_role mask = { .word = 0 };
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4062
	bool remote_flush, local_flush, zap_page;
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

	zap_page = remote_flush = local_flush = false;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4086
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4087

4088
	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4089
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4090
		if (detect_write_misaligned(sp, gpa, bytes) ||
4091
		      detect_write_flooding(sp)) {
4092
			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4093
						     &invalid_list);
A
Avi Kivity 已提交
4094
			++vcpu->kvm->stat.mmu_flooded;
4095 4096
			continue;
		}
4097 4098 4099 4100 4101

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4102
		local_flush = true;
4103
		while (npte--) {
4104
			entry = *spte;
4105
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4106 4107
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4108
			      & mask.word) && rmap_can_add(vcpu))
4109
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4110
			if (need_remote_flush(entry, *spte))
4111
				remote_flush = true;
4112
			++spte;
4113 4114
		}
	}
4115
	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4116
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4117
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4118
	spin_unlock(&vcpu->kvm->mmu_lock);
4119 4120
}

4121 4122
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4123 4124
	gpa_t gpa;
	int r;
4125

4126
	if (vcpu->arch.mmu.direct_map)
4127 4128
		return 0;

4129
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4130 4131

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4132

4133
	return r;
4134
}
4135
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4136

4137
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4138
{
4139
	LIST_HEAD(invalid_list);
4140

4141 4142 4143
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4144 4145 4146
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4147

A
Avi Kivity 已提交
4148
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4149
	}
4150
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4151 4152
}

4153 4154 4155 4156 4157 4158 4159 4160
static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
{
	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4161 4162
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4163
{
4164
	int r, emulation_type = EMULTYPE_RETRY;
4165 4166
	enum emulation_result er;

G
Gleb Natapov 已提交
4167
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4168 4169 4170 4171 4172 4173 4174 4175
	if (r < 0)
		goto out;

	if (!r) {
		r = 1;
		goto out;
	}

4176 4177 4178 4179
	if (is_mmio_page_fault(vcpu, cr2))
		emulation_type = 0;

	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4180 4181 4182 4183

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4184
	case EMULATE_USER_EXIT:
4185
		++vcpu->stat.mmio_exits;
4186
		/* fall through */
4187
	case EMULATE_FAIL:
4188
		return 0;
4189 4190 4191 4192 4193 4194 4195 4196
	default:
		BUG();
	}
out:
	return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4197 4198 4199 4200 4201 4202 4203 4204
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
	kvm_mmu_flush_tlb(vcpu);
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4205 4206 4207 4208 4209 4210
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4211 4212 4213 4214 4215 4216
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4217 4218
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4219
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4220 4221
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4222 4223 4224 4225
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4226
	struct page *page;
A
Avi Kivity 已提交
4227 4228 4229 4230
	int i;

	ASSERT(vcpu);

4231 4232 4233 4234 4235 4236 4237
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4238 4239
		return -ENOMEM;

4240
	vcpu->arch.mmu.pae_root = page_address(page);
4241
	for (i = 0; i < 4; ++i)
4242
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4243

A
Avi Kivity 已提交
4244 4245 4246
	return 0;
}

4247
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4248 4249
{
	ASSERT(vcpu);
4250 4251 4252 4253 4254

	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4255

4256 4257
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4258

4259 4260 4261
int kvm_mmu_setup(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);
4262
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4263

4264
	return init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4265 4266
}

4267
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
A
Avi Kivity 已提交
4268
{
4269 4270 4271
	struct kvm_memory_slot *memslot;
	gfn_t last_gfn;
	int i;
A
Avi Kivity 已提交
4272

4273 4274
	memslot = id_to_memslot(kvm->memslots, slot);
	last_gfn = memslot->base_gfn + memslot->npages - 1;
A
Avi Kivity 已提交
4275

4276 4277
	spin_lock(&kvm->mmu_lock);

4278 4279 4280 4281
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		unsigned long *rmapp;
		unsigned long last_index, index;
A
Avi Kivity 已提交
4282

4283 4284
		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4285

4286 4287 4288
		for (index = 0; index <= last_index; ++index, ++rmapp) {
			if (*rmapp)
				__rmap_write_protect(kvm, rmapp, false);
4289 4290 4291 4292 4293

			if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
				kvm_flush_remote_tlbs(kvm);
				cond_resched_lock(&kvm->mmu_lock);
			}
4294
		}
A
Avi Kivity 已提交
4295
	}
4296

4297
	kvm_flush_remote_tlbs(kvm);
4298
	spin_unlock(&kvm->mmu_lock);
A
Avi Kivity 已提交
4299
}
4300

X
Xiao Guangrong 已提交
4301
#define BATCH_ZAP_PAGES	10
4302 4303 4304
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4305
	int batch = 0;
4306 4307 4308 4309

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4310 4311
		int ret;

4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4327 4328 4329 4330
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4331
		if (batch >= BATCH_ZAP_PAGES &&
4332
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4333
			batch = 0;
4334 4335 4336
			goto restart;
		}

4337 4338
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4339 4340 4341
		batch += ret;

		if (ret)
4342 4343 4344
			goto restart;
	}

4345 4346 4347 4348
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4349
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4364
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4365 4366
	kvm->arch.mmu_valid_gen++;

4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4378 4379 4380 4381
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4382 4383 4384 4385 4386
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4387 4388 4389 4390 4391 4392
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4393
	if (unlikely(kvm_current_mmio_generation(kvm) >= MMIO_MAX_GEN)) {
4394
		printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4395
		kvm_mmu_invalidate_zap_all_pages(kvm);
4396
	}
4397 4398
}

4399 4400
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4401 4402
{
	struct kvm *kvm;
4403
	int nr_to_scan = sc->nr_to_scan;
4404
	unsigned long freed = 0;
4405

4406
	spin_lock(&kvm_lock);
4407 4408

	list_for_each_entry(kvm, &vm_list, vm_list) {
4409
		int idx;
4410
		LIST_HEAD(invalid_list);
4411

4412 4413 4414 4415 4416 4417 4418 4419
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4420 4421 4422 4423 4424 4425
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4426 4427
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4428 4429
			continue;

4430
		idx = srcu_read_lock(&kvm->srcu);
4431 4432
		spin_lock(&kvm->mmu_lock);

4433 4434 4435 4436 4437 4438
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4439 4440
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
4441
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4442

4443
unlock:
4444
		spin_unlock(&kvm->mmu_lock);
4445
		srcu_read_unlock(&kvm->srcu, idx);
4446

4447 4448 4449 4450 4451
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
4452 4453
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4454 4455
	}

4456
	spin_unlock(&kvm_lock);
4457 4458 4459 4460 4461 4462
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
4463
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4464 4465 4466
}

static struct shrinker mmu_shrinker = {
4467 4468
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
4469 4470 4471
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4472
static void mmu_destroy_caches(void)
4473
{
4474 4475
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4476 4477
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4478 4479 4480 4481
}

int kvm_mmu_module_init(void)
{
4482 4483
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4484
					    0, 0, NULL);
4485
	if (!pte_list_desc_cache)
4486 4487
		goto nomem;

4488 4489
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4490
						  0, 0, NULL);
4491 4492 4493
	if (!mmu_page_header_cache)
		goto nomem;

4494 4495 4496
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
		goto nomem;

4497 4498
	register_shrinker(&mmu_shrinker);

4499 4500 4501
	return 0;

nomem:
4502
	mmu_destroy_caches();
4503 4504 4505
	return -ENOMEM;
}

4506 4507 4508 4509 4510 4511 4512
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4513
	struct kvm_memslots *slots;
4514
	struct kvm_memory_slot *memslot;
4515

4516 4517
	slots = kvm_memslots(kvm);

4518 4519
	kvm_for_each_memslot(memslot, slots)
		nr_pages += memslot->npages;
4520 4521 4522 4523 4524 4525 4526 4527

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);

	return nr_mmu_pages;
}

4528 4529 4530
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
{
	struct kvm_shadow_walk_iterator iterator;
4531
	u64 spte;
4532 4533
	int nr_sptes = 0;

4534 4535 4536
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		sptes[iterator.level-1] = spte;
4537
		nr_sptes++;
4538
		if (!is_shadow_present_pte(spte))
4539 4540
			break;
	}
4541
	walk_shadow_page_lockless_end(vcpu);
4542 4543 4544 4545 4546

	return nr_sptes;
}
EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);

4547 4548 4549 4550 4551 4552 4553
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);

	destroy_kvm_mmu(vcpu);
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
4554 4555 4556 4557 4558 4559 4560
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
4561 4562
	mmu_audit_disable();
}