mmu.c 105.2 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
A
Avi Kivity 已提交
25

26
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
27 28 29 30 31
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
32
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/compiler.h>
35
#include <linux/srcu.h>
36
#include <linux/slab.h>
37
#include <linux/uaccess.h>
A
Avi Kivity 已提交
38

A
Avi Kivity 已提交
39 40
#include <asm/page.h>
#include <asm/cmpxchg.h>
41
#include <asm/io.h>
42
#include <asm/vmx.h>
A
Avi Kivity 已提交
43

44 45 46 47 48 49 50
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
51
bool tdp_enabled = false;
52

53 54 55 56
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
57 58 59
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
60
};
61

62
#undef MMU_DEBUG
63 64 65 66 67 68 69 70 71 72 73 74 75

#ifdef MMU_DEBUG

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)

#else

#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)

#endif

76
#ifdef MMU_DEBUG
77
static bool dbg = 0;
78
module_param(dbg, bool, 0644);
79
#endif
A
Avi Kivity 已提交
80

81 82 83
#ifndef MMU_DEBUG
#define ASSERT(x) do { } while (0)
#else
A
Avi Kivity 已提交
84 85 86 87 88
#define ASSERT(x)							\
	if (!(x)) {							\
		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
		       __FILE__, __LINE__, #x);				\
	}
89
#endif
A
Avi Kivity 已提交
90

91 92
#define PTE_PREFETCH_NUM		8

93
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
94 95 96 97 98
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
99
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
100 101 102 103 104 105 106 107

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
108
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
109

110 111 112
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
113 114 115 116 117

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


118
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
119 120
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 122 123 124 125 126
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
127 128 129 130

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 132 133
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
134

135 136
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
			| PT64_NX_MASK)
A
Avi Kivity 已提交
137

138 139 140 141 142
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

143 144
#include <trace/events/kvm.h>

145 146 147
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

148 149
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150

151 152
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

153 154 155
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

156 157 158
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
159 160
};

161 162 163 164
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
165
	int level;
166 167 168 169 170 171 172 173
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

174 175 176 177 178 179
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

180
static struct kmem_cache *pte_list_desc_cache;
181
static struct kmem_cache *mmu_page_header_cache;
182
static struct percpu_counter kvm_total_used_mmu_pages;
183

S
Sheng Yang 已提交
184 185 186 187 188
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
189 190 191
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
192
static void mmu_free_roots(struct kvm_vcpu *vcpu);
193 194 195 196 197 198 199 200 201 202 203

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
{
	access &= ACC_WRITE_MASK | ACC_USER_MASK;

X
Xiao Guangrong 已提交
204
	trace_mark_mmio_spte(sptep, gfn, access);
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
	mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
	return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
}

static unsigned get_mmio_spte_access(u64 spte)
{
	return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
}

static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
{
	if (unlikely(is_noslot_pfn(pfn))) {
		mark_mmio_spte(sptep, gfn, access);
		return true;
	}

	return false;
}
232

233 234 235 236 237
static inline u64 rsvd_bits(int s, int e)
{
	return ((1ULL << (e - s + 1)) - 1) << s;
}

S
Sheng Yang 已提交
238
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
239
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
240 241 242 243 244 245 246 247 248
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
249 250 251 252 253
static int is_cpuid_PSE36(void)
{
	return 1;
}

254 255
static int is_nx(struct kvm_vcpu *vcpu)
{
256
	return vcpu->arch.efer & EFER_NX;
257 258
}

259 260
static int is_shadow_present_pte(u64 pte)
{
261
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
262 263
}

M
Marcelo Tosatti 已提交
264 265 266 267 268
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

269
static int is_dirty_gpte(unsigned long pte)
270
{
A
Avi Kivity 已提交
271
	return pte & PT_DIRTY_MASK;
272 273
}

274
static int is_rmap_spte(u64 pte)
275
{
276
	return is_shadow_present_pte(pte);
277 278
}

279 280 281 282
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
283
	if (is_large_pte(pte))
284 285 286 287
		return 1;
	return 0;
}

288
static pfn_t spte_to_pfn(u64 pte)
289
{
290
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
291 292
}

293 294 295 296 297 298 299
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

300
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
301
static void __set_spte(u64 *sptep, u64 spte)
302
{
303
	*sptep = spte;
304 305
}

306
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
307
{
308 309 310 311 312 313 314
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
315 316 317 318 319

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
320 321 322 323 324 325

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	/* It is valid if the spte is zapped. */
	return spte == 0ull;
}
326
#else
327 328 329 330 331 332 333
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
334

335 336 337 338 339 340 341 342 343 344 345 346
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

347 348 349
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
350

351 352 353 354 355 356 357 358 359 360 361 362 363
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
364 365
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
382
	count_spte_clear(sptep, spte);
383 384 385 386 387 388 389 390 391 392 393
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
394 395
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
396
	count_spte_clear(sptep, spte);
397 398 399

	return orig.spte;
}
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
 * The difference is we can not catch the spte tlb flush if we leave
 * guest mode, so we emulate it by increase clear_spte_count when spte
 * is cleared.
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	union split_spte sspte = (union split_spte)spte;
	u32 high_mmio_mask = shadow_mmio_mask >> 32;

	/* It is valid if the spte is zapped. */
	if (spte == 0ull)
		return true;

	/* It is valid if the spte is being zapped. */
	if (sspte.spte_low == 0ull &&
	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
		return true;

	return false;
}
447 448
#endif

449 450 451 452 453
static bool spte_is_locklessly_modifiable(u64 spte)
{
	return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
}

454 455
static bool spte_has_volatile_bits(u64 spte)
{
456 457 458 459 460 461 462 463 464
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

465 466 467 468 469 470
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

471 472
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
473 474 475 476 477
		return false;

	return true;
}

478 479 480 481 482
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

483 484 485 486 487 488 489 490 491 492 493 494 495 496
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
497 498 499 500 501 502
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
503
 */
504
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
505
{
506
	u64 old_spte = *sptep;
507
	bool ret = false;
508 509

	WARN_ON(!is_rmap_spte(new_spte));
510

511 512 513 514
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
515

516
	if (!spte_has_volatile_bits(old_spte))
517
		__update_clear_spte_fast(sptep, new_spte);
518
	else
519
		old_spte = __update_clear_spte_slow(sptep, new_spte);
520

521 522 523 524 525
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
526 527 528
	if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
		ret = true;

529
	if (!shadow_accessed_mask)
530
		return ret;
531 532 533 534 535

	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
536 537

	return ret;
538 539
}

540 541 542 543 544 545 546 547 548 549 550
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
	pfn_t pfn;
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
551
		__update_clear_spte_fast(sptep, 0ull);
552
	else
553
		old_spte = __update_clear_spte_slow(sptep, 0ull);
554 555 556 557 558

	if (!is_rmap_spte(old_spte))
		return 0;

	pfn = spte_to_pfn(old_spte);
559 560 561 562 563 564 565 566

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
	WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));

567 568 569 570 571 572 573 574 575 576 577 578 579 580
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
581
	__update_clear_spte_fast(sptep, 0ull);
582 583
}

584 585 586 587 588 589 590
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
591 592 593 594 595 596 597 598 599 600 601
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
602 603 604 605
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
606 607 608 609 610 611 612 613
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
614 615
}

616
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
617
				  struct kmem_cache *base_cache, int min)
618 619 620 621
{
	void *obj;

	if (cache->nobjs >= min)
622
		return 0;
623
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
624
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
625
		if (!obj)
626
			return -ENOMEM;
627 628
		cache->objects[cache->nobjs++] = obj;
	}
629
	return 0;
630 631
}

632 633 634 635 636
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

637 638
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
639 640
{
	while (mc->nobjs)
641
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
642 643
}

A
Avi Kivity 已提交
644
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
645
				       int min)
A
Avi Kivity 已提交
646
{
647
	void *page;
A
Avi Kivity 已提交
648 649 650 651

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
652
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
653 654
		if (!page)
			return -ENOMEM;
655
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
656 657 658 659 660 661 662
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
663
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
664 665
}

666
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
667
{
668 669
	int r;

670
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
671
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
672 673
	if (r)
		goto out;
674
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
675 676
	if (r)
		goto out;
677
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
678
				   mmu_page_header_cache, 4);
679 680
out:
	return r;
681 682 683 684
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
685 686
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
687
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
688 689
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
690 691
}

692
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
693 694 695 696 697 698 699 700
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

701
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
702
{
703
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
704 705
}

706
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
707
{
708
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
709 710
}

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
727
/*
728 729
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
730
 */
731 732 733
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
734 735 736
{
	unsigned long idx;

737
	idx = gfn_to_index(gfn, slot->base_gfn, level);
738
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
739 740 741 742
}

static void account_shadowed(struct kvm *kvm, gfn_t gfn)
{
743
	struct kvm_memory_slot *slot;
744
	struct kvm_lpage_info *linfo;
745
	int i;
M
Marcelo Tosatti 已提交
746

A
Avi Kivity 已提交
747
	slot = gfn_to_memslot(kvm, gfn);
748 749
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
750 751
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count += 1;
752
	}
753
	kvm->arch.indirect_shadow_pages++;
M
Marcelo Tosatti 已提交
754 755 756 757
}

static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
{
758
	struct kvm_memory_slot *slot;
759
	struct kvm_lpage_info *linfo;
760
	int i;
M
Marcelo Tosatti 已提交
761

A
Avi Kivity 已提交
762
	slot = gfn_to_memslot(kvm, gfn);
763 764
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
765 766 767
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count -= 1;
		WARN_ON(linfo->write_count < 0);
768
	}
769
	kvm->arch.indirect_shadow_pages--;
M
Marcelo Tosatti 已提交
770 771
}

772 773 774
static int has_wrprotected_page(struct kvm *kvm,
				gfn_t gfn,
				int level)
M
Marcelo Tosatti 已提交
775
{
776
	struct kvm_memory_slot *slot;
777
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
778

A
Avi Kivity 已提交
779
	slot = gfn_to_memslot(kvm, gfn);
M
Marcelo Tosatti 已提交
780
	if (slot) {
781 782
		linfo = lpage_info_slot(gfn, slot, level);
		return linfo->write_count;
M
Marcelo Tosatti 已提交
783 784 785 786 787
	}

	return 1;
}

788
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
789
{
J
Joerg Roedel 已提交
790
	unsigned long page_size;
791
	int i, ret = 0;
M
Marcelo Tosatti 已提交
792

J
Joerg Roedel 已提交
793
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
794

795 796 797 798 799 800 801 802
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

803
	return ret;
M
Marcelo Tosatti 已提交
804 805
}

806 807 808
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
809 810
{
	struct kvm_memory_slot *slot;
811 812 813 814 815 816 817 818 819 820 821

	slot = gfn_to_memslot(vcpu->kvm, gfn);
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
	      (no_dirty_log && slot->dirty_bitmap))
		slot = NULL;

	return slot;
}

static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
822
	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
823 824 825 826 827
}

static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
	int host_level, level, max_level;
M
Marcelo Tosatti 已提交
828

829 830 831 832 833
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

834 835 836 837
	max_level = kvm_x86_ops->get_lpage_level() < host_level ?
		kvm_x86_ops->get_lpage_level() : host_level;

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
838 839 840 841
		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
842 843
}

844
/*
845
 * Pte mapping structures:
846
 *
847
 * If pte_list bit zero is zero, then pte_list point to the spte.
848
 *
849 850
 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 * pte_list_desc containing more mappings.
851
 *
852
 * Returns the number of pte entries before the spte was added or zero if
853 854
 * the spte was not added.
 *
855
 */
856 857
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
			unsigned long *pte_list)
858
{
859
	struct pte_list_desc *desc;
860
	int i, count = 0;
861

862 863 864 865 866 867 868
	if (!*pte_list) {
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
		*pte_list = (unsigned long)spte;
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
		desc->sptes[0] = (u64 *)*pte_list;
A
Avi Kivity 已提交
869
		desc->sptes[1] = spte;
870
		*pte_list = (unsigned long)desc | 1;
871
		++count;
872
	} else {
873 874 875
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
876
			desc = desc->more;
877
			count += PTE_LIST_EXT;
878
		}
879 880
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
881 882
			desc = desc->more;
		}
A
Avi Kivity 已提交
883
		for (i = 0; desc->sptes[i]; ++i)
884
			++count;
A
Avi Kivity 已提交
885
		desc->sptes[i] = spte;
886
	}
887
	return count;
888 889
}

890 891 892
static void
pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
			   int i, struct pte_list_desc *prev_desc)
893 894 895
{
	int j;

896
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
897
		;
A
Avi Kivity 已提交
898 899
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
900 901 902
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
903
		*pte_list = (unsigned long)desc->sptes[0];
904 905 906 907
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
908 909
			*pte_list = (unsigned long)desc->more | 1;
	mmu_free_pte_list_desc(desc);
910 911
}

912
static void pte_list_remove(u64 *spte, unsigned long *pte_list)
913
{
914 915
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
916 917
	int i;

918 919
	if (!*pte_list) {
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
920
		BUG();
921 922 923 924
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
		if ((u64 *)*pte_list != spte) {
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
925 926
			BUG();
		}
927
		*pte_list = 0;
928
	} else {
929 930
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
931 932
		prev_desc = NULL;
		while (desc) {
933
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
A
Avi Kivity 已提交
934
				if (desc->sptes[i] == spte) {
935
					pte_list_desc_remove_entry(pte_list,
936
							       desc, i,
937 938 939 940 941 942
							       prev_desc);
					return;
				}
			prev_desc = desc;
			desc = desc->more;
		}
943
		pr_err("pte_list_remove: %p many->many\n", spte);
944 945 946 947
		BUG();
	}
}

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
typedef void (*pte_list_walk_fn) (u64 *spte);
static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
	struct pte_list_desc *desc;
	int i;

	if (!*pte_list)
		return;

	if (!(*pte_list & 1))
		return fn((u64 *)*pte_list);

	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
	while (desc) {
		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
			fn(desc->sptes[i]);
		desc = desc->more;
	}
}

968
static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
969
				    struct kvm_memory_slot *slot)
970
{
971
	unsigned long idx;
972

973
	idx = gfn_to_index(gfn, slot->base_gfn, level);
974
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
975 976
}

977 978 979 980 981 982 983 984
/*
 * Take gfn and return the reverse mapping to it.
 */
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
{
	struct kvm_memory_slot *slot;

	slot = gfn_to_memslot(kvm, gfn);
985
	return __gfn_to_rmap(gfn, level, slot);
986 987
}

988 989 990 991 992 993 994 995
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
	return pte_list_add(vcpu, spte, rmapp);
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
	pte_list_remove(spte, rmapp);
}

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
{
	if (!rmap)
		return NULL;

	if (!(rmap & 1)) {
		iter->desc = NULL;
		return (u64 *)rmap;
	}

	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
	iter->pos = 0;
	return iter->desc->sptes[iter->pos];
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			u64 *sptep;

			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
				return sptep;
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
			return iter->desc->sptes[iter->pos];
		}
	}

	return NULL;
}

1080
static void drop_spte(struct kvm *kvm, u64 *sptep)
1081
{
1082
	if (mmu_spte_clear_track_bits(sptep))
1083
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1084 1085
}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
 * Write-protect on the specified @sptep, @pt_protect indicates whether
 * spte writ-protection is caused by protecting shadow page table.
 * @flush indicates whether tlb need be flushed.
 *
 * Note: write protection is difference between drity logging and spte
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1117 1118 1119
 *
 * Return true if the spte is dropped.
 */
1120 1121
static bool
spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1122 1123 1124
{
	u64 spte = *sptep;

1125 1126
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1127 1128 1129 1130
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1131 1132
	if (__drop_large_spte(kvm, sptep)) {
		*flush |= true;
1133
		return true;
1134
	}
1135

1136 1137
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1138
	spte = spte & ~PT_WRITABLE_MASK;
1139 1140

	*flush |= mmu_spte_update(sptep, spte);
1141 1142 1143
	return false;
}

1144
static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1145
				 bool pt_protect)
1146
{
1147 1148
	u64 *sptep;
	struct rmap_iterator iter;
1149
	bool flush = false;
1150

1151 1152
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1153
		if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1154
			sptep = rmap_get_first(*rmapp, &iter);
1155
			continue;
1156
		}
1157

1158
		sptep = rmap_get_next(&iter);
1159
	}
1160

1161
	return flush;
1162 1163
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
/**
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1177 1178 1179
{
	unsigned long *rmapp;

1180
	while (mask) {
1181 1182
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
1183
		__rmap_write_protect(kvm, rmapp, false);
M
Marcelo Tosatti 已提交
1184

1185 1186 1187
		/* clear the first set bit */
		mask &= mask - 1;
	}
1188 1189
}

1190
static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1191 1192
{
	struct kvm_memory_slot *slot;
1193 1194
	unsigned long *rmapp;
	int i;
1195
	bool write_protected = false;
1196 1197

	slot = gfn_to_memslot(kvm, gfn);
1198 1199 1200 1201

	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		rmapp = __gfn_to_rmap(gfn, i, slot);
1202
		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1203 1204 1205
	}

	return write_protected;
1206 1207
}

F
Frederik Deweerdt 已提交
1208
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1209
			   struct kvm_memory_slot *slot, unsigned long data)
1210
{
1211 1212
	u64 *sptep;
	struct rmap_iterator iter;
1213 1214
	int need_tlb_flush = 0;

1215 1216 1217 1218 1219
	while ((sptep = rmap_get_first(*rmapp, &iter))) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);

		drop_spte(kvm, sptep);
1220 1221
		need_tlb_flush = 1;
	}
1222

1223 1224 1225
	return need_tlb_flush;
}

F
Frederik Deweerdt 已提交
1226
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1227
			     struct kvm_memory_slot *slot, unsigned long data)
1228
{
1229 1230
	u64 *sptep;
	struct rmap_iterator iter;
1231
	int need_flush = 0;
1232
	u64 new_spte;
1233 1234 1235 1236 1237
	pte_t *ptep = (pte_t *)data;
	pfn_t new_pfn;

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1238 1239 1240 1241 1242

	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!is_shadow_present_pte(*sptep));
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);

1243
		need_flush = 1;
1244

1245
		if (pte_write(*ptep)) {
1246 1247
			drop_spte(kvm, sptep);
			sptep = rmap_get_first(*rmapp, &iter);
1248
		} else {
1249
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1250 1251 1252 1253
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1254
			new_spte &= ~shadow_accessed_mask;
1255 1256 1257 1258

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
			sptep = rmap_get_next(&iter);
1259 1260
		}
	}
1261

1262 1263 1264 1265 1266 1267
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1268 1269 1270 1271 1272 1273
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
1274
					       struct kvm_memory_slot *slot,
1275
					       unsigned long data))
1276
{
1277
	int j;
1278
	int ret = 0;
1279
	struct kvm_memslots *slots;
1280
	struct kvm_memory_slot *memslot;
1281

1282
	slots = kvm_memslots(kvm);
1283

1284
	kvm_for_each_memslot(memslot, slots) {
1285
		unsigned long hva_start, hva_end;
1286
		gfn_t gfn_start, gfn_end;
1287

1288 1289 1290 1291 1292 1293 1294
		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1295
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1296
		 */
1297
		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1298
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1299

1300 1301 1302 1303
		for (j = PT_PAGE_TABLE_LEVEL;
		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
			unsigned long idx, idx_end;
			unsigned long *rmapp;
1304

1305 1306 1307 1308 1309 1310
			/*
			 * {idx(page_j) | page_j intersects with
			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
			 */
			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1311

1312
			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1313

1314 1315
			for (; idx <= idx_end; ++idx)
				ret |= handler(kvm, rmapp++, memslot, data);
1316 1317 1318
		}
	}

1319
	return ret;
1320 1321
}

1322 1323 1324
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1325
					 struct kvm_memory_slot *slot,
1326 1327 1328
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1329 1330 1331 1332
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1333 1334 1335
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1336 1337 1338 1339 1340
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1341 1342
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1343
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1344 1345
}

F
Frederik Deweerdt 已提交
1346
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1347
			 struct kvm_memory_slot *slot, unsigned long data)
1348
{
1349
	u64 *sptep;
1350
	struct rmap_iterator uninitialized_var(iter);
1351 1352
	int young = 0;

1353
	/*
1354 1355
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
1356 1357 1358 1359 1360
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
1361 1362 1363 1364
	if (!shadow_accessed_mask) {
		young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
		goto out;
	}
1365

1366 1367
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1368
		BUG_ON(!is_shadow_present_pte(*sptep));
1369

1370
		if (*sptep & shadow_accessed_mask) {
1371
			young = 1;
1372 1373
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1374 1375
		}
	}
1376 1377 1378
out:
	/* @data has hva passed to kvm_age_hva(). */
	trace_kvm_age_page(data, slot, young);
1379 1380 1381
	return young;
}

A
Andrea Arcangeli 已提交
1382
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1383
			      struct kvm_memory_slot *slot, unsigned long data)
A
Andrea Arcangeli 已提交
1384
{
1385 1386
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1397 1398
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1399
		BUG_ON(!is_shadow_present_pte(*sptep));
1400

1401
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1402 1403 1404 1405 1406 1407 1408 1409
			young = 1;
			break;
		}
	}
out:
	return young;
}

1410 1411
#define RMAP_RECYCLE_THRESHOLD 1000

1412
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1413 1414
{
	unsigned long *rmapp;
1415 1416 1417
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1418

1419
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1420

1421
	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1422 1423 1424
	kvm_flush_remote_tlbs(vcpu->kvm);
}

1425 1426
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
{
1427
	return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1428 1429
}

A
Andrea Arcangeli 已提交
1430 1431 1432 1433 1434
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1435
#ifdef MMU_DEBUG
1436
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1437
{
1438 1439 1440
	u64 *pos;
	u64 *end;

1441
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1442
		if (is_shadow_present_pte(*pos)) {
1443
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1444
			       pos, *pos);
A
Avi Kivity 已提交
1445
			return 0;
1446
		}
A
Avi Kivity 已提交
1447 1448
	return 1;
}
1449
#endif
A
Avi Kivity 已提交
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1463 1464 1465 1466 1467 1468 1469
/*
 * Remove the sp from shadow page cache, after call it,
 * we can not find this sp from the cache, and the shadow
 * page table is still valid.
 * It should be under the protection of mmu lock.
 */
static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1470
{
1471
	ASSERT(is_empty_shadow_page(sp->spt));
1472
	hlist_del(&sp->hash_link);
1473
	if (!sp->role.direct)
1474
		free_page((unsigned long)sp->gfns);
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
}

/*
 * Free the shadow page table and the sp, we can do it
 * out of the protection of mmu lock.
 */
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
{
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1485
	kmem_cache_free(mmu_page_header_cache, sp);
1486 1487
}

1488 1489
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1490
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1491 1492
}

1493
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1494
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1495 1496 1497 1498
{
	if (!parent_pte)
		return;

1499
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1500 1501
}

1502
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1503 1504
				       u64 *parent_pte)
{
1505
	pte_list_remove(parent_pte, &sp->parent_ptes);
1506 1507
}

1508 1509 1510 1511
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1512
	mmu_spte_clear_no_track(parent_pte);
1513 1514
}

1515 1516
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
					       u64 *parent_pte, int direct)
M
Marcelo Tosatti 已提交
1517
{
1518
	struct kvm_mmu_page *sp;
1519 1520
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1521
	if (!direct)
1522
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1523 1524 1525 1526 1527 1528
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	sp->parent_ptes = 0;
	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1529 1530
}

1531
static void mark_unsync(u64 *spte);
1532
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1533
{
1534
	pte_list_walk(&sp->parent_ptes, mark_unsync);
1535 1536
}

1537
static void mark_unsync(u64 *spte)
1538
{
1539
	struct kvm_mmu_page *sp;
1540
	unsigned int index;
1541

1542
	sp = page_header(__pa(spte));
1543 1544
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1545
		return;
1546
	if (sp->unsync_children++)
1547
		return;
1548
	kvm_mmu_mark_parents_unsync(sp);
1549 1550
}

1551
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1552
			       struct kvm_mmu_page *sp)
1553 1554 1555 1556
{
	return 1;
}

M
Marcelo Tosatti 已提交
1557 1558 1559 1560
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1561 1562
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1563
				 const void *pte)
1564 1565 1566 1567
{
	WARN_ON(1);
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1578 1579
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1580
{
1581
	int i;
1582

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1598

1599
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1600
		struct kvm_mmu_page *child;
1601 1602
		u64 ent = sp->spt[i];

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
			goto clear_child_bitmap;

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
			if (!ret)
				goto clear_child_bitmap;
			else if (ret > 0)
				nr_unsync_leaf += ret;
			else
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
			 goto clear_child_bitmap;

		continue;

clear_child_bitmap:
		__clear_bit(i, sp->unsync_child_bitmap);
		sp->unsync_children--;
		WARN_ON((int)sp->unsync_children < 0);
1632 1633 1634
	}


1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	return nr_unsync_leaf;
}

static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	if (!sp->unsync_children)
		return 0;

	mmu_pages_add(pvec, sp, 0);
	return __mmu_unsync_walk(sp, pvec);
1646 1647 1648 1649 1650
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1651
	trace_kvm_mmu_sync_page(sp);
1652 1653 1654 1655
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1656 1657 1658 1659
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1660

1661 1662
#define for_each_gfn_sp(kvm, sp, gfn, pos)				\
  hlist_for_each_entry(sp, pos,						\
1663 1664 1665
   &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)	\
	if ((sp)->gfn != (gfn)) {} else

1666 1667
#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)		\
  hlist_for_each_entry(sp, pos,						\
1668 1669 1670 1671
   &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)	\
		if ((sp)->gfn != (gfn) || (sp)->role.direct ||		\
			(sp)->role.invalid) {} else

1672
/* @sp->gfn should be write-protected at the call site */
1673
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1674
			   struct list_head *invalid_list, bool clear_unsync)
1675
{
1676
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1677
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1678 1679 1680
		return 1;
	}

1681
	if (clear_unsync)
1682 1683
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1684
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1685
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1686 1687 1688 1689 1690 1691 1692
		return 1;
	}

	kvm_mmu_flush_tlb(vcpu);
	return 0;
}

1693 1694 1695
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1696
	LIST_HEAD(invalid_list);
1697 1698
	int ret;

1699
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1700
	if (ret)
1701 1702
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1703 1704 1705
	return ret;
}

1706 1707 1708 1709 1710 1711 1712
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1713 1714
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1715
{
1716
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1717 1718
}

1719 1720 1721 1722
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1723
	struct hlist_node *node;
1724
	LIST_HEAD(invalid_list);
1725 1726
	bool flush = false;

1727
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1728
		if (!s->unsync)
1729 1730 1731
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1732
		kvm_unlink_unsync_page(vcpu->kvm, s);
1733
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1734
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1735
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1736 1737 1738 1739 1740
			continue;
		}
		flush = true;
	}

1741
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1742 1743 1744 1745
	if (flush)
		kvm_mmu_flush_tlb(vcpu);
}

1746 1747 1748
struct mmu_page_path {
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
	unsigned int idx[PT64_ROOT_LEVEL-1];
1749 1750
};

1751 1752 1753 1754 1755 1756
#define for_each_sp(pvec, sp, parents, i)			\
		for (i = mmu_pages_next(&pvec, &parents, -1),	\
			sp = pvec.page[i].sp;			\
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1757 1758 1759
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;

		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
			parents->idx[0] = pvec->page[n].idx;
			return n;
		}

		parents->parent[sp->role.level-2] = sp;
		parents->idx[sp->role.level-1] = pvec->page[n].idx;
	}

	return n;
}

1778
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1779
{
1780 1781 1782 1783 1784
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
1785

1786 1787 1788 1789 1790 1791 1792 1793 1794
		sp = parents->parent[level];
		if (!sp)
			return;

		--sp->unsync_children;
		WARN_ON((int)sp->unsync_children < 0);
		__clear_bit(idx, sp->unsync_child_bitmap);
		level++;
	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1795 1796
}

1797 1798 1799
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
			       struct mmu_page_path *parents,
			       struct kvm_mmu_pages *pvec)
1800
{
1801 1802 1803
	parents->parent[parent->role.level-1] = NULL;
	pvec->nr = 0;
}
1804

1805 1806 1807 1808 1809 1810 1811
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1812
	LIST_HEAD(invalid_list);
1813 1814 1815

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
1816
		bool protected = false;
1817 1818 1819 1820 1821 1822 1823

		for_each_sp(pages, sp, parents, i)
			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

1824
		for_each_sp(pages, sp, parents, i) {
1825
			kvm_sync_page(vcpu, sp, &invalid_list);
1826 1827
			mmu_pages_clear_parents(&parents);
		}
1828
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1829
		cond_resched_lock(&vcpu->kvm->mmu_lock);
1830 1831
		kvm_mmu_pages_init(parent, &parents, &pages);
	}
1832 1833
}

1834 1835 1836 1837 1838 1839 1840 1841
static void init_shadow_page_table(struct kvm_mmu_page *sp)
{
	int i;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		sp->spt[i] = 0ull;
}

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
	sp->write_flooding_count = 0;
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

1854 1855 1856 1857
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
1858
					     int direct,
1859
					     unsigned access,
1860
					     u64 *parent_pte)
1861 1862 1863
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
1864
	struct kvm_mmu_page *sp;
1865
	struct hlist_node *node;
1866
	bool need_sync = false;
1867

1868
	role = vcpu->arch.mmu.base_role;
1869
	role.level = level;
1870
	role.direct = direct;
1871
	if (role.direct)
1872
		role.cr4_pae = 0;
1873
	role.access = access;
1874 1875
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1876 1877 1878 1879
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
1880
	for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1881 1882
		if (!need_sync && sp->unsync)
			need_sync = true;
1883

1884 1885
		if (sp->role.word != role.word)
			continue;
1886

1887 1888
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
1889

1890 1891
		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
		if (sp->unsync_children) {
1892
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1893 1894 1895
			kvm_mmu_mark_parents_unsync(sp);
		} else if (sp->unsync)
			kvm_mmu_mark_parents_unsync(sp);
1896

1897
		__clear_sp_write_flooding_count(sp);
1898 1899 1900
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
A
Avi Kivity 已提交
1901
	++vcpu->kvm->stat.mmu_cache_miss;
1902
	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1903 1904 1905 1906
	if (!sp)
		return sp;
	sp->gfn = gfn;
	sp->role = role;
1907 1908
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1909
	if (!direct) {
1910 1911
		if (rmap_write_protect(vcpu->kvm, gfn))
			kvm_flush_remote_tlbs(vcpu->kvm);
1912 1913 1914
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);

1915 1916
		account_shadowed(vcpu->kvm, gfn);
	}
1917
	init_shadow_page_table(sp);
A
Avi Kivity 已提交
1918
	trace_kvm_mmu_get_page(sp, true);
1919
	return sp;
1920 1921
}

1922 1923 1924 1925 1926 1927
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
1928 1929 1930 1931 1932 1933

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
1948

1949 1950 1951 1952 1953
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

1954 1955
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
1956
{
1957
	if (is_last_spte(spte, iterator->level)) {
1958 1959 1960 1961
		iterator->level = 0;
		return;
	}

1962
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1963 1964 1965
	--iterator->level;
}

1966 1967 1968 1969 1970
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

1971 1972 1973 1974 1975 1976 1977
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
{
	u64 spte;

	spte = __pa(sp->spt)
		| PT_PRESENT_MASK | PT_ACCESSED_MASK
		| PT_WRITABLE_MASK | PT_USER_MASK;
1978
	mmu_spte_set(sptep, spte);
1979 1980
}

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

1998
		drop_parent_pte(child, sptep);
1999 2000 2001 2002
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2003
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2004 2005 2006 2007 2008 2009 2010
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2011
		if (is_last_spte(pte, sp->role.level)) {
2012
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2013 2014 2015
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2016
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2017
			drop_parent_pte(child, spte);
2018
		}
X
Xiao Guangrong 已提交
2019 2020 2021 2022
		return true;
	}

	if (is_mmio_spte(pte))
2023
		mmu_spte_clear_no_track(spte);
2024

X
Xiao Guangrong 已提交
2025
	return false;
2026 2027
}

2028
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2029
					 struct kvm_mmu_page *sp)
2030
{
2031 2032
	unsigned i;

2033 2034
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2035 2036
}

2037
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2038
{
2039
	mmu_page_remove_parent_pte(sp, parent_pte);
2040 2041
}

2042
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2043
{
2044 2045
	u64 *sptep;
	struct rmap_iterator iter;
2046

2047 2048
	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
		drop_parent_pte(sp, sptep);
2049 2050
}

2051
static int mmu_zap_unsync_children(struct kvm *kvm,
2052 2053
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2054
{
2055 2056 2057
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2058

2059
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2060
		return 0;
2061 2062 2063 2064 2065 2066

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2067
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2068
			mmu_pages_clear_parents(&parents);
2069
			zapped++;
2070 2071 2072 2073 2074
		}
		kvm_mmu_pages_init(parent, &parents, &pages);
	}

	return zapped;
2075 2076
}

2077 2078
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2079
{
2080
	int ret;
A
Avi Kivity 已提交
2081

2082
	trace_kvm_mmu_prepare_zap_page(sp);
2083
	++kvm->stat.mmu_shadow_zapped;
2084
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2085
	kvm_mmu_page_unlink_children(kvm, sp);
2086
	kvm_mmu_unlink_parents(kvm, sp);
2087
	if (!sp->role.invalid && !sp->role.direct)
A
Avi Kivity 已提交
2088
		unaccount_shadowed(kvm, sp->gfn);
2089 2090
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2091
	if (!sp->root_count) {
2092 2093
		/* Count self */
		ret++;
2094
		list_move(&sp->link, invalid_list);
2095
		kvm_mod_used_mmu_pages(kvm, -1);
2096
	} else {
A
Avi Kivity 已提交
2097
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2098 2099
		kvm_reload_remote_mmus(kvm);
	}
2100 2101

	sp->role.invalid = 1;
2102
	return ret;
2103 2104
}

2105 2106 2107 2108 2109 2110 2111 2112
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(invalid_list))
		return;

2113 2114 2115 2116 2117
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2118

2119 2120 2121 2122 2123
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2124

2125 2126 2127
	do {
		sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
		WARN_ON(!sp->role.invalid || sp->root_count);
2128
		kvm_mmu_isolate_page(sp);
2129
		kvm_mmu_free_page(sp);
2130 2131 2132
	} while (!list_empty(invalid_list));
}

2133 2134
/*
 * Changing the number of mmu pages allocated to the vm
2135
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2136
 */
2137
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2138
{
2139
	LIST_HEAD(invalid_list);
2140 2141 2142 2143 2144 2145
	/*
	 * If we set the number of mmu pages to be smaller be than the
	 * number of actived pages , we must to free some mmu pages before we
	 * change the value
	 */

2146 2147
	spin_lock(&kvm->mmu_lock);

2148 2149
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2150
			!list_empty(&kvm->arch.active_mmu_pages)) {
2151 2152
			struct kvm_mmu_page *page;

2153
			page = container_of(kvm->arch.active_mmu_pages.prev,
2154
					    struct kvm_mmu_page, link);
2155
			kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2156
		}
2157
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2158
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2159 2160
	}

2161
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2162 2163

	spin_unlock(&kvm->mmu_lock);
2164 2165
}

2166
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2167
{
2168
	struct kvm_mmu_page *sp;
2169
	struct hlist_node *node;
2170
	LIST_HEAD(invalid_list);
2171 2172
	int r;

2173
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2174
	r = 0;
2175
	spin_lock(&kvm->mmu_lock);
2176
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2177
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2178 2179
			 sp->role.word);
		r = 1;
2180
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2181
	}
2182
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2183 2184
	spin_unlock(&kvm->mmu_lock);

2185
	return r;
2186
}
2187
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2188

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
/*
 * The function is based on mtrr_type_lookup() in
 * arch/x86/kernel/cpu/mtrr/generic.c
 */
static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
			 u64 start, u64 end)
{
	int i;
	u64 base, mask;
	u8 prev_match, curr_match;
	int num_var_ranges = KVM_NR_VAR_MTRR;

	if (!mtrr_state->enabled)
		return 0xFF;

	/* Make end inclusive end, instead of exclusive */
	end--;

	/* Look in fixed ranges. Just return the type as per start */
	if (mtrr_state->have_fixed && (start < 0x100000)) {
		int idx;

		if (start < 0x80000) {
			idx = 0;
			idx += (start >> 16);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0xC0000) {
			idx = 1 * 8;
			idx += ((start - 0x80000) >> 14);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0x1000000) {
			idx = 3 * 8;
			idx += ((start - 0xC0000) >> 12);
			return mtrr_state->fixed_ranges[idx];
		}
	}

	/*
	 * Look in variable ranges
	 * Look of multiple ranges matching this address and pick type
	 * as per MTRR precedence
	 */
	if (!(mtrr_state->enabled & 2))
		return mtrr_state->def_type;

	prev_match = 0xFF;
	for (i = 0; i < num_var_ranges; ++i) {
		unsigned short start_state, end_state;

		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
			continue;

		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);

		start_state = ((start & mask) == (base & mask));
		end_state = ((end & mask) == (base & mask));
		if (start_state != end_state)
			return 0xFE;

		if ((start & mask) != (base & mask))
			continue;

		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
		if (prev_match == 0xFF) {
			prev_match = curr_match;
			continue;
		}

		if (prev_match == MTRR_TYPE_UNCACHABLE ||
		    curr_match == MTRR_TYPE_UNCACHABLE)
			return MTRR_TYPE_UNCACHABLE;

		if ((prev_match == MTRR_TYPE_WRBACK &&
		     curr_match == MTRR_TYPE_WRTHROUGH) ||
		    (prev_match == MTRR_TYPE_WRTHROUGH &&
		     curr_match == MTRR_TYPE_WRBACK)) {
			prev_match = MTRR_TYPE_WRTHROUGH;
			curr_match = MTRR_TYPE_WRTHROUGH;
		}

		if (prev_match != curr_match)
			return MTRR_TYPE_UNCACHABLE;
	}

	if (prev_match != 0xFF)
		return prev_match;

	return mtrr_state->def_type;
}

2282
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2283 2284 2285 2286 2287 2288 2289 2290 2291
{
	u8 mtrr;

	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
	if (mtrr == 0xfe || mtrr == 0xff)
		mtrr = MTRR_TYPE_WRBACK;
	return mtrr;
}
2292
EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2293

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2304 2305
{
	struct kvm_mmu_page *s;
2306
	struct hlist_node *node;
2307

2308
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2309
		if (s->unsync)
2310
			continue;
2311 2312
		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
		__kvm_unsync_page(vcpu, s);
2313 2314 2315 2316 2317 2318
	}
}

static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				  bool can_unsync)
{
2319
	struct kvm_mmu_page *s;
2320
	struct hlist_node *node;
2321 2322
	bool need_unsync = false;

2323
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2324 2325 2326
		if (!can_unsync)
			return 1;

2327
		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2328
			return 1;
2329 2330 2331 2332

		if (!need_unsync && !s->unsync) {
			need_unsync = true;
		}
2333
	}
2334 2335
	if (need_unsync)
		kvm_unsync_pages(vcpu, gfn);
2336 2337 2338
	return 0;
}

A
Avi Kivity 已提交
2339
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2340
		    unsigned pte_access, int level,
2341
		    gfn_t gfn, pfn_t pfn, bool speculative,
2342
		    bool can_unsync, bool host_writable)
2343
{
2344
	u64 spte;
M
Marcelo Tosatti 已提交
2345
	int ret = 0;
S
Sheng Yang 已提交
2346

2347 2348 2349
	if (set_mmio_spte(sptep, gfn, pfn, pte_access))
		return 0;

2350
	spte = PT_PRESENT_MASK;
2351
	if (!speculative)
2352
		spte |= shadow_accessed_mask;
2353

S
Sheng Yang 已提交
2354 2355 2356 2357
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2358

2359
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2360
		spte |= shadow_user_mask;
2361

2362
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2363
		spte |= PT_PAGE_SIZE_MASK;
2364
	if (tdp_enabled)
2365 2366
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
			kvm_is_mmio_pfn(pfn));
2367

2368
	if (host_writable)
2369
		spte |= SPTE_HOST_WRITEABLE;
2370 2371
	else
		pte_access &= ~ACC_WRITE_MASK;
2372

2373
	spte |= (u64)pfn << PAGE_SHIFT;
2374

2375
	if (pte_access & ACC_WRITE_MASK) {
2376

X
Xiao Guangrong 已提交
2377
		/*
2378 2379 2380 2381
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2382
		 */
2383
		if (level > PT_PAGE_TABLE_LEVEL &&
X
Xiao Guangrong 已提交
2384
		    has_wrprotected_page(vcpu->kvm, gfn, level))
A
Avi Kivity 已提交
2385
			goto done;
2386

2387
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2388

2389 2390 2391 2392 2393 2394
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2395
		if (!can_unsync && is_writable_pte(*sptep))
2396 2397
			goto set_pte;

2398
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2399
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2400
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2401
			ret = 1;
2402
			pte_access &= ~ACC_WRITE_MASK;
2403
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2404 2405 2406 2407 2408 2409
		}
	}

	if (pte_access & ACC_WRITE_MASK)
		mark_page_dirty(vcpu->kvm, gfn);

2410
set_pte:
2411
	if (mmu_spte_update(sptep, spte))
2412
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2413
done:
M
Marcelo Tosatti 已提交
2414 2415 2416
	return ret;
}

A
Avi Kivity 已提交
2417
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
M
Marcelo Tosatti 已提交
2418
			 unsigned pt_access, unsigned pte_access,
2419 2420
			 int write_fault, int *emulate, int level, gfn_t gfn,
			 pfn_t pfn, bool speculative, bool host_writable)
M
Marcelo Tosatti 已提交
2421 2422
{
	int was_rmapped = 0;
2423
	int rmap_count;
M
Marcelo Tosatti 已提交
2424

2425
	pgprintk("%s: spte %llx access %x write_fault %d gfn %llx\n",
A
Avi Kivity 已提交
2426
		 __func__, *sptep, pt_access,
2427
		 write_fault, gfn);
M
Marcelo Tosatti 已提交
2428

A
Avi Kivity 已提交
2429
	if (is_rmap_spte(*sptep)) {
M
Marcelo Tosatti 已提交
2430 2431 2432 2433
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2434 2435
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2436
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2437
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2438 2439

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2440
			drop_parent_pte(child, sptep);
2441
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2442
		} else if (pfn != spte_to_pfn(*sptep)) {
2443
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2444
				 spte_to_pfn(*sptep), pfn);
2445
			drop_spte(vcpu->kvm, sptep);
2446
			kvm_flush_remote_tlbs(vcpu->kvm);
2447 2448
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2449
	}
2450

2451 2452
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2453
		if (write_fault)
2454
			*emulate = 1;
2455
		kvm_mmu_flush_tlb(vcpu);
2456
	}
M
Marcelo Tosatti 已提交
2457

2458 2459 2460
	if (unlikely(is_mmio_spte(*sptep) && emulate))
		*emulate = 1;

A
Avi Kivity 已提交
2461
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2462
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2463
		 is_large_pte(*sptep)? "2MB" : "4kB",
2464 2465
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2466
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2467 2468
		++vcpu->kvm->stat.lpages;

2469 2470 2471 2472 2473 2474
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2475
	}
2476

X
Xiao Guangrong 已提交
2477
	kvm_release_pfn_clean(pfn);
2478 2479
}

A
Avi Kivity 已提交
2480 2481
static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
{
2482
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
2483 2484
}

2485 2486 2487 2488 2489 2490 2491 2492
static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
{
	int bit7;

	bit7 = (gpte >> 7) & 1;
	return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
}

2493 2494 2495 2496 2497
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2498
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2499
	if (!slot)
2500
		return KVM_PFN_ERR_FAULT;
2501

2502
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2503 2504
}

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *spte,
				  u64 gpte)
{
	if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
		goto no_present;

	if (!is_present_gpte(gpte))
		goto no_present;

	if (!(gpte & PT_ACCESSED_MASK))
		goto no_present;

	return false;

no_present:
	drop_spte(vcpu->kvm, spte);
	return true;
}

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2535
	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2536 2537 2538 2539 2540 2541 2542
		return -1;

	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2543 2544 2545
		mmu_set_spte(vcpu, start, ACC_ALL, access, 0, NULL,
			     sp->role.level, gfn, page_to_pfn(pages[i]),
			     true, true);
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2562
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2593
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2594 2595
			int map_writable, int level, gfn_t gfn, pfn_t pfn,
			bool prefault)
2596
{
2597
	struct kvm_shadow_walk_iterator iterator;
2598
	struct kvm_mmu_page *sp;
2599
	int emulate = 0;
2600
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2601

2602
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2603
		if (iterator.level == level) {
2604 2605 2606
			unsigned pte_access = ACC_ALL;

			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2607 2608
				     write, &emulate, level, gfn, pfn,
				     prefault, map_writable);
2609
			direct_pte_prefetch(vcpu, iterator.sptep);
2610 2611
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2612 2613
		}

2614
		if (!is_shadow_present_pte(*iterator.sptep)) {
2615 2616 2617 2618
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2619 2620 2621
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
					      iterator.level - 1,
					      1, ACC_ALL, iterator.sptep);
2622

2623 2624 2625 2626 2627
			mmu_spte_set(iterator.sptep,
				     __pa(sp->spt)
				     | PT_PRESENT_MASK | PT_WRITABLE_MASK
				     | shadow_user_mask | shadow_x_mask
				     | shadow_accessed_mask);
2628 2629
		}
	}
2630
	return emulate;
A
Avi Kivity 已提交
2631 2632
}

H
Huang Ying 已提交
2633
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2634
{
H
Huang Ying 已提交
2635 2636 2637 2638 2639 2640 2641
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2642

H
Huang Ying 已提交
2643
	send_sig_info(SIGBUS, &info, tsk);
2644 2645
}

2646
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2647
{
X
Xiao Guangrong 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2657
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2658
		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2659
		return 0;
2660
	}
2661

2662
	return -EFAULT;
2663 2664
}

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2678
	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2700
			kvm_get_pfn(pfn);
2701 2702 2703 2704 2705
			*pfnp = pfn;
		}
	}
}

2706 2707 2708 2709 2710 2711
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
				pfn_t pfn, unsigned access, int *ret_val)
{
	bool ret = true;

	/* The pfn is invalid, report the error! */
2712
	if (unlikely(is_error_pfn(pfn))) {
2713 2714 2715 2716
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
		goto exit;
	}

2717
	if (unlikely(is_noslot_pfn(pfn)))
2718 2719 2720 2721 2722 2723 2724
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

	ret = false;
exit:
	return ret;
}

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
{
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp = page_header(__pa(sptep));
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
		mark_page_dirty(vcpu->kvm, gfn);

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
	bool ret = false;
	u64 spte = 0ull;

	if (!page_fault_can_be_fast(vcpu, error_code))
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
	if (!is_rmap_spte(spte)) {
		ret = true;
		goto exit;
	}

	if (!is_last_spte(spte, level))
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
	ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
exit:
X
Xiao Guangrong 已提交
2816 2817
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2818 2819 2820 2821 2822
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2823
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2824 2825
			 gva_t gva, pfn_t *pfn, bool write, bool *writable);

2826 2827
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
2828 2829
{
	int r;
2830
	int level;
2831
	int force_pt_level;
2832
	pfn_t pfn;
2833
	unsigned long mmu_seq;
2834
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2835

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
2846

2847 2848 2849
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
2850

2851 2852 2853
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

2854
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2855
	smp_rmb();
2856

2857
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2858
		return 0;
2859

2860 2861
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
2862

2863
	spin_lock(&vcpu->kvm->mmu_lock);
2864
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2865
		goto out_unlock;
2866
	kvm_mmu_free_some_pages(vcpu);
2867 2868
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2869 2870
	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
			 prefault);
2871 2872 2873
	spin_unlock(&vcpu->kvm->mmu_lock);


2874
	return r;
2875 2876 2877 2878 2879

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
2880 2881 2882
}


2883 2884 2885
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
2886
	struct kvm_mmu_page *sp;
2887
	LIST_HEAD(invalid_list);
2888

2889
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
2890
		return;
2891
	spin_lock(&vcpu->kvm->mmu_lock);
2892 2893 2894
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
2895
		hpa_t root = vcpu->arch.mmu.root_hpa;
2896

2897 2898
		sp = page_header(root);
		--sp->root_count;
2899 2900 2901 2902
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
2903
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2904
		spin_unlock(&vcpu->kvm->mmu_lock);
2905 2906 2907
		return;
	}
	for (i = 0; i < 4; ++i) {
2908
		hpa_t root = vcpu->arch.mmu.pae_root[i];
2909

A
Avi Kivity 已提交
2910 2911
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
2912 2913
			sp = page_header(root);
			--sp->root_count;
2914
			if (!sp->root_count && sp->role.invalid)
2915 2916
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
2917
		}
2918
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2919
	}
2920
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2921
	spin_unlock(&vcpu->kvm->mmu_lock);
2922
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2923 2924
}

2925 2926 2927 2928 2929
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2930
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2931 2932 2933 2934 2935 2936
		ret = 1;
	}

	return ret;
}

2937 2938 2939
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
2940
	unsigned i;
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
		kvm_mmu_free_some_pages(vcpu);
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
				      1, ACC_ALL, NULL);
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

			ASSERT(!VALID_PAGE(root));
			spin_lock(&vcpu->kvm->mmu_lock);
			kvm_mmu_free_some_pages(vcpu);
2957 2958
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30,
2959 2960 2961 2962 2963 2964 2965
					      PT32_ROOT_LEVEL, 1, ACC_ALL,
					      NULL);
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
2966
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2967 2968 2969 2970 2971 2972 2973
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2974
{
2975
	struct kvm_mmu_page *sp;
2976 2977 2978
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
2979

2980
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2981

2982 2983 2984 2985 2986 2987 2988 2989
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2990
		hpa_t root = vcpu->arch.mmu.root_hpa;
2991 2992

		ASSERT(!VALID_PAGE(root));
2993

2994
		spin_lock(&vcpu->kvm->mmu_lock);
2995
		kvm_mmu_free_some_pages(vcpu);
2996 2997
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
				      0, ACC_ALL, NULL);
2998 2999
		root = __pa(sp->spt);
		++sp->root_count;
3000
		spin_unlock(&vcpu->kvm->mmu_lock);
3001
		vcpu->arch.mmu.root_hpa = root;
3002
		return 0;
3003
	}
3004

3005 3006
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3007 3008
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3009
	 */
3010 3011 3012 3013
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3014
	for (i = 0; i < 4; ++i) {
3015
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3016 3017

		ASSERT(!VALID_PAGE(root));
3018
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3019
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3020
			if (!is_present_gpte(pdptr)) {
3021
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3022 3023
				continue;
			}
A
Avi Kivity 已提交
3024
			root_gfn = pdptr >> PAGE_SHIFT;
3025 3026
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3027
		}
3028
		spin_lock(&vcpu->kvm->mmu_lock);
3029
		kvm_mmu_free_some_pages(vcpu);
3030
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3031
				      PT32_ROOT_LEVEL, 0,
3032
				      ACC_ALL, NULL);
3033 3034
		root = __pa(sp->spt);
		++sp->root_count;
3035 3036
		spin_unlock(&vcpu->kvm->mmu_lock);

3037
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3038
	}
3039
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3066
	return 0;
3067 3068
}

3069 3070 3071 3072 3073 3074 3075 3076
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3077 3078 3079 3080 3081
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3082 3083 3084
	if (vcpu->arch.mmu.direct_map)
		return;

3085 3086
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3087

3088
	vcpu_clear_mmio_info(vcpu, ~0ul);
3089
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3090
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3091 3092 3093
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3094
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3095 3096 3097 3098 3099
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3100
		if (root && VALID_PAGE(root)) {
3101 3102 3103 3104 3105
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3106
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3107 3108 3109 3110 3111 3112
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3113
	spin_unlock(&vcpu->kvm->mmu_lock);
3114 3115
}

3116
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3117
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3118
{
3119 3120
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3121 3122 3123
	return vaddr;
}

3124
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3125 3126
					 u32 access,
					 struct x86_exception *exception)
3127
{
3128 3129
	if (exception)
		exception->error_code = 0;
3130 3131 3132
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
}

3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}


/*
 * On direct hosts, the last spte is only allows two states
 * for mmio page fault:
 *   - It is the mmio spte
 *   - It is zapped or it is being zapped.
 *
 * This function completely checks the spte when the last spte
 * is not the mmio spte.
 */
static bool check_direct_spte_mmio_pf(u64 spte)
{
	return __check_direct_spte_mmio_pf(spte);
}

static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte = 0ull;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
		if (!is_shadow_present_pte(spte))
			break;
	walk_shadow_page_lockless_end(vcpu);

	return spte;
}

/*
 * If it is a real mmio page fault, return 1 and emulat the instruction
 * directly, return 0 to let CPU fault again on the address, -1 is
 * returned if bug is detected.
 */
int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	u64 spte;

	if (quickly_check_mmio_pf(vcpu, addr, direct))
		return 1;

	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3190 3191

		trace_handle_mmio_page_fault(addr, gfn, access);
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
		return 1;
	}

	/*
	 * It's ok if the gva is remapped by other cpus on shadow guest,
	 * it's a BUG if the gfn is not a mmio page.
	 */
	if (direct && !check_direct_spte_mmio_pf(spte))
		return -1;

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
	return 0;
}
EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);

static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
				  u32 error_code, bool direct)
{
	int ret;

	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
	WARN_ON(ret < 0);
	return ret;
}

A
Avi Kivity 已提交
3221
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3222
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3223
{
3224
	gfn_t gfn;
3225
	int r;
A
Avi Kivity 已提交
3226

3227
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3228 3229 3230 3231

	if (unlikely(error_code & PFERR_RSVD_MASK))
		return handle_mmio_page_fault(vcpu, gva, error_code, true);

3232 3233 3234
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3235

A
Avi Kivity 已提交
3236
	ASSERT(vcpu);
3237
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3238

3239
	gfn = gva >> PAGE_SHIFT;
A
Avi Kivity 已提交
3240

3241
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3242
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3243 3244
}

3245
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3246 3247
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3248

3249
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3250
	arch.gfn = gfn;
3251
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3252
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265

	return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3266
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3267
			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3268 3269 3270
{
	bool async;

3271
	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3272 3273 3274 3275

	if (!async)
		return false; /* *pfn has correct page already */

3276
	if (!prefault && can_do_async_pf(vcpu)) {
3277
		trace_kvm_try_async_get_page(gva, gfn);
3278 3279 3280 3281 3282 3283 3284 3285
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3286
	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3287 3288 3289 3290

	return false;
}

G
Gleb Natapov 已提交
3291
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3292
			  bool prefault)
3293
{
3294
	pfn_t pfn;
3295
	int r;
3296
	int level;
3297
	int force_pt_level;
M
Marcelo Tosatti 已提交
3298
	gfn_t gfn = gpa >> PAGE_SHIFT;
3299
	unsigned long mmu_seq;
3300 3301
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3302 3303 3304 3305

	ASSERT(vcpu);
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));

3306 3307 3308
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return handle_mmio_page_fault(vcpu, gpa, error_code, true);

3309 3310 3311 3312
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3313 3314 3315 3316 3317 3318
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
3319

3320 3321 3322
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3323
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3324
	smp_rmb();
3325

3326
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3327 3328
		return 0;

3329 3330 3331
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3332
	spin_lock(&vcpu->kvm->mmu_lock);
3333
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3334
		goto out_unlock;
3335
	kvm_mmu_free_some_pages(vcpu);
3336 3337
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3338
	r = __direct_map(vcpu, gpa, write, map_writable,
3339
			 level, gfn, pfn, prefault);
3340 3341 3342
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3343 3344 3345 3346 3347

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3348 3349
}

A
Avi Kivity 已提交
3350 3351
static void nonpaging_free(struct kvm_vcpu *vcpu)
{
3352
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3353 3354
}

3355 3356
static int nonpaging_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3357 3358 3359 3360 3361
{
	context->new_cr3 = nonpaging_new_cr3;
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
	context->free = nonpaging_free;
3362
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3363
	context->invlpg = nonpaging_invlpg;
3364
	context->update_pte = nonpaging_update_pte;
3365
	context->root_level = 0;
A
Avi Kivity 已提交
3366
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3367
	context->root_hpa = INVALID_PAGE;
3368
	context->direct_map = true;
3369
	context->nx = false;
A
Avi Kivity 已提交
3370 3371 3372
	return 0;
}

3373
void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3374
{
A
Avi Kivity 已提交
3375
	++vcpu->stat.tlb_flush;
3376
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
A
Avi Kivity 已提交
3377 3378 3379 3380
}

static void paging_new_cr3(struct kvm_vcpu *vcpu)
{
3381
	pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3382
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3383 3384
}

3385 3386
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3387
	return kvm_read_cr3(vcpu);
3388 3389
}

3390 3391
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3392
{
3393
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3394 3395 3396 3397 3398 3399 3400
}

static void paging_free(struct kvm_vcpu *vcpu)
{
	nonpaging_free(vcpu);
}

3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
{
	unsigned mask;

	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);

	mask = (unsigned)~ACC_WRITE_MASK;
	/* Allow write access to dirty gptes */
	mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
	*access &= mask;
}

3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
			   int *nr_present)
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
		mark_mmio_spte(sptep, gfn, access);
		return true;
	}

	return false;
}

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
{
	unsigned access;

	access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
	access &= ~(gpte >> PT64_NX_SHIFT);

	return access;
}

A
Avi Kivity 已提交
3440 3441 3442 3443 3444 3445 3446 3447 3448
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

A
Avi Kivity 已提交
3449 3450 3451 3452 3453 3454 3455 3456
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3457
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3458
				  struct kvm_mmu *context)
3459 3460 3461 3462
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	u64 exb_bit_rsvd = 0;

3463
	if (!context->nx)
3464
		exb_bit_rsvd = rsvd_bits(63, 63);
3465
	switch (context->root_level) {
3466 3467 3468 3469
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
		context->rsvd_bits_mask[0][1] = 0;
		context->rsvd_bits_mask[0][0] = 0;
3470 3471 3472 3473 3474 3475 3476
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

		if (!is_pse(vcpu)) {
			context->rsvd_bits_mask[1][1] = 0;
			break;
		}

3477 3478 3479 3480 3481 3482 3483 3484
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
		else
			/* 32 bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
		break;
	case PT32E_ROOT_LEVEL:
3485 3486 3487
		context->rsvd_bits_mask[0][2] =
			rsvd_bits(maxphyaddr, 63) |
			rsvd_bits(7, 8) | rsvd_bits(1, 2);	/* PDPTE */
3488
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3489
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3490 3491 3492 3493 3494
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3495
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3496 3497 3498 3499 3500 3501 3502
		break;
	case PT64_ROOT_LEVEL:
		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3503
			rsvd_bits(maxphyaddr, 51);
3504 3505 3506
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3507 3508 3509
		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 29);
3510
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3511 3512
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3513
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3514 3515 3516 3517
		break;
	}
}

3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	unsigned bit, byte, pfec;
	u8 map;
	bool fault, x, w, u, wf, uf, ff, smep;

	smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

			/* Not really needed: !nx will cause pte.nx to fault */
			x |= !mmu->nx;
			/* Allow supervisor writes if !cr0.wp */
			w |= !is_write_protection(vcpu) && !uf;
			/* Disallow supervisor fetches of user code if cr4.smep */
			x &= !(smep && u && !uf);

			fault = (ff && !x) || (uf && !u) || (wf && !w);
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3568 3569 3570
static int paging64_init_context_common(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context,
					int level)
A
Avi Kivity 已提交
3571
{
3572
	context->nx = is_nx(vcpu);
3573
	context->root_level = level;
3574

3575
	reset_rsvds_bits_mask(vcpu, context);
3576
	update_permission_bitmask(vcpu, context);
A
Avi Kivity 已提交
3577
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3578 3579 3580 3581 3582

	ASSERT(is_pae(vcpu));
	context->new_cr3 = paging_new_cr3;
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3583
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3584
	context->invlpg = paging64_invlpg;
3585
	context->update_pte = paging64_update_pte;
A
Avi Kivity 已提交
3586
	context->free = paging_free;
3587
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3588
	context->root_hpa = INVALID_PAGE;
3589
	context->direct_map = false;
A
Avi Kivity 已提交
3590 3591 3592
	return 0;
}

3593 3594
static int paging64_init_context(struct kvm_vcpu *vcpu,
				 struct kvm_mmu *context)
3595
{
3596
	return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3597 3598
}

3599 3600
static int paging32_init_context(struct kvm_vcpu *vcpu,
				 struct kvm_mmu *context)
A
Avi Kivity 已提交
3601
{
3602
	context->nx = false;
3603
	context->root_level = PT32_ROOT_LEVEL;
3604

3605
	reset_rsvds_bits_mask(vcpu, context);
3606
	update_permission_bitmask(vcpu, context);
A
Avi Kivity 已提交
3607
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3608 3609 3610 3611 3612

	context->new_cr3 = paging_new_cr3;
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
	context->free = paging_free;
3613
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3614
	context->invlpg = paging32_invlpg;
3615
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3616
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3617
	context->root_hpa = INVALID_PAGE;
3618
	context->direct_map = false;
A
Avi Kivity 已提交
3619 3620 3621
	return 0;
}

3622 3623
static int paging32E_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3624
{
3625
	return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3626 3627
}

3628 3629
static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
{
3630
	struct kvm_mmu *context = vcpu->arch.walk_mmu;
3631

3632
	context->base_role.word = 0;
3633 3634 3635
	context->new_cr3 = nonpaging_new_cr3;
	context->page_fault = tdp_page_fault;
	context->free = nonpaging_free;
3636
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3637
	context->invlpg = nonpaging_invlpg;
3638
	context->update_pte = nonpaging_update_pte;
3639
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3640
	context->root_hpa = INVALID_PAGE;
3641
	context->direct_map = true;
3642
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3643
	context->get_cr3 = get_cr3;
3644
	context->get_pdptr = kvm_pdptr_read;
3645
	context->inject_page_fault = kvm_inject_page_fault;
3646 3647

	if (!is_paging(vcpu)) {
3648
		context->nx = false;
3649 3650 3651
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3652
		context->nx = is_nx(vcpu);
3653
		context->root_level = PT64_ROOT_LEVEL;
3654 3655
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3656
	} else if (is_pae(vcpu)) {
3657
		context->nx = is_nx(vcpu);
3658
		context->root_level = PT32E_ROOT_LEVEL;
3659 3660
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3661
	} else {
3662
		context->nx = false;
3663
		context->root_level = PT32_ROOT_LEVEL;
3664 3665
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
3666 3667
	}

3668
	update_permission_bitmask(vcpu, context);
A
Avi Kivity 已提交
3669
	update_last_pte_bitmap(vcpu, context);
3670

3671 3672 3673
	return 0;
}

3674
int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
A
Avi Kivity 已提交
3675
{
3676
	int r;
3677
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
A
Avi Kivity 已提交
3678
	ASSERT(vcpu);
3679
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3680 3681

	if (!is_paging(vcpu))
3682
		r = nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
3683
	else if (is_long_mode(vcpu))
3684
		r = paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
3685
	else if (is_pae(vcpu))
3686
		r = paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
3687
	else
3688
		r = paging32_init_context(vcpu, context);
3689

3690
	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3691
	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3692 3693
	vcpu->arch.mmu.base_role.smep_andnot_wp
		= smep && !is_write_protection(vcpu);
3694 3695 3696 3697 3698 3699 3700

	return r;
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
{
3701
	int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3702

3703 3704
	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
	vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3705
	vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3706
	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3707 3708

	return r;
A
Avi Kivity 已提交
3709 3710
}

3711 3712 3713 3714 3715
static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
3716
	g_context->get_pdptr         = kvm_pdptr_read;
3717 3718 3719 3720 3721 3722 3723 3724 3725
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
	 * translation of l2_gpa to l1_gpa addresses is done using the
	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
	 * functions between mmu and nested_mmu are swapped.
	 */
	if (!is_paging(vcpu)) {
3726
		g_context->nx = false;
3727 3728 3729
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
3730
		g_context->nx = is_nx(vcpu);
3731
		g_context->root_level = PT64_ROOT_LEVEL;
3732
		reset_rsvds_bits_mask(vcpu, g_context);
3733 3734
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
3735
		g_context->nx = is_nx(vcpu);
3736
		g_context->root_level = PT32E_ROOT_LEVEL;
3737
		reset_rsvds_bits_mask(vcpu, g_context);
3738 3739
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
3740
		g_context->nx = false;
3741
		g_context->root_level = PT32_ROOT_LEVEL;
3742
		reset_rsvds_bits_mask(vcpu, g_context);
3743 3744 3745
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

3746
	update_permission_bitmask(vcpu, g_context);
A
Avi Kivity 已提交
3747
	update_last_pte_bitmap(vcpu, g_context);
3748

3749 3750 3751
	return 0;
}

3752 3753
static int init_kvm_mmu(struct kvm_vcpu *vcpu)
{
3754 3755 3756
	if (mmu_is_nested(vcpu))
		return init_kvm_nested_mmu(vcpu);
	else if (tdp_enabled)
3757 3758 3759 3760 3761
		return init_kvm_tdp_mmu(vcpu);
	else
		return init_kvm_softmmu(vcpu);
}

A
Avi Kivity 已提交
3762 3763 3764
static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);
3765 3766
	if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
		/* mmu.free() should set root_hpa = INVALID_PAGE */
3767
		vcpu->arch.mmu.free(vcpu);
A
Avi Kivity 已提交
3768 3769 3770
}

int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3771 3772
{
	destroy_kvm_mmu(vcpu);
3773
	return init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
3774
}
3775
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
3776 3777

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3778
{
3779 3780
	int r;

3781
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
3782 3783
	if (r)
		goto out;
3784
	r = mmu_alloc_roots(vcpu);
3785
	spin_lock(&vcpu->kvm->mmu_lock);
3786
	mmu_sync_roots(vcpu);
3787
	spin_unlock(&vcpu->kvm->mmu_lock);
3788 3789
	if (r)
		goto out;
3790
	/* set_cr3() should ensure TLB has been flushed */
3791
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3792 3793
out:
	return r;
A
Avi Kivity 已提交
3794
}
A
Avi Kivity 已提交
3795 3796 3797 3798 3799 3800
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
}
3801
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
3802

3803
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3804 3805
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
3806
{
3807
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3808 3809
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
3810
        }
3811

A
Avi Kivity 已提交
3812
	++vcpu->kvm->stat.mmu_pte_updated;
3813
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3814 3815
}

3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
	old ^= PT64_NX_MASK;
	new ^= PT64_NX_MASK;
	return (old & ~new & PT64_PERM_MASK) != 0;
}

3829 3830
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
				    bool remote_flush, bool local_flush)
3831
{
3832 3833 3834 3835
	if (zap_page)
		return;

	if (remote_flush)
3836
		kvm_flush_remote_tlbs(vcpu->kvm);
3837
	else if (local_flush)
3838 3839 3840
		kvm_mmu_flush_tlb(vcpu);
}

3841 3842
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
3843
{
3844 3845
	u64 gentry;
	int r;
3846 3847 3848

	/*
	 * Assume that the pte write on a page table of the same type
3849 3850
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
3851
	 */
3852
	if (is_pae(vcpu) && *bytes == 4) {
3853
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3854 3855 3856
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3857 3858
		if (r)
			gentry = 0;
3859 3860 3861
		new = (const u8 *)&gentry;
	}

3862
	switch (*bytes) {
3863 3864 3865 3866 3867 3868 3869 3870 3871
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
3872 3873
	}

3874 3875 3876 3877 3878 3879 3880
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
3881
static bool detect_write_flooding(struct kvm_mmu_page *sp)
3882
{
3883 3884 3885 3886
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
3887
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3888
		return false;
3889

3890
	return ++sp->write_flooding_count >= 3;
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
3907 3908 3909 3910 3911 3912 3913 3914

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
		       const u8 *new, int bytes)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	union kvm_mmu_page_role mask = { .word = 0 };
	struct kvm_mmu_page *sp;
	struct hlist_node *node;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
3962
	bool remote_flush, local_flush, zap_page;
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

	zap_page = remote_flush = local_flush = false;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
3986
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3987

3988
	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3989
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3990
		if (detect_write_misaligned(sp, gpa, bytes) ||
3991
		      detect_write_flooding(sp)) {
3992
			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3993
						     &invalid_list);
A
Avi Kivity 已提交
3994
			++vcpu->kvm->stat.mmu_flooded;
3995 3996
			continue;
		}
3997 3998 3999 4000 4001

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4002
		local_flush = true;
4003
		while (npte--) {
4004
			entry = *spte;
4005
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4006 4007
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4008
			      & mask.word) && rmap_can_add(vcpu))
4009
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4010 4011
			if (!remote_flush && need_remote_flush(entry, *spte))
				remote_flush = true;
4012
			++spte;
4013 4014
		}
	}
4015
	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4016
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4017
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4018
	spin_unlock(&vcpu->kvm->mmu_lock);
4019 4020
}

4021 4022
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4023 4024
	gpa_t gpa;
	int r;
4025

4026
	if (vcpu->arch.mmu.direct_map)
4027 4028
		return 0;

4029
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4030 4031

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4032

4033
	return r;
4034
}
4035
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4036

4037
void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4038
{
4039
	LIST_HEAD(invalid_list);
4040

4041
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
4042
	       !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4043
		struct kvm_mmu_page *sp;
A
Avi Kivity 已提交
4044

4045
		sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4046
				  struct kvm_mmu_page, link);
4047
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
4048
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4049
	}
4050
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4051 4052
}

4053 4054 4055 4056 4057 4058 4059 4060
static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
{
	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4061 4062
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4063
{
4064
	int r, emulation_type = EMULTYPE_RETRY;
4065 4066
	enum emulation_result er;

G
Gleb Natapov 已提交
4067
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4068 4069 4070 4071 4072 4073 4074 4075
	if (r < 0)
		goto out;

	if (!r) {
		r = 1;
		goto out;
	}

4076 4077 4078 4079
	if (is_mmio_page_fault(vcpu, cr2))
		emulation_type = 0;

	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4080 4081 4082 4083 4084 4085

	switch (er) {
	case EMULATE_DONE:
		return 1;
	case EMULATE_DO_MMIO:
		++vcpu->stat.mmio_exits;
4086
		/* fall through */
4087
	case EMULATE_FAIL:
4088
		return 0;
4089 4090 4091 4092 4093 4094 4095 4096
	default:
		BUG();
	}
out:
	return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4097 4098 4099 4100 4101 4102 4103 4104
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
	kvm_mmu_flush_tlb(vcpu);
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4105 4106 4107 4108 4109 4110
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4111 4112 4113 4114 4115 4116
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4117 4118
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4119
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4120 4121
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4122 4123 4124 4125
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4126
	struct page *page;
A
Avi Kivity 已提交
4127 4128 4129 4130
	int i;

	ASSERT(vcpu);

4131 4132 4133 4134 4135 4136 4137
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4138 4139
		return -ENOMEM;

4140
	vcpu->arch.mmu.pae_root = page_address(page);
4141
	for (i = 0; i < 4; ++i)
4142
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4143

A
Avi Kivity 已提交
4144 4145 4146
	return 0;
}

4147
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4148 4149
{
	ASSERT(vcpu);
4150 4151 4152 4153 4154

	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4155

4156 4157
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4158

4159 4160 4161
int kvm_mmu_setup(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);
4162
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4163

4164
	return init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4165 4166
}

4167
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
A
Avi Kivity 已提交
4168
{
4169 4170 4171
	struct kvm_memory_slot *memslot;
	gfn_t last_gfn;
	int i;
A
Avi Kivity 已提交
4172

4173 4174
	memslot = id_to_memslot(kvm->memslots, slot);
	last_gfn = memslot->base_gfn + memslot->npages - 1;
A
Avi Kivity 已提交
4175

4176 4177
	spin_lock(&kvm->mmu_lock);

4178 4179 4180 4181
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		unsigned long *rmapp;
		unsigned long last_index, index;
A
Avi Kivity 已提交
4182

4183 4184
		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4185

4186 4187 4188
		for (index = 0; index <= last_index; ++index, ++rmapp) {
			if (*rmapp)
				__rmap_write_protect(kvm, rmapp, false);
4189
		}
A
Avi Kivity 已提交
4190
	}
4191

4192
	kvm_flush_remote_tlbs(kvm);
4193
	spin_unlock(&kvm->mmu_lock);
A
Avi Kivity 已提交
4194
}
4195

4196
void kvm_mmu_zap_all(struct kvm *kvm)
D
Dor Laor 已提交
4197
{
4198
	struct kvm_mmu_page *sp, *node;
4199
	LIST_HEAD(invalid_list);
D
Dor Laor 已提交
4200

4201
	spin_lock(&kvm->mmu_lock);
4202
restart:
4203
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
4204
		if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4205 4206
			goto restart;

4207
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
4208
	spin_unlock(&kvm->mmu_lock);
D
Dor Laor 已提交
4209 4210
}

4211 4212
static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
						struct list_head *invalid_list)
4213 4214 4215
{
	struct kvm_mmu_page *page;

4216 4217 4218
	if (list_empty(&kvm->arch.active_mmu_pages))
		return;

4219 4220
	page = container_of(kvm->arch.active_mmu_pages.prev,
			    struct kvm_mmu_page, link);
4221
	kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
4222 4223
}

4224
static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4225 4226
{
	struct kvm *kvm;
4227
	int nr_to_scan = sc->nr_to_scan;
4228 4229 4230

	if (nr_to_scan == 0)
		goto out;
4231

4232
	raw_spin_lock(&kvm_lock);
4233 4234

	list_for_each_entry(kvm, &vm_list, vm_list) {
4235
		int idx;
4236
		LIST_HEAD(invalid_list);
4237

4238 4239 4240 4241 4242 4243 4244 4245
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4246 4247 4248 4249 4250 4251
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4252
		if (!kvm->arch.n_used_mmu_pages)
4253 4254
			continue;

4255
		idx = srcu_read_lock(&kvm->srcu);
4256 4257
		spin_lock(&kvm->mmu_lock);

4258
		kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
4259
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4260

4261
		spin_unlock(&kvm->mmu_lock);
4262
		srcu_read_unlock(&kvm->srcu, idx);
4263 4264 4265

		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4266 4267
	}

4268
	raw_spin_unlock(&kvm_lock);
4269

4270 4271
out:
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4272 4273 4274 4275 4276 4277 4278
}

static struct shrinker mmu_shrinker = {
	.shrink = mmu_shrink,
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4279
static void mmu_destroy_caches(void)
4280
{
4281 4282
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4283 4284
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4285 4286 4287 4288
}

int kvm_mmu_module_init(void)
{
4289 4290
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4291
					    0, 0, NULL);
4292
	if (!pte_list_desc_cache)
4293 4294
		goto nomem;

4295 4296
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4297
						  0, 0, NULL);
4298 4299 4300
	if (!mmu_page_header_cache)
		goto nomem;

4301 4302 4303
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
		goto nomem;

4304 4305
	register_shrinker(&mmu_shrinker);

4306 4307 4308
	return 0;

nomem:
4309
	mmu_destroy_caches();
4310 4311 4312
	return -ENOMEM;
}

4313 4314 4315 4316 4317 4318 4319
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4320
	struct kvm_memslots *slots;
4321
	struct kvm_memory_slot *memslot;
4322

4323 4324
	slots = kvm_memslots(kvm);

4325 4326
	kvm_for_each_memslot(memslot, slots)
		nr_pages += memslot->npages;
4327 4328 4329 4330 4331 4332 4333 4334

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);

	return nr_mmu_pages;
}

4335 4336 4337
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
{
	struct kvm_shadow_walk_iterator iterator;
4338
	u64 spte;
4339 4340
	int nr_sptes = 0;

4341 4342 4343
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		sptes[iterator.level-1] = spte;
4344
		nr_sptes++;
4345
		if (!is_shadow_present_pte(spte))
4346 4347
			break;
	}
4348
	walk_shadow_page_lockless_end(vcpu);
4349 4350 4351 4352 4353

	return nr_sptes;
}
EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);

4354 4355 4356 4357 4358 4359 4360
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);

	destroy_kvm_mmu(vcpu);
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
4361 4362 4363 4364 4365 4366 4367
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
4368 4369
	mmu_audit_disable();
}