core.c 188.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94
{
95 96
	unsigned long delta;
	ktime_t soft, hard, now;
97

98 99 100 101 102 103
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
104

105 106 107 108 109 110 111 112
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

113 114
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115

116
static void update_rq_clock_task(struct rq *rq, s64 delta);
117

118
void update_rq_clock(struct rq *rq)
119
{
120
	s64 delta;
121

122
	if (rq->skip_clock_update > 0)
123
		return;
124

125 126 127
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
128 129
}

I
Ingo Molnar 已提交
130 131 132
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
133 134 135 136

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
137
const_debug unsigned int sysctl_sched_features =
138
#include "features.h"
P
Peter Zijlstra 已提交
139 140 141 142 143 144 145 146
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

147
static const char * const sched_feat_names[] = {
148
#include "features.h"
P
Peter Zijlstra 已提交
149 150 151 152
};

#undef SCHED_FEAT

L
Li Zefan 已提交
153
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
154 155 156
{
	int i;

157
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
158 159 160
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
161
	}
L
Li Zefan 已提交
162
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
163

L
Li Zefan 已提交
164
	return 0;
P
Peter Zijlstra 已提交
165 166
}

167 168
#ifdef HAVE_JUMP_LABEL

169 170
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
171 172 173 174

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

175
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
176 177 178 179 180 181 182
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
183 184
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
185 186 187 188
}

static void sched_feat_enable(int i)
{
189 190
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
191 192 193 194 195 196
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

197
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
198 199
{
	int i;
200
	int neg = 0;
P
Peter Zijlstra 已提交
201

H
Hillf Danton 已提交
202
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
203 204 205 206
		neg = 1;
		cmp += 3;
	}

207
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
208
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
209
			if (neg) {
P
Peter Zijlstra 已提交
210
				sysctl_sched_features &= ~(1UL << i);
211 212
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
213
				sysctl_sched_features |= (1UL << i);
214 215
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
216 217 218 219
			break;
		}
	}

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
241
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
242 243
		return -EINVAL;

244
	*ppos += cnt;
P
Peter Zijlstra 已提交
245 246 247 248

	return cnt;
}

L
Li Zefan 已提交
249 250 251 252 253
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

254
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
255 256 257 258 259
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
260 261 262 263 264 265 266 267 268 269
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
270
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
271

272 273 274 275 276 277
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

278 279 280 281 282 283 284 285
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
286
/*
P
Peter Zijlstra 已提交
287
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
288 289
 * default: 1s
 */
P
Peter Zijlstra 已提交
290
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
291

292
__read_mostly int scheduler_running;
293

P
Peter Zijlstra 已提交
294 295 296 297 298
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
299

300
/*
301
 * __task_rq_lock - lock the rq @p resides on.
302
 */
303
static inline struct rq *__task_rq_lock(struct task_struct *p)
304 305
	__acquires(rq->lock)
{
306 307
	struct rq *rq;

308 309
	lockdep_assert_held(&p->pi_lock);

310
	for (;;) {
311
		rq = task_rq(p);
312
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
313
		if (likely(rq == task_rq(p)))
314
			return rq;
315
		raw_spin_unlock(&rq->lock);
316 317 318
	}
}

L
Linus Torvalds 已提交
319
/*
320
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
321
 */
322
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
324 325
	__acquires(rq->lock)
{
326
	struct rq *rq;
L
Linus Torvalds 已提交
327

328
	for (;;) {
329
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
330
		rq = task_rq(p);
331
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
332
		if (likely(rq == task_rq(p)))
333
			return rq;
334 335
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
336 337 338
	}
}

A
Alexey Dobriyan 已提交
339
static void __task_rq_unlock(struct rq *rq)
340 341
	__releases(rq->lock)
{
342
	raw_spin_unlock(&rq->lock);
343 344
}

345 346
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
347
	__releases(rq->lock)
348
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
349
{
350 351
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
352 353 354
}

/*
355
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
356
 */
A
Alexey Dobriyan 已提交
357
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
358 359
	__acquires(rq->lock)
{
360
	struct rq *rq;
L
Linus Torvalds 已提交
361 362 363

	local_irq_disable();
	rq = this_rq();
364
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
365 366 367 368

	return rq;
}

P
Peter Zijlstra 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

390
	raw_spin_lock(&rq->lock);
391
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
392
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
394 395 396 397

	return HRTIMER_NORESTART;
}

398
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
399 400 401 402 403 404 405 406 407

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

408 409 410 411
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
412
{
413
	struct rq *rq = arg;
414

415
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
416
	__hrtick_restart(rq);
417
	rq->hrtick_csd_pending = 0;
418
	raw_spin_unlock(&rq->lock);
419 420
}

421 422 423 424 425
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
426
void hrtick_start(struct rq *rq, u64 delay)
427
{
428 429
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430

431
	hrtimer_set_expires(timer, time);
432 433

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
434
		__hrtick_restart(rq);
435
	} else if (!rq->hrtick_csd_pending) {
436
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
437 438
		rq->hrtick_csd_pending = 1;
	}
439 440 441 442 443 444 445 446 447 448 449 450 451 452
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
453
		hrtick_clear(cpu_rq(cpu));
454 455 456 457 458 459
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

460
static __init void init_hrtick(void)
461 462 463
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
464 465 466 467 468 469
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
470
void hrtick_start(struct rq *rq, u64 delay)
471
{
472
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
473
			HRTIMER_MODE_REL_PINNED, 0);
474
}
475

A
Andrew Morton 已提交
476
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
477 478
{
}
479
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
480

481
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
482
{
483 484
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
485

486 487 488 489
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
490

491 492
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
493
}
A
Andrew Morton 已提交
494
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
495 496 497 498 499 500 501 502
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

503 504 505
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
506
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
507

I
Ingo Molnar 已提交
508 509 510 511 512 513 514
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
515
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
516 517 518
{
	int cpu;

519
	lockdep_assert_held(&task_rq(p)->lock);
I
Ingo Molnar 已提交
520

521
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
522 523
		return;

524
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
525 526

	cpu = task_cpu(p);
527 528
	if (cpu == smp_processor_id()) {
		set_preempt_need_resched();
I
Ingo Molnar 已提交
529
		return;
530
	}
I
Ingo Molnar 已提交
531 532 533 534 535 536 537

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

538
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
539 540 541 542
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

543
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
544 545
		return;
	resched_task(cpu_curr(cpu));
546
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
547
}
548

549
#ifdef CONFIG_SMP
550
#ifdef CONFIG_NO_HZ_COMMON
551 552 553 554 555 556 557 558
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
559
int get_nohz_timer_target(int pinned)
560 561 562 563 564
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

565 566 567
	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
		return cpu;

568
	rcu_read_lock();
569
	for_each_domain(cpu, sd) {
570 571 572 573 574 575
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
576
	}
577 578
unlock:
	rcu_read_unlock();
579 580
	return cpu;
}
581 582 583 584 585 586 587 588 589 590
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
591
static void wake_up_idle_cpu(int cpu)
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
607 608

	/*
609 610 611
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
612
	 */
613
	set_tsk_need_resched(rq->idle);
614

615 616 617 618
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
619 620
}

621
static bool wake_up_full_nohz_cpu(int cpu)
622
{
623
	if (tick_nohz_full_cpu(cpu)) {
624 625 626 627 628 629 630 631 632 633 634
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
			smp_send_reschedule(cpu);
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
635
	if (!wake_up_full_nohz_cpu(cpu))
636 637 638
		wake_up_idle_cpu(cpu);
}

639
static inline bool got_nohz_idle_kick(void)
640
{
641
	int cpu = smp_processor_id();
642 643 644 645 646 647 648 649 650 651 652 653 654

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
655 656
}

657
#else /* CONFIG_NO_HZ_COMMON */
658

659
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
660
{
661
	return false;
P
Peter Zijlstra 已提交
662 663
}

664
#endif /* CONFIG_NO_HZ_COMMON */
665

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
       struct rq *rq;

       rq = this_rq();

       /* Make sure rq->nr_running update is visible after the IPI */
       smp_rmb();

       /* More than one running task need preemption */
       if (rq->nr_running > 1)
               return false;

       return true;
}
#endif /* CONFIG_NO_HZ_FULL */
683

684
void sched_avg_update(struct rq *rq)
685
{
686 687
	s64 period = sched_avg_period();

688
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
689 690 691 692 693 694
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
695 696 697
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
698 699
}

700
#endif /* CONFIG_SMP */
701

702 703
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704
/*
705 706 707 708
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
709
 */
710
int walk_tg_tree_from(struct task_group *from,
711
			     tg_visitor down, tg_visitor up, void *data)
712 713
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
714
	int ret;
715

716 717
	parent = from;

718
down:
P
Peter Zijlstra 已提交
719 720
	ret = (*down)(parent, data);
	if (ret)
721
		goto out;
722 723 724 725 726 727 728
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
729
	ret = (*up)(parent, data);
730 731
	if (ret || parent == from)
		goto out;
732 733 734 735 736

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
737
out:
P
Peter Zijlstra 已提交
738
	return ret;
739 740
}

741
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
742
{
743
	return 0;
P
Peter Zijlstra 已提交
744
}
745 746
#endif

747 748
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
749 750 751
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
752 753 754 755
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
756
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
757
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
758 759
		return;
	}
760

761
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
762
	load->inv_weight = prio_to_wmult[prio];
763 764
}

765
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766
{
767
	update_rq_clock(rq);
768
	sched_info_queued(rq, p);
769
	p->sched_class->enqueue_task(rq, p, flags);
770 771
}

772
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
773
{
774
	update_rq_clock(rq);
775
	sched_info_dequeued(rq, p);
776
	p->sched_class->dequeue_task(rq, p, flags);
777 778
}

779
void activate_task(struct rq *rq, struct task_struct *p, int flags)
780 781 782 783
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

784
	enqueue_task(rq, p, flags);
785 786
}

787
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788 789 790 791
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

792
	dequeue_task(rq, p, flags);
793 794
}

795
static void update_rq_clock_task(struct rq *rq, s64 delta)
796
{
797 798 799 800 801 802 803 804
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
805
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
827 828
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829
	if (static_key_false((&paravirt_steal_rq_enabled))) {
830 831 832 833 834 835 836 837 838 839 840
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

841 842
	rq->clock_task += delta;

843 844 845 846
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
847 848
}

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

879
/*
I
Ingo Molnar 已提交
880
 * __normal_prio - return the priority that is based on the static prio
881 882 883
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
884
	return p->static_prio;
885 886
}

887 888 889 890 891 892 893
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
894
static inline int normal_prio(struct task_struct *p)
895 896 897
{
	int prio;

898 899 900
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
901 902 903 904 905 906 907 908 909 910 911 912 913
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
914
static int effective_prio(struct task_struct *p)
915 916 917 918 919 920 921 922 923 924 925 926
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
927 928 929
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
930 931
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
932
 */
933
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
934 935 936 937
{
	return cpu_curr(task_cpu(p)) == p;
}

938 939
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
940
				       int oldprio)
941 942 943
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
944 945
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
946
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
947
		p->sched_class->prio_changed(rq, p, oldprio);
948 949
}

950
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
971
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
972 973 974
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
975
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
976
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
977
{
978 979 980 981 982
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
983
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
984
			!(task_preempt_count(p) & PREEMPT_ACTIVE));
985 986

#ifdef CONFIG_LOCKDEP
987 988 989 990 991
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
992
	 * see task_group().
993 994 995 996
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
997 998 999
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1000 1001
#endif

1002
	trace_sched_migrate_task(p, new_cpu);
1003

1004
	if (task_cpu(p) != new_cpu) {
1005 1006
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1007
		p->se.nr_migrations++;
1008
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1009
	}
I
Ingo Molnar 已提交
1010 1011

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1012 1013
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
	if (p->on_rq) {
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1050 1051
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1072 1073
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1096 1097 1098 1099
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1100 1101 1102 1103 1104 1105 1106 1107 1108
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1109
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1110 1111 1112 1113 1114 1115
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

1116
struct migration_arg {
1117
	struct task_struct *task;
L
Linus Torvalds 已提交
1118
	int dest_cpu;
1119
};
L
Linus Torvalds 已提交
1120

1121 1122
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1123 1124 1125
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1126 1127 1128 1129 1130 1131 1132
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1133 1134 1135 1136 1137 1138
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1139
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1140 1141
{
	unsigned long flags;
I
Ingo Molnar 已提交
1142
	int running, on_rq;
R
Roland McGrath 已提交
1143
	unsigned long ncsw;
1144
	struct rq *rq;
L
Linus Torvalds 已提交
1145

1146 1147 1148 1149 1150 1151 1152 1153
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1166 1167 1168
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1169
			cpu_relax();
R
Roland McGrath 已提交
1170
		}
1171

1172 1173 1174 1175 1176 1177
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1178
		trace_sched_wait_task(p);
1179
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1180
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1181
		ncsw = 0;
1182
		if (!match_state || p->state == match_state)
1183
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1184
		task_rq_unlock(rq, p, &flags);
1185

R
Roland McGrath 已提交
1186 1187 1188 1189 1190 1191
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1202

1203 1204 1205 1206 1207
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1208
		 * So if it was still runnable (but just not actively
1209 1210 1211 1212
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1213 1214 1215 1216
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1217 1218
			continue;
		}
1219

1220 1221 1222 1223 1224 1225 1226
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1227 1228

	return ncsw;
L
Linus Torvalds 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1238
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1239 1240 1241 1242 1243
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1244
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1254
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1255
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1256

1257
#ifdef CONFIG_SMP
1258
/*
1259
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1260
 */
1261 1262
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1263 1264
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1265 1266
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1267

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1285
	}
1286

1287 1288
	for (;;) {
		/* Any allowed, online CPU? */
1289
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1290 1291 1292 1293 1294 1295
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1296

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1326 1327 1328 1329 1330
	}

	return dest_cpu;
}

1331
/*
1332
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1333
 */
1334
static inline
1335
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1336
{
1337
	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1349
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1350
		     !cpu_online(cpu)))
1351
		cpu = select_fallback_rq(task_cpu(p), p);
1352 1353

	return cpu;
1354
}
1355 1356 1357 1358 1359 1360

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1361 1362
#endif

P
Peter Zijlstra 已提交
1363
static void
1364
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1365
{
P
Peter Zijlstra 已提交
1366
#ifdef CONFIG_SCHEDSTATS
1367 1368
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1379
		rcu_read_lock();
P
Peter Zijlstra 已提交
1380 1381 1382 1383 1384 1385
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1386
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1387
	}
1388 1389 1390 1391

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1392 1393 1394
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1395
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1396 1397

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1398
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1399 1400 1401 1402 1403 1404

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1405
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1406
	p->on_rq = 1;
1407 1408 1409 1410

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1411 1412
}

1413 1414 1415
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1416
static void
1417
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1418 1419
{
	check_preempt_curr(rq, p, wake_flags);
1420
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1421 1422 1423 1424 1425 1426

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1427
	if (rq->idle_stamp) {
1428
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1429
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1430

1431 1432 1433
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1434
			rq->avg_idle = max;
1435

T
Tejun Heo 已提交
1436 1437 1438 1439 1440
		rq->idle_stamp = 0;
	}
#endif
}

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
1466 1467
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1468 1469 1470 1471 1472 1473 1474 1475
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1476
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1477
static void sched_ttwu_pending(void)
1478 1479
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1480 1481
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1482 1483 1484

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1485 1486 1487
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1488 1489 1490 1491 1492 1493 1494 1495
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1496 1497 1498 1499 1500
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1501
	preempt_fold_need_resched();
1502

1503 1504 1505
	if (llist_empty(&this_rq()->wake_list)
			&& !tick_nohz_full_cpu(smp_processor_id())
			&& !got_nohz_idle_kick())
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
1522
	tick_nohz_full_check();
P
Peter Zijlstra 已提交
1523
	sched_ttwu_pending();
1524 1525 1526 1527

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1528
	if (unlikely(got_nohz_idle_kick())) {
1529
		this_rq()->idle_balance = 1;
1530
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1531
	}
1532
	irq_exit();
1533 1534 1535 1536
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1537
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1538 1539
		smp_send_reschedule(cpu);
}
1540

1541
bool cpus_share_cache(int this_cpu, int that_cpu)
1542 1543 1544
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1545
#endif /* CONFIG_SMP */
1546

1547 1548 1549 1550
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1551
#if defined(CONFIG_SMP)
1552
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1553
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1554 1555 1556 1557 1558
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1559 1560 1561
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1562 1563 1564
}

/**
L
Linus Torvalds 已提交
1565
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1566
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1567
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1568
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1569 1570 1571 1572 1573 1574 1575
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1576
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1577
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1578
 */
1579 1580
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1581 1582
{
	unsigned long flags;
1583
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1584

1585 1586 1587 1588 1589 1590 1591
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1592
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1593
	if (!(p->state & state))
L
Linus Torvalds 已提交
1594 1595
		goto out;

1596
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1597 1598
	cpu = task_cpu(p);

1599 1600
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1601 1602

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1603
	/*
1604 1605
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1606
	 */
1607
	while (p->on_cpu)
1608
		cpu_relax();
1609
	/*
1610
	 * Pairs with the smp_wmb() in finish_lock_switch().
1611
	 */
1612
	smp_rmb();
L
Linus Torvalds 已提交
1613

1614
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1615
	p->state = TASK_WAKING;
1616

1617
	if (p->sched_class->task_waking)
1618
		p->sched_class->task_waking(p);
1619

1620
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1621 1622
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1623
		set_task_cpu(p, cpu);
1624
	}
L
Linus Torvalds 已提交
1625 1626
#endif /* CONFIG_SMP */

1627 1628
	ttwu_queue(p, cpu);
stat:
1629
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1630
out:
1631
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1632 1633 1634 1635

	return success;
}

T
Tejun Heo 已提交
1636 1637 1638 1639
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1640
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1641
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1642
 * the current task.
T
Tejun Heo 已提交
1643 1644 1645 1646 1647
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1648 1649 1650 1651
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1652 1653
	lockdep_assert_held(&rq->lock);

1654 1655 1656 1657 1658 1659
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1660
	if (!(p->state & TASK_NORMAL))
1661
		goto out;
T
Tejun Heo 已提交
1662

P
Peter Zijlstra 已提交
1663
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1664 1665
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1666
	ttwu_do_wakeup(rq, p, 0);
1667
	ttwu_stat(p, smp_processor_id(), 0);
1668 1669
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1670 1671
}

1672 1673 1674 1675 1676
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1677 1678 1679
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1680 1681 1682 1683
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1684
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1685
{
1686 1687
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1688 1689 1690
}
EXPORT_SYMBOL(wake_up_process);

1691
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1692 1693 1694 1695 1696 1697 1698
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1699 1700 1701
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
1702
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1703
{
P
Peter Zijlstra 已提交
1704 1705 1706
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1707 1708
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1709
	p->se.prev_sum_exec_runtime	= 0;
1710
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1711
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1712
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1713 1714

#ifdef CONFIG_SCHEDSTATS
1715
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1716
#endif
N
Nick Piggin 已提交
1717

1718 1719 1720 1721
	RB_CLEAR_NODE(&p->dl.rb_node);
	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	p->dl.dl_runtime = p->dl.runtime = 0;
	p->dl.dl_deadline = p->dl.deadline = 0;
1722
	p->dl.dl_period = 0;
1723 1724
	p->dl.flags = 0;

P
Peter Zijlstra 已提交
1725
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1726

1727 1728 1729
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1730 1731 1732

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1733
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1734 1735 1736
		p->mm->numa_scan_seq = 0;
	}

1737 1738 1739 1740 1741
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

1742 1743
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1744
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1745
	p->numa_work.next = &p->numa_work;
1746 1747
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1748 1749
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
1750 1751 1752

	INIT_LIST_HEAD(&p->numa_entry);
	p->numa_group = NULL;
1753
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1754 1755
}

1756
#ifdef CONFIG_NUMA_BALANCING
1757
#ifdef CONFIG_SCHED_DEBUG
1758 1759 1760 1761 1762 1763 1764
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1765 1766 1767 1768 1769 1770
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1771
}
1772
#endif /* CONFIG_SCHED_DEBUG */
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = numabalancing_enabled;

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
1796 1797 1798 1799

/*
 * fork()/clone()-time setup:
 */
1800
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1801
{
1802
	unsigned long flags;
I
Ingo Molnar 已提交
1803 1804
	int cpu = get_cpu();

1805
	__sched_fork(clone_flags, p);
1806
	/*
1807
	 * We mark the process as running here. This guarantees that
1808 1809 1810
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1811
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1812

1813 1814 1815 1816 1817
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1818 1819 1820 1821
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1822
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1823
			p->policy = SCHED_NORMAL;
1824
			p->static_prio = NICE_TO_PRIO(0);
1825 1826 1827 1828 1829 1830
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1831

1832 1833 1834 1835 1836 1837
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1838

1839 1840 1841 1842 1843 1844
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
1845
		p->sched_class = &fair_sched_class;
1846
	}
1847

P
Peter Zijlstra 已提交
1848 1849 1850
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1851 1852 1853 1854 1855 1856 1857
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1858
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1859
	set_task_cpu(p, cpu);
1860
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1861

1862
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1863
	if (likely(sched_info_on()))
1864
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1865
#endif
P
Peter Zijlstra 已提交
1866 1867
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1868
#endif
1869
	init_task_preempt_count(p);
1870
#ifdef CONFIG_SMP
1871
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1872
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1873
#endif
1874

N
Nick Piggin 已提交
1875
	put_cpu();
1876
	return 0;
L
Linus Torvalds 已提交
1877 1878
}

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->rd->dl_bw;
}

1901
static inline int dl_bw_cpus(int i)
1902
{
1903 1904 1905 1906 1907 1908 1909
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
1910 1911 1912 1913 1914 1915 1916
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

1917
static inline int dl_bw_cpus(int i)
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
{
	return 1;
}
#endif

static inline
void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw -= tsk_bw;
}

static inline
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw += tsk_bw;
}

static inline
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
{
	return dl_b->bw != -1 &&
	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1955
	u64 period = attr->sched_period ?: attr->sched_deadline;
1956 1957
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1958
	int cpus, err = -1;
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
1969
	cpus = dl_bw_cpus(task_cpu(p));
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
1990 1991 1992 1993 1994 1995 1996
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1997
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1998 1999
{
	unsigned long flags;
I
Ingo Molnar 已提交
2000
	struct rq *rq;
2001

2002
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2003 2004 2005 2006 2007 2008
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2009
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2010 2011
#endif

2012 2013
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
2014
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2015
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
2016
	p->on_rq = 1;
2017
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2018
	check_preempt_curr(rq, p, WF_FORK);
2019
#ifdef CONFIG_SMP
2020 2021
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2022
#endif
2023
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2024 2025
}

2026 2027 2028
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2029
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2030
 * @notifier: notifier struct to register
2031 2032 2033 2034 2035 2036 2037 2038 2039
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2040
 * @notifier: notifier struct to unregister
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

2054
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2055 2056 2057 2058 2059 2060 2061 2062 2063
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

2064
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2065 2066 2067
		notifier->ops->sched_out(notifier, next);
}

2068
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2080
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2081

2082 2083 2084
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2085
 * @prev: the current task that is being switched out
2086 2087 2088 2089 2090 2091 2092 2093 2094
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2095 2096 2097
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2098
{
2099
	trace_sched_switch(prev, next);
2100
	sched_info_switch(rq, prev, next);
2101
	perf_event_task_sched_out(prev, next);
2102
	fire_sched_out_preempt_notifiers(prev, next);
2103 2104 2105 2106
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2107 2108
/**
 * finish_task_switch - clean up after a task-switch
2109
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2110 2111
 * @prev: the thread we just switched away from.
 *
2112 2113 2114 2115
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2116 2117
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2118
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2119 2120 2121
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2122
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2123 2124 2125
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2126
	long prev_state;
L
Linus Torvalds 已提交
2127 2128 2129 2130 2131

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2132
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2133 2134
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2135
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2136 2137 2138 2139 2140
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2141
	prev_state = prev->state;
2142
	vtime_task_switch(prev);
2143
	finish_arch_switch(prev);
2144
	perf_event_task_sched_in(prev, current);
2145
	finish_lock_switch(rq, prev);
2146
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2147

2148
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2149 2150
	if (mm)
		mmdrop(mm);
2151
	if (unlikely(prev_state == TASK_DEAD)) {
2152 2153 2154
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2155 2156 2157
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2158
		 */
2159
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2160
		put_task_struct(prev);
2161
	}
2162 2163

	tick_nohz_task_switch(current);
L
Linus Torvalds 已提交
2164 2165
}

2166 2167 2168 2169 2170 2171 2172 2173
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2174
		raw_spin_lock_irqsave(&rq->lock, flags);
2175 2176
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2177
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2178 2179 2180 2181 2182 2183

		rq->post_schedule = 0;
	}
}

#else
2184

2185 2186
static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2187 2188
}

2189 2190
#endif

L
Linus Torvalds 已提交
2191 2192 2193 2194
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2195
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2196 2197
	__releases(rq->lock)
{
2198 2199
	struct rq *rq = this_rq();

2200
	finish_task_switch(rq, prev);
2201

2202 2203 2204 2205 2206
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2207

2208 2209 2210 2211
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2212
	if (current->set_child_tid)
2213
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2214 2215 2216 2217 2218 2219
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2220
static inline void
2221
context_switch(struct rq *rq, struct task_struct *prev,
2222
	       struct task_struct *next)
L
Linus Torvalds 已提交
2223
{
I
Ingo Molnar 已提交
2224
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2225

2226
	prepare_task_switch(rq, prev, next);
2227

I
Ingo Molnar 已提交
2228 2229
	mm = next->mm;
	oldmm = prev->active_mm;
2230 2231 2232 2233 2234
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2235
	arch_start_context_switch(prev);
2236

2237
	if (!mm) {
L
Linus Torvalds 已提交
2238 2239 2240 2241 2242 2243
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2244
	if (!prev->mm) {
L
Linus Torvalds 已提交
2245 2246 2247
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2248 2249 2250 2251 2252 2253 2254
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2255
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2256
#endif
L
Linus Torvalds 已提交
2257

2258
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2259 2260 2261
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2262 2263 2264 2265 2266 2267 2268
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2269 2270 2271
}

/*
2272
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2273 2274
 *
 * externally visible scheduler statistics: current number of runnable
2275
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2276 2277 2278 2279 2280 2281 2282 2283 2284
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2285
}
L
Linus Torvalds 已提交
2286 2287

unsigned long long nr_context_switches(void)
2288
{
2289 2290
	int i;
	unsigned long long sum = 0;
2291

2292
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2293
		sum += cpu_rq(i)->nr_switches;
2294

L
Linus Torvalds 已提交
2295 2296
	return sum;
}
2297

L
Linus Torvalds 已提交
2298 2299 2300
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2301

2302
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2303
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2304

L
Linus Torvalds 已提交
2305 2306
	return sum;
}
2307

2308
unsigned long nr_iowait_cpu(int cpu)
2309
{
2310
	struct rq *this = cpu_rq(cpu);
2311 2312
	return atomic_read(&this->nr_iowait);
}
2313

I
Ingo Molnar 已提交
2314
#ifdef CONFIG_SMP
2315

2316
/*
P
Peter Zijlstra 已提交
2317 2318
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2319
 */
P
Peter Zijlstra 已提交
2320
void sched_exec(void)
2321
{
P
Peter Zijlstra 已提交
2322
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2323
	unsigned long flags;
2324
	int dest_cpu;
2325

2326
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2327
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2328 2329
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2330

2331
	if (likely(cpu_active(dest_cpu))) {
2332
		struct migration_arg arg = { p, dest_cpu };
2333

2334 2335
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2336 2337
		return;
	}
2338
unlock:
2339
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2340
}
I
Ingo Molnar 已提交
2341

L
Linus Torvalds 已提交
2342 2343 2344
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2345
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2346 2347

EXPORT_PER_CPU_SYMBOL(kstat);
2348
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2349 2350

/*
2351
 * Return any ns on the sched_clock that have not yet been accounted in
2352
 * @p in case that task is currently running.
2353 2354
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2355
 */
2356 2357 2358 2359 2360 2361
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2362
		ns = rq_clock_task(rq) - p->se.exec_start;
2363 2364 2365 2366 2367 2368 2369
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2370
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2371 2372
{
	unsigned long flags;
2373
	struct rq *rq;
2374
	u64 ns = 0;
2375

2376
	rq = task_rq_lock(p, &flags);
2377
	ns = do_task_delta_exec(p, rq);
2378
	task_rq_unlock(rq, p, &flags);
2379

2380 2381
	return ns;
}
2382

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
	 */
	if (!p->on_cpu)
		return p->se.sum_exec_runtime;
#endif

2408 2409
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2410
	task_rq_unlock(rq, p, &flags);
2411 2412 2413

	return ns;
}
2414

2415 2416 2417 2418 2419 2420 2421 2422
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2423
	struct task_struct *curr = rq->curr;
2424 2425

	sched_clock_tick();
I
Ingo Molnar 已提交
2426

2427
	raw_spin_lock(&rq->lock);
2428
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2429
	curr->sched_class->task_tick(rq, curr, 0);
2430
	update_cpu_load_active(rq);
2431
	raw_spin_unlock(&rq->lock);
2432

2433
	perf_event_task_tick();
2434

2435
#ifdef CONFIG_SMP
2436
	rq->idle_balance = idle_cpu(cpu);
2437
	trigger_load_balance(rq);
2438
#endif
2439
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2440 2441
}

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2453 2454
 *
 * Return: Maximum deferment in nanoseconds.
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2466
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2467
}
2468
#endif
L
Linus Torvalds 已提交
2469

2470
notrace unsigned long get_parent_ip(unsigned long addr)
2471 2472 2473 2474 2475 2476 2477 2478
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2479

2480 2481 2482
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2483
void __kprobes preempt_count_add(int val)
L
Linus Torvalds 已提交
2484
{
2485
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2486 2487 2488
	/*
	 * Underflow?
	 */
2489 2490
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2491
#endif
2492
	__preempt_count_add(val);
2493
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2494 2495 2496
	/*
	 * Spinlock count overflowing soon?
	 */
2497 2498
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2499
#endif
2500 2501 2502 2503 2504 2505 2506
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2507
}
2508
EXPORT_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2509

2510
void __kprobes preempt_count_sub(int val)
L
Linus Torvalds 已提交
2511
{
2512
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2513 2514 2515
	/*
	 * Underflow?
	 */
2516
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2517
		return;
L
Linus Torvalds 已提交
2518 2519 2520
	/*
	 * Is the spinlock portion underflowing?
	 */
2521 2522 2523
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2524
#endif
2525

2526 2527
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2528
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2529
}
2530
EXPORT_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2531 2532 2533 2534

#endif

/*
I
Ingo Molnar 已提交
2535
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2536
 */
I
Ingo Molnar 已提交
2537
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2538
{
2539 2540 2541
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2542 2543
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2544

I
Ingo Molnar 已提交
2545
	debug_show_held_locks(prev);
2546
	print_modules();
I
Ingo Molnar 已提交
2547 2548
	if (irqs_disabled())
		print_irqtrace_events(prev);
2549 2550 2551 2552 2553 2554 2555
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2556
	dump_stack();
2557
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2558
}
L
Linus Torvalds 已提交
2559

I
Ingo Molnar 已提交
2560 2561 2562 2563 2564
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2565
	/*
I
Ingo Molnar 已提交
2566
	 * Test if we are atomic. Since do_exit() needs to call into
2567 2568
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2569
	 */
2570
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2571
		__schedule_bug(prev);
2572
	rcu_sleep_check();
I
Ingo Molnar 已提交
2573

L
Linus Torvalds 已提交
2574 2575
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2576
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2577 2578 2579 2580 2581 2582
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2583
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2584
{
2585
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
2586
	struct task_struct *p;
L
Linus Torvalds 已提交
2587 2588

	/*
I
Ingo Molnar 已提交
2589 2590
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2591
	 */
2592
	if (likely(prev->sched_class == class &&
2593
		   rq->nr_running == rq->cfs.h_nr_running)) {
2594
		p = fair_sched_class.pick_next_task(rq, prev);
2595
		if (likely(p && p != RETRY_TASK))
I
Ingo Molnar 已提交
2596
			return p;
L
Linus Torvalds 已提交
2597 2598
	}

2599
again:
2600
	for_each_class(class) {
2601
		p = class->pick_next_task(rq, prev);
2602 2603 2604
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
2605
			return p;
2606
		}
I
Ingo Molnar 已提交
2607
	}
2608 2609

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2610
}
L
Linus Torvalds 已提交
2611

I
Ingo Molnar 已提交
2612
/*
2613
 * __schedule() is the main scheduler function.
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2648
 */
2649
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2650 2651
{
	struct task_struct *prev, *next;
2652
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2653
	struct rq *rq;
2654
	int cpu;
I
Ingo Molnar 已提交
2655

2656 2657
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2658 2659
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2660
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2661 2662 2663
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2664

2665
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2666
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2667

2668 2669 2670 2671 2672 2673
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2674
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2675

2676
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2677
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2678
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2679
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2680
		} else {
2681 2682 2683
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2684
			/*
2685 2686 2687
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2688 2689 2690 2691 2692 2693 2694 2695 2696
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2697
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2698 2699
	}

2700 2701 2702 2703
	if (prev->on_rq || rq->skip_clock_update < 0)
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
2704
	clear_tsk_need_resched(prev);
2705
	clear_preempt_need_resched();
2706
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2707 2708 2709 2710 2711 2712

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2713
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2714
		/*
2715 2716 2717 2718
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2719 2720 2721
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2722
	} else
2723
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2724

2725
	post_schedule(rq);
L
Linus Torvalds 已提交
2726

2727
	sched_preempt_enable_no_resched();
2728
	if (need_resched())
L
Linus Torvalds 已提交
2729 2730
		goto need_resched;
}
2731

2732 2733
static inline void sched_submit_work(struct task_struct *tsk)
{
2734
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2735 2736 2737 2738 2739 2740 2741 2742 2743
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2744
asmlinkage void __sched schedule(void)
2745
{
2746 2747 2748
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2749 2750
	__schedule();
}
L
Linus Torvalds 已提交
2751 2752
EXPORT_SYMBOL(schedule);

2753
#ifdef CONFIG_CONTEXT_TRACKING
2754 2755 2756 2757 2758 2759 2760 2761
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2762
	user_exit();
2763
	schedule();
2764
	user_enter();
2765 2766 2767
}
#endif

2768 2769 2770 2771 2772 2773 2774
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2775
	sched_preempt_enable_no_resched();
2776 2777 2778 2779
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
2780 2781
#ifdef CONFIG_PREEMPT
/*
2782
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2783
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2784 2785
 * occur there and call schedule directly.
 */
2786
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2787 2788 2789
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2790
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2791
	 */
2792
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
2793 2794
		return;

2795
	do {
2796
		__preempt_count_add(PREEMPT_ACTIVE);
2797
		__schedule();
2798
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2799

2800 2801 2802 2803 2804
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2805
	} while (need_resched());
L
Linus Torvalds 已提交
2806 2807
}
EXPORT_SYMBOL(preempt_schedule);
2808
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
2809 2810

/*
2811
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2812 2813 2814 2815 2816 2817
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
2818
	enum ctx_state prev_state;
2819

2820
	/* Catch callers which need to be fixed */
2821
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
2822

2823 2824
	prev_state = exception_enter();

2825
	do {
2826
		__preempt_count_add(PREEMPT_ACTIVE);
2827
		local_irq_enable();
2828
		__schedule();
2829
		local_irq_disable();
2830
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2831

2832 2833 2834 2835 2836
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2837
	} while (need_resched());
2838 2839

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2840 2841
}

P
Peter Zijlstra 已提交
2842
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2843
			  void *key)
L
Linus Torvalds 已提交
2844
{
P
Peter Zijlstra 已提交
2845
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2846 2847 2848
}
EXPORT_SYMBOL(default_wake_function);

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
2859 2860
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
2861
 */
2862
void rt_mutex_setprio(struct task_struct *p, int prio)
2863
{
2864
	int oldprio, on_rq, running, enqueue_flag = 0;
2865
	struct rq *rq;
2866
	const struct sched_class *prev_class;
2867

2868
	BUG_ON(prio > MAX_PRIO);
2869

2870
	rq = __task_rq_lock(p);
2871

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

2890
	trace_sched_pi_setprio(p, prio);
2891
	p->pi_top_task = rt_mutex_get_top_task(p);
2892
	oldprio = p->prio;
2893
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
2894
	on_rq = p->on_rq;
2895
	running = task_current(rq, p);
2896
	if (on_rq)
2897
		dequeue_task(rq, p, 0);
2898 2899
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
2900

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
			p->dl.dl_boosted = 1;
			p->dl.dl_throttled = 0;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
2918
		p->sched_class = &dl_sched_class;
2919 2920 2921 2922 2923
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
2924
		p->sched_class = &rt_sched_class;
2925 2926 2927
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
I
Ingo Molnar 已提交
2928
		p->sched_class = &fair_sched_class;
2929
	}
I
Ingo Molnar 已提交
2930

2931 2932
	p->prio = prio;

2933 2934
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
2935
	if (on_rq)
2936
		enqueue_task(rq, p, enqueue_flag);
2937

P
Peter Zijlstra 已提交
2938
	check_class_changed(rq, p, prev_class, oldprio);
2939
out_unlock:
2940
	__task_rq_unlock(rq);
2941 2942
}
#endif
2943

2944
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
2945
{
I
Ingo Molnar 已提交
2946
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
2947
	unsigned long flags;
2948
	struct rq *rq;
L
Linus Torvalds 已提交
2949

2950
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
2961
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
2962
	 */
2963
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
2964 2965 2966
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
2967
	on_rq = p->on_rq;
2968
	if (on_rq)
2969
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
2970 2971

	p->static_prio = NICE_TO_PRIO(nice);
2972
	set_load_weight(p);
2973 2974 2975
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
2976

I
Ingo Molnar 已提交
2977
	if (on_rq) {
2978
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
2979
		/*
2980 2981
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
2982
		 */
2983
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
2984 2985 2986
			resched_task(rq->curr);
	}
out_unlock:
2987
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2988 2989 2990
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
2991 2992 2993 2994 2995
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
2996
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
2997
{
2998 2999
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3000

3001
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3002 3003 3004
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3005 3006 3007 3008 3009 3010 3011 3012 3013
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3014
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3015
{
3016
	long nice, retval;
L
Linus Torvalds 已提交
3017 3018 3019 3020 3021 3022

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3023 3024
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3025 3026 3027
	if (increment > 40)
		increment = 40;

3028
	nice = task_nice(current) + increment;
3029 3030 3031 3032
	if (nice < MIN_NICE)
		nice = MIN_NICE;
	if (nice > MAX_NICE)
		nice = MAX_NICE;
L
Linus Torvalds 已提交
3033

M
Matt Mackall 已提交
3034 3035 3036
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3051
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3052 3053 3054
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3055
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3056 3057 3058 3059 3060 3061 3062
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3063 3064
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3065 3066 3067
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3082 3083 3084 3085 3086
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3087 3088
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3089
 */
3090
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3091 3092 3093 3094 3095 3096 3097
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3098 3099
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3100
 */
A
Alexey Dobriyan 已提交
3101
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3102
{
3103
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3104 3105
}

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	init_dl_task_timer(dl_se);
	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3122
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3123
	dl_se->flags = attr->sched_flags;
3124
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3125 3126 3127 3128
	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
}

3129 3130
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3131
{
3132 3133
	int policy = attr->sched_policy;

3134 3135 3136
	if (policy == -1) /* setparam */
		policy = p->policy;

L
Linus Torvalds 已提交
3137
	p->policy = policy;
3138

3139 3140
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3141
	else if (fair_policy(policy))
3142 3143
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3144 3145 3146 3147 3148 3149
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3150
	p->normal_prio = normal_prio(p);
3151 3152
	set_load_weight(p);
}
3153

3154 3155 3156 3157 3158
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
			   const struct sched_attr *attr)
{
	__setscheduler_params(p, attr);
3159

3160 3161 3162 3163 3164 3165
	/*
	 * If we get here, there was no pi waiters boosting the
	 * task. It is safe to use the normal prio.
	 */
	p->prio = normal_prio(p);

3166 3167 3168
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3169 3170 3171
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3172
}
3173 3174 3175 3176 3177 3178 3179 3180 3181

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3182
	attr->sched_period = dl_se->dl_period;
3183 3184 3185 3186 3187 3188
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3189
 * than the runtime, as well as the period of being zero or
3190 3191 3192
 * greater than deadline. Furthermore, we have to be sure that
 * user parameters are above the internal resolution (1us); we
 * check sched_runtime only since it is always the smaller one.
3193 3194 3195 3196 3197
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
	return attr && attr->sched_deadline != 0 &&
3198 3199
		(attr->sched_period == 0 ||
		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3200 3201
		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3202 3203
}

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3214 3215
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3216 3217 3218 3219
	rcu_read_unlock();
	return match;
}

3220 3221 3222
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
				bool user)
L
Linus Torvalds 已提交
3223
{
3224 3225
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3226
	int retval, oldprio, oldpolicy = -1, on_rq, running;
3227
	int policy = attr->sched_policy;
L
Linus Torvalds 已提交
3228
	unsigned long flags;
3229
	const struct sched_class *prev_class;
3230
	struct rq *rq;
3231
	int reset_on_fork;
L
Linus Torvalds 已提交
3232

3233 3234
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3235 3236
recheck:
	/* double check policy once rq lock held */
3237 3238
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3239
		policy = oldpolicy = p->policy;
3240
	} else {
3241
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3242

3243 3244
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3245 3246 3247 3248 3249
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3250 3251 3252
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3253 3254
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3255 3256
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3257
	 */
3258
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3259
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3260
		return -EINVAL;
3261 3262
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3263 3264
		return -EINVAL;

3265 3266 3267
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3268
	if (user && !capable(CAP_SYS_NICE)) {
3269
		if (fair_policy(policy)) {
3270
			if (attr->sched_nice < task_nice(p) &&
3271
			    !can_nice(p, attr->sched_nice))
3272 3273 3274
				return -EPERM;
		}

3275
		if (rt_policy(policy)) {
3276 3277
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3278 3279 3280 3281 3282 3283

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3284 3285
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3286 3287
				return -EPERM;
		}
3288

3289 3290 3291 3292 3293 3294 3295 3296 3297
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3298
		/*
3299 3300
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3301
		 */
3302
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3303
			if (!can_nice(p, task_nice(p)))
3304 3305
				return -EPERM;
		}
3306

3307
		/* can't change other user's priorities */
3308
		if (!check_same_owner(p))
3309
			return -EPERM;
3310 3311 3312 3313

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3314
	}
L
Linus Torvalds 已提交
3315

3316
	if (user) {
3317
		retval = security_task_setscheduler(p);
3318 3319 3320 3321
		if (retval)
			return retval;
	}

3322 3323 3324
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3325
	 *
L
Lucas De Marchi 已提交
3326
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3327 3328
	 * runqueue lock must be held.
	 */
3329
	rq = task_rq_lock(p, &flags);
3330

3331 3332 3333 3334
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3335
		task_rq_unlock(rq, p, &flags);
3336 3337 3338
		return -EINVAL;
	}

3339
	/*
3340 3341
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3342
	 */
3343
	if (unlikely(policy == p->policy)) {
3344
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3345 3346 3347
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3348 3349
		if (dl_policy(policy))
			goto change;
3350

3351
		p->sched_reset_on_fork = reset_on_fork;
3352
		task_rq_unlock(rq, p, &flags);
3353 3354
		return 0;
	}
3355
change:
3356

3357
	if (user) {
3358
#ifdef CONFIG_RT_GROUP_SCHED
3359 3360 3361 3362 3363
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3364 3365
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3366
			task_rq_unlock(rq, p, &flags);
3367 3368 3369
			return -EPERM;
		}
#endif
3370 3371 3372 3373 3374 3375 3376 3377 3378
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3379 3380
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3381 3382 3383 3384 3385 3386
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3387

L
Linus Torvalds 已提交
3388 3389 3390
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3391
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3392 3393
		goto recheck;
	}
3394 3395 3396 3397 3398 3399

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3400
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3401 3402 3403 3404
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

	/*
	 * Special case for priority boosted tasks.
	 *
	 * If the new priority is lower or equal (user space view)
	 * than the current (boosted) priority, we just store the new
	 * normal parameters and do not touch the scheduler class and
	 * the runqueue. This will be done when the task deboost
	 * itself.
	 */
	if (rt_mutex_check_prio(p, newprio)) {
		__setscheduler_params(p, attr);
		task_rq_unlock(rq, p, &flags);
		return 0;
	}

P
Peter Zijlstra 已提交
3423
	on_rq = p->on_rq;
3424
	running = task_current(rq, p);
3425
	if (on_rq)
3426
		dequeue_task(rq, p, 0);
3427 3428
	if (running)
		p->sched_class->put_prev_task(rq, p);
3429

3430
	prev_class = p->sched_class;
3431
	__setscheduler(rq, p, attr);
3432

3433 3434
	if (running)
		p->sched_class->set_curr_task(rq);
3435 3436 3437 3438 3439 3440 3441
	if (on_rq) {
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3442

P
Peter Zijlstra 已提交
3443
	check_class_changed(rq, p, prev_class, oldprio);
3444
	task_rq_unlock(rq, p, &flags);
3445

3446 3447
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3448 3449
	return 0;
}
3450

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

	/*
	 * Fixup the legacy SCHED_RESET_ON_FORK hack
	 */
	if (policy & SCHED_RESET_ON_FORK) {
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

	return __sched_setscheduler(p, &attr, check);
}
3471 3472 3473 3474 3475 3476
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3477 3478
 * Return: 0 on success. An error code otherwise.
 *
3479 3480 3481
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3482
		       const struct sched_param *param)
3483
{
3484
	return _sched_setscheduler(p, policy, param, true);
3485
}
L
Linus Torvalds 已提交
3486 3487
EXPORT_SYMBOL_GPL(sched_setscheduler);

3488 3489 3490 3491 3492 3493
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, true);
}
EXPORT_SYMBOL_GPL(sched_setattr);

3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3504 3505
 *
 * Return: 0 on success. An error code otherwise.
3506 3507
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3508
			       const struct sched_param *param)
3509
{
3510
	return _sched_setscheduler(p, policy, param, false);
3511 3512
}

I
Ingo Molnar 已提交
3513 3514
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3515 3516 3517
{
	struct sched_param lparam;
	struct task_struct *p;
3518
	int retval;
L
Linus Torvalds 已提交
3519 3520 3521 3522 3523

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3524 3525 3526

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3527
	p = find_process_by_pid(pid);
3528 3529 3530
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3531

L
Linus Torvalds 已提交
3532 3533 3534
	return retval;
}

3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
3597
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Linus Torvalds 已提交
3608 3609 3610 3611 3612
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
3613 3614
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3615
 */
3616 3617
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3618
{
3619 3620 3621 3622
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3623 3624 3625 3626 3627 3628 3629
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
3630 3631
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3632
 */
3633
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3634 3635 3636 3637
{
	return do_sched_setscheduler(pid, -1, param);
}

3638 3639 3640
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
3641
 * @uattr: structure containing the extended parameters.
3642
 */
3643 3644
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
3645 3646 3647 3648 3649
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

3650
	if (!uattr || pid < 0 || flags)
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
		return -EINVAL;

	if (sched_copy_attr(uattr, &attr))
		return -EFAULT;

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
3666 3667 3668
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
3669 3670 3671
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
3672
 */
3673
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3674
{
3675
	struct task_struct *p;
3676
	int retval;
L
Linus Torvalds 已提交
3677 3678

	if (pid < 0)
3679
		return -EINVAL;
L
Linus Torvalds 已提交
3680 3681

	retval = -ESRCH;
3682
	rcu_read_lock();
L
Linus Torvalds 已提交
3683 3684 3685 3686
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3687 3688
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3689
	}
3690
	rcu_read_unlock();
L
Linus Torvalds 已提交
3691 3692 3693 3694
	return retval;
}

/**
3695
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3696 3697
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
3698 3699 3700
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
3701
 */
3702
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3703 3704
{
	struct sched_param lp;
3705
	struct task_struct *p;
3706
	int retval;
L
Linus Torvalds 已提交
3707 3708

	if (!param || pid < 0)
3709
		return -EINVAL;
L
Linus Torvalds 已提交
3710

3711
	rcu_read_lock();
L
Linus Torvalds 已提交
3712 3713 3714 3715 3716 3717 3718 3719 3720
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3721 3722 3723 3724
	if (task_has_dl_policy(p)) {
		retval = -EINVAL;
		goto out_unlock;
	}
L
Linus Torvalds 已提交
3725
	lp.sched_priority = p->rt_priority;
3726
	rcu_read_unlock();
L
Linus Torvalds 已提交
3727 3728 3729 3730 3731 3732 3733 3734 3735

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3736
	rcu_read_unlock();
L
Linus Torvalds 已提交
3737 3738 3739
	return retval;
}

3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
				goto err_size;
		}

		attr->size = usize;
	}

3769
	ret = copy_to_user(uattr, attr, attr->size);
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
	if (ret)
		return -EFAULT;

out:
	return ret;

err_size:
	ret = -E2BIG;
	goto out;
}

/**
3782
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3783
 * @pid: the pid in question.
J
Juri Lelli 已提交
3784
 * @uattr: structure containing the extended parameters.
3785 3786
 * @size: sizeof(attr) for fwd/bwd comp.
 */
3787 3788
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
3789 3790 3791 3792 3793 3794 3795 3796
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3797
	    size < SCHED_ATTR_SIZE_VER0 || flags)
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
3811 3812
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3813 3814 3815
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
3816 3817
		attr.sched_priority = p->rt_priority;
	else
3818
		attr.sched_nice = task_nice(p);
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

3830
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
3831
{
3832
	cpumask_var_t cpus_allowed, new_mask;
3833 3834
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
3835

3836
	rcu_read_lock();
L
Linus Torvalds 已提交
3837 3838 3839

	p = find_process_by_pid(pid);
	if (!p) {
3840
		rcu_read_unlock();
L
Linus Torvalds 已提交
3841 3842 3843
		return -ESRCH;
	}

3844
	/* Prevent p going away */
L
Linus Torvalds 已提交
3845
	get_task_struct(p);
3846
	rcu_read_unlock();
L
Linus Torvalds 已提交
3847

3848 3849 3850 3851
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
3852 3853 3854 3855 3856 3857 3858 3859
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
3860
	retval = -EPERM;
E
Eric W. Biederman 已提交
3861 3862 3863 3864 3865 3866 3867 3868
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
3869

3870
	retval = security_task_setscheduler(p);
3871 3872 3873
	if (retval)
		goto out_unlock;

3874 3875 3876 3877

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
	if (task_has_dl_policy(p)) {
		const struct cpumask *span = task_rq(p)->rd->span;

3888
		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3889 3890 3891 3892 3893
			retval = -EBUSY;
			goto out_unlock;
		}
	}
#endif
P
Peter Zijlstra 已提交
3894
again:
3895
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
3896

P
Paul Menage 已提交
3897
	if (!retval) {
3898 3899
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
3900 3901 3902 3903 3904
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
3905
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
3906 3907 3908
			goto again;
		}
	}
L
Linus Torvalds 已提交
3909
out_unlock:
3910 3911 3912 3913
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
3914 3915 3916 3917 3918
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3919
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
3920
{
3921 3922 3923 3924 3925
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
3926 3927 3928 3929 3930 3931 3932 3933
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
3934 3935
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3936
 */
3937 3938
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3939
{
3940
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
3941 3942
	int retval;

3943 3944
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
3945

3946 3947 3948 3949 3950
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
3951 3952
}

3953
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
3954
{
3955
	struct task_struct *p;
3956
	unsigned long flags;
L
Linus Torvalds 已提交
3957 3958
	int retval;

3959
	rcu_read_lock();
L
Linus Torvalds 已提交
3960 3961 3962 3963 3964 3965

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

3966 3967 3968 3969
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3970
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3971
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3972
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3973 3974

out_unlock:
3975
	rcu_read_unlock();
L
Linus Torvalds 已提交
3976

3977
	return retval;
L
Linus Torvalds 已提交
3978 3979 3980 3981 3982 3983 3984
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3985 3986
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3987
 */
3988 3989
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
3990 3991
{
	int ret;
3992
	cpumask_var_t mask;
L
Linus Torvalds 已提交
3993

A
Anton Blanchard 已提交
3994
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3995 3996
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
3997 3998
		return -EINVAL;

3999 4000
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4001

4002 4003
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4004
		size_t retlen = min_t(size_t, len, cpumask_size());
4005 4006

		if (copy_to_user(user_mask_ptr, mask, retlen))
4007 4008
			ret = -EFAULT;
		else
4009
			ret = retlen;
4010 4011
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4012

4013
	return ret;
L
Linus Torvalds 已提交
4014 4015 4016 4017 4018
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4019 4020
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4021 4022
 *
 * Return: 0.
L
Linus Torvalds 已提交
4023
 */
4024
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4025
{
4026
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4027

4028
	schedstat_inc(rq, yld_count);
4029
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4030 4031 4032 4033 4034 4035

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4036
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4037
	do_raw_spin_unlock(&rq->lock);
4038
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4039 4040 4041 4042 4043 4044

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4045
static void __cond_resched(void)
L
Linus Torvalds 已提交
4046
{
4047
	__preempt_count_add(PREEMPT_ACTIVE);
4048
	__schedule();
4049
	__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4050 4051
}

4052
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4053
{
4054
	rcu_cond_resched();
P
Peter Zijlstra 已提交
4055
	if (should_resched()) {
L
Linus Torvalds 已提交
4056 4057 4058 4059 4060
		__cond_resched();
		return 1;
	}
	return 0;
}
4061
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4062 4063

/*
4064
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4065 4066
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4067
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4068 4069 4070
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4071
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4072
{
4073
	bool need_rcu_resched = rcu_should_resched();
P
Peter Zijlstra 已提交
4074
	int resched = should_resched();
J
Jan Kara 已提交
4075 4076
	int ret = 0;

4077 4078
	lockdep_assert_held(lock);

4079
	if (spin_needbreak(lock) || resched || need_rcu_resched) {
L
Linus Torvalds 已提交
4080
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4081
		if (resched)
N
Nick Piggin 已提交
4082
			__cond_resched();
4083 4084
		else if (unlikely(need_rcu_resched))
			rcu_resched();
N
Nick Piggin 已提交
4085 4086
		else
			cpu_relax();
J
Jan Kara 已提交
4087
		ret = 1;
L
Linus Torvalds 已提交
4088 4089
		spin_lock(lock);
	}
J
Jan Kara 已提交
4090
	return ret;
L
Linus Torvalds 已提交
4091
}
4092
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4093

4094
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4095 4096 4097
{
	BUG_ON(!in_softirq());

4098
	rcu_cond_resched();  /* BH disabled OK, just recording QSes. */
P
Peter Zijlstra 已提交
4099
	if (should_resched()) {
4100
		local_bh_enable();
L
Linus Torvalds 已提交
4101 4102 4103 4104 4105 4106
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4107
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4108 4109 4110 4111

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4130 4131 4132 4133 4134 4135 4136 4137
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4138 4139 4140 4141
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4142 4143
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4144 4145 4146 4147
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4148
 * Return:
4149 4150 4151
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4152 4153 4154 4155 4156 4157
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4158
	int yielded = 0;
4159 4160 4161 4162 4163 4164

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4165 4166 4167 4168 4169 4170 4171 4172 4173
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4174
	double_rq_lock(rq, p_rq);
4175
	if (task_rq(p) != p_rq) {
4176 4177 4178 4179 4180
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4181
		goto out_unlock;
4182 4183

	if (curr->sched_class != p->sched_class)
4184
		goto out_unlock;
4185 4186

	if (task_running(p_rq, p) || p->state)
4187
		goto out_unlock;
4188 4189

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4190
	if (yielded) {
4191
		schedstat_inc(rq, yld_count);
4192 4193 4194 4195 4196 4197 4198
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4199

4200
out_unlock:
4201
	double_rq_unlock(rq, p_rq);
4202
out_irq:
4203 4204
	local_irq_restore(flags);

4205
	if (yielded > 0)
4206 4207 4208 4209 4210 4211
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4212
/*
I
Ingo Molnar 已提交
4213
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4214 4215 4216 4217
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4218
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4219

4220
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4221
	atomic_inc(&rq->nr_iowait);
4222
	blk_flush_plug(current);
4223
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4224
	schedule();
4225
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4226
	atomic_dec(&rq->nr_iowait);
4227
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4228 4229 4230 4231 4232
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4233
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4234 4235
	long ret;

4236
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4237
	atomic_inc(&rq->nr_iowait);
4238
	blk_flush_plug(current);
4239
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4240
	ret = schedule_timeout(timeout);
4241
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4242
	atomic_dec(&rq->nr_iowait);
4243
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4244 4245 4246 4247 4248 4249 4250
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4251 4252 4253
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4254
 */
4255
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4256 4257 4258 4259 4260 4261 4262 4263
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4264
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4265
	case SCHED_NORMAL:
4266
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4267
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4278 4279 4280
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4281
 */
4282
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4283 4284 4285 4286 4287 4288 4289 4290
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4291
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4292
	case SCHED_NORMAL:
4293
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4294
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4307 4308 4309
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4310
 */
4311
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4312
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4313
{
4314
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4315
	unsigned int time_slice;
4316 4317
	unsigned long flags;
	struct rq *rq;
4318
	int retval;
L
Linus Torvalds 已提交
4319 4320 4321
	struct timespec t;

	if (pid < 0)
4322
		return -EINVAL;
L
Linus Torvalds 已提交
4323 4324

	retval = -ESRCH;
4325
	rcu_read_lock();
L
Linus Torvalds 已提交
4326 4327 4328 4329 4330 4331 4332 4333
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4334
	rq = task_rq_lock(p, &flags);
4335 4336 4337
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4338
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4339

4340
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4341
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4342 4343
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4344

L
Linus Torvalds 已提交
4345
out_unlock:
4346
	rcu_read_unlock();
L
Linus Torvalds 已提交
4347 4348 4349
	return retval;
}

4350
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4351

4352
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4353 4354
{
	unsigned long free = 0;
4355
	int ppid;
4356
	unsigned state;
L
Linus Torvalds 已提交
4357 4358

	state = p->state ? __ffs(p->state) + 1 : 0;
4359
	printk(KERN_INFO "%-15.15s %c", p->comm,
4360
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4361
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4362
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4363
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4364
	else
P
Peter Zijlstra 已提交
4365
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4366 4367
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4368
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4369
	else
P
Peter Zijlstra 已提交
4370
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4371 4372
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4373
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4374
#endif
4375 4376 4377
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4378
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4379
		task_pid_nr(p), ppid,
4380
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4381

4382
	print_worker_info(KERN_INFO, p);
4383
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4384 4385
}

I
Ingo Molnar 已提交
4386
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4387
{
4388
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4389

4390
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4391 4392
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4393
#else
P
Peter Zijlstra 已提交
4394 4395
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4396
#endif
4397
	rcu_read_lock();
L
Linus Torvalds 已提交
4398 4399 4400
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4401
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4402 4403
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4404
		if (!state_filter || (p->state & state_filter))
4405
			sched_show_task(p);
L
Linus Torvalds 已提交
4406 4407
	} while_each_thread(g, p);

4408 4409
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4410 4411 4412
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4413
	rcu_read_unlock();
I
Ingo Molnar 已提交
4414 4415 4416
	/*
	 * Only show locks if all tasks are dumped:
	 */
4417
	if (!state_filter)
I
Ingo Molnar 已提交
4418
		debug_show_all_locks();
L
Linus Torvalds 已提交
4419 4420
}

4421
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4422
{
I
Ingo Molnar 已提交
4423
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4424 4425
}

4426 4427 4428 4429 4430 4431 4432 4433
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4434
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4435
{
4436
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4437 4438
	unsigned long flags;

4439
	raw_spin_lock_irqsave(&rq->lock, flags);
4440

4441
	__sched_fork(0, idle);
4442
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4443 4444
	idle->se.exec_start = sched_clock();

4445
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4457
	__set_task_cpu(idle, cpu);
4458
	rcu_read_unlock();
L
Linus Torvalds 已提交
4459 4460

	rq->curr = rq->idle = idle;
4461
	idle->on_rq = 1;
P
Peter Zijlstra 已提交
4462 4463
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4464
#endif
4465
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4466 4467

	/* Set the preempt count _outside_ the spinlocks! */
4468
	init_idle_preempt_count(idle, cpu);
4469

I
Ingo Molnar 已提交
4470 4471 4472 4473
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4474
	ftrace_graph_init_idle_task(idle, cpu);
4475
	vtime_init_idle(idle, cpu);
4476 4477 4478
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4479 4480
}

L
Linus Torvalds 已提交
4481
#ifdef CONFIG_SMP
4482 4483 4484 4485
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4486 4487

	cpumask_copy(&p->cpus_allowed, new_mask);
4488
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4489 4490
}

L
Linus Torvalds 已提交
4491 4492 4493
/*
 * This is how migration works:
 *
4494 4495 4496 4497 4498 4499
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4500
 *    it and puts it into the right queue.
4501 4502
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4503 4504 4505 4506 4507 4508 4509 4510
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4511
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4512 4513
 * call is not atomic; no spinlocks may be held.
 */
4514
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4515 4516
{
	unsigned long flags;
4517
	struct rq *rq;
4518
	unsigned int dest_cpu;
4519
	int ret = 0;
L
Linus Torvalds 已提交
4520 4521

	rq = task_rq_lock(p, &flags);
4522

4523 4524 4525
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4526
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4527 4528 4529 4530
		ret = -EINVAL;
		goto out;
	}

4531
	do_set_cpus_allowed(p, new_mask);
4532

L
Linus Torvalds 已提交
4533
	/* Can the task run on the task's current CPU? If so, we're done */
4534
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4535 4536
		goto out;

4537
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4538
	if (p->on_rq) {
4539
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4540
		/* Need help from migration thread: drop lock and wait. */
4541
		task_rq_unlock(rq, p, &flags);
4542
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4543 4544 4545 4546
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4547
	task_rq_unlock(rq, p, &flags);
4548

L
Linus Torvalds 已提交
4549 4550
	return ret;
}
4551
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4552 4553

/*
I
Ingo Molnar 已提交
4554
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4555 4556 4557 4558 4559 4560
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4561 4562
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4563
 */
4564
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4565
{
4566
	struct rq *rq_dest, *rq_src;
4567
	int ret = 0;
L
Linus Torvalds 已提交
4568

4569
	if (unlikely(!cpu_active(dest_cpu)))
4570
		return ret;
L
Linus Torvalds 已提交
4571 4572 4573 4574

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4575
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4576 4577 4578
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4579
		goto done;
L
Linus Torvalds 已提交
4580
	/* Affinity changed (again). */
4581
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4582
		goto fail;
L
Linus Torvalds 已提交
4583

4584 4585 4586 4587
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4588
	if (p->on_rq) {
4589
		dequeue_task(rq_src, p, 0);
4590
		set_task_cpu(p, dest_cpu);
4591
		enqueue_task(rq_dest, p, 0);
4592
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4593
	}
L
Linus Torvalds 已提交
4594
done:
4595
	ret = 1;
L
Linus Torvalds 已提交
4596
fail:
L
Linus Torvalds 已提交
4597
	double_rq_unlock(rq_src, rq_dest);
4598
	raw_spin_unlock(&p->pi_lock);
4599
	return ret;
L
Linus Torvalds 已提交
4600 4601
}

4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

4617
	trace_sched_move_numa(p, curr_cpu, target_cpu);
4618 4619
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
	bool on_rq, running;

	rq = task_rq_lock(p, &flags);
	on_rq = p->on_rq;
	running = task_current(rq, p);

	if (on_rq)
		dequeue_task(rq, p, 0);
	if (running)
		p->sched_class->put_prev_task(rq, p);

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
	if (on_rq)
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
4648 4649
#endif

L
Linus Torvalds 已提交
4650
/*
4651 4652 4653
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4654
 */
4655
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4656
{
4657
	struct migration_arg *arg = data;
4658

4659 4660 4661 4662
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4663
	local_irq_disable();
4664
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4665
	local_irq_enable();
L
Linus Torvalds 已提交
4666
	return 0;
4667 4668
}

L
Linus Torvalds 已提交
4669
#ifdef CONFIG_HOTPLUG_CPU
4670

4671
/*
4672 4673
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4674
 */
4675
void idle_task_exit(void)
L
Linus Torvalds 已提交
4676
{
4677
	struct mm_struct *mm = current->active_mm;
4678

4679
	BUG_ON(cpu_online(smp_processor_id()));
4680

4681
	if (mm != &init_mm) {
4682
		switch_mm(mm, &init_mm, current);
4683 4684
		finish_arch_post_lock_switch();
	}
4685
	mmdrop(mm);
L
Linus Torvalds 已提交
4686 4687 4688
}

/*
4689 4690 4691 4692 4693
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4694
 */
4695
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4696
{
4697 4698 4699
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4700 4701
}

4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

4718
/*
4719 4720 4721 4722 4723 4724
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4725
 */
4726
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4727
{
4728
	struct rq *rq = cpu_rq(dead_cpu);
4729 4730
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4731 4732

	/*
4733 4734 4735 4736 4737 4738 4739
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4740
	 */
4741
	rq->stop = NULL;
4742

4743 4744 4745 4746 4747 4748 4749
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
4750
	for ( ; ; ) {
4751 4752 4753 4754 4755
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4756
			break;
4757

4758
		next = pick_next_task(rq, &fake_task);
4759
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4760
		next->sched_class->put_prev_task(rq, next);
4761

4762 4763 4764 4765 4766 4767 4768
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4769
	}
4770

4771
	rq->stop = stop;
4772
}
4773

L
Linus Torvalds 已提交
4774 4775
#endif /* CONFIG_HOTPLUG_CPU */

4776 4777 4778
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4779 4780
	{
		.procname	= "sched_domain",
4781
		.mode		= 0555,
4782
	},
4783
	{}
4784 4785 4786
};

static struct ctl_table sd_ctl_root[] = {
4787 4788
	{
		.procname	= "kernel",
4789
		.mode		= 0555,
4790 4791
		.child		= sd_ctl_dir,
	},
4792
	{}
4793 4794 4795 4796 4797
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4798
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4799 4800 4801 4802

	return entry;
}

4803 4804
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4805
	struct ctl_table *entry;
4806

4807 4808 4809
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4810
	 * will always be set. In the lowest directory the names are
4811 4812 4813
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4814 4815
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4816 4817 4818
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4819 4820 4821 4822 4823

	kfree(*tablep);
	*tablep = NULL;
}

4824
static int min_load_idx = 0;
4825
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4826

4827
static void
4828
set_table_entry(struct ctl_table *entry,
4829
		const char *procname, void *data, int maxlen,
4830 4831
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4832 4833 4834 4835 4836 4837
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4838 4839 4840 4841 4842

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4843 4844 4845 4846 4847
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4848
	struct ctl_table *table = sd_alloc_ctl_entry(14);
4849

4850 4851 4852
	if (table == NULL)
		return NULL;

4853
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4854
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4855
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4856
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4857
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4858
		sizeof(int), 0644, proc_dointvec_minmax, true);
4859
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4860
		sizeof(int), 0644, proc_dointvec_minmax, true);
4861
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4862
		sizeof(int), 0644, proc_dointvec_minmax, true);
4863
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4864
		sizeof(int), 0644, proc_dointvec_minmax, true);
4865
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4866
		sizeof(int), 0644, proc_dointvec_minmax, true);
4867
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4868
		sizeof(int), 0644, proc_dointvec_minmax, false);
4869
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4870
		sizeof(int), 0644, proc_dointvec_minmax, false);
4871
	set_table_entry(&table[9], "cache_nice_tries",
4872
		&sd->cache_nice_tries,
4873
		sizeof(int), 0644, proc_dointvec_minmax, false);
4874
	set_table_entry(&table[10], "flags", &sd->flags,
4875
		sizeof(int), 0644, proc_dointvec_minmax, false);
4876 4877 4878 4879
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
4880
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4881
	/* &table[13] is terminator */
4882 4883 4884 4885

	return table;
}

4886
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4887 4888 4889 4890 4891 4892 4893 4894 4895
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4896 4897
	if (table == NULL)
		return NULL;
4898 4899 4900 4901 4902

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4903
		entry->mode = 0555;
4904 4905 4906 4907 4908 4909 4910 4911
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4912
static void register_sched_domain_sysctl(void)
4913
{
4914
	int i, cpu_num = num_possible_cpus();
4915 4916 4917
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4918 4919 4920
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4921 4922 4923
	if (entry == NULL)
		return;

4924
	for_each_possible_cpu(i) {
4925 4926
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4927
		entry->mode = 0555;
4928
		entry->child = sd_alloc_ctl_cpu_table(i);
4929
		entry++;
4930
	}
4931 4932

	WARN_ON(sd_sysctl_header);
4933 4934
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
4935

4936
/* may be called multiple times per register */
4937 4938
static void unregister_sched_domain_sysctl(void)
{
4939 4940
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
4941
	sd_sysctl_header = NULL;
4942 4943
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4944
}
4945
#else
4946 4947 4948 4949
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
4950 4951 4952 4953
{
}
#endif

4954 4955 4956 4957 4958
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

4959
		cpumask_set_cpu(rq->cpu, rq->rd->online);
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

4979
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4980 4981 4982 4983
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
4984 4985 4986 4987
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
4988
static int
4989
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
4990
{
4991
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
4992
	unsigned long flags;
4993
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4994

4995
	switch (action & ~CPU_TASKS_FROZEN) {
4996

L
Linus Torvalds 已提交
4997
	case CPU_UP_PREPARE:
4998
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
4999
		break;
5000

L
Linus Torvalds 已提交
5001
	case CPU_ONLINE:
5002
		/* Update our root-domain */
5003
		raw_spin_lock_irqsave(&rq->lock, flags);
5004
		if (rq->rd) {
5005
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5006 5007

			set_rq_online(rq);
5008
		}
5009
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5010
		break;
5011

L
Linus Torvalds 已提交
5012
#ifdef CONFIG_HOTPLUG_CPU
5013
	case CPU_DYING:
5014
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5015
		/* Update our root-domain */
5016
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5017
		if (rq->rd) {
5018
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5019
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5020
		}
5021 5022
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5023
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5024
		break;
5025

5026
	case CPU_DEAD:
5027
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5028
		break;
L
Linus Torvalds 已提交
5029 5030
#endif
	}
5031 5032 5033

	update_max_interval();

L
Linus Torvalds 已提交
5034 5035 5036
	return NOTIFY_OK;
}

5037 5038 5039
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5040
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5041
 */
5042
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5043
	.notifier_call = migration_call,
5044
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5045 5046
};

5047
static int sched_cpu_active(struct notifier_block *nfb,
5048 5049 5050
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5051
	case CPU_STARTING:
5052 5053 5054 5055 5056 5057 5058 5059
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5060
static int sched_cpu_inactive(struct notifier_block *nfb,
5061 5062
					unsigned long action, void *hcpu)
{
5063 5064 5065
	unsigned long flags;
	long cpu = (long)hcpu;

5066 5067
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
		set_cpu_active(cpu, false);

		/* explicitly allow suspend */
		if (!(action & CPU_TASKS_FROZEN)) {
			struct dl_bw *dl_b = dl_bw_of(cpu);
			bool overflow;
			int cpus;

			raw_spin_lock_irqsave(&dl_b->lock, flags);
			cpus = dl_bw_cpus(cpu);
			overflow = __dl_overflow(dl_b, cpus, 0, 0);
			raw_spin_unlock_irqrestore(&dl_b->lock, flags);

			if (overflow)
				return notifier_from_errno(-EBUSY);
		}
5084 5085
		return NOTIFY_OK;
	}
5086 5087

	return NOTIFY_DONE;
5088 5089
}

5090
static int __init migration_init(void)
L
Linus Torvalds 已提交
5091 5092
{
	void *cpu = (void *)(long)smp_processor_id();
5093
	int err;
5094

5095
	/* Initialize migration for the boot CPU */
5096 5097
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5098 5099
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5100

5101 5102 5103 5104
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5105
	return 0;
L
Linus Torvalds 已提交
5106
}
5107
early_initcall(migration_init);
L
Linus Torvalds 已提交
5108 5109 5110
#endif

#ifdef CONFIG_SMP
5111

5112 5113
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5114
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5115

5116
static __read_mostly int sched_debug_enabled;
5117

5118
static int __init sched_debug_setup(char *str)
5119
{
5120
	sched_debug_enabled = 1;
5121 5122 5123

	return 0;
}
5124 5125 5126 5127 5128 5129
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5130

5131
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5132
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5133
{
I
Ingo Molnar 已提交
5134
	struct sched_group *group = sd->groups;
5135
	char str[256];
L
Linus Torvalds 已提交
5136

R
Rusty Russell 已提交
5137
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5138
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5139 5140 5141 5142

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5143
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5144
		if (sd->parent)
P
Peter Zijlstra 已提交
5145 5146
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5147
		return -1;
N
Nick Piggin 已提交
5148 5149
	}

P
Peter Zijlstra 已提交
5150
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5151

5152
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5153 5154
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5155
	}
5156
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5157 5158
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5159
	}
L
Linus Torvalds 已提交
5160

I
Ingo Molnar 已提交
5161
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5162
	do {
I
Ingo Molnar 已提交
5163
		if (!group) {
P
Peter Zijlstra 已提交
5164 5165
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5166 5167 5168
			break;
		}

5169 5170 5171 5172 5173 5174
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5175 5176 5177
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5178 5179
			break;
		}
L
Linus Torvalds 已提交
5180

5181
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5182 5183
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5184 5185
			break;
		}
L
Linus Torvalds 已提交
5186

5187 5188
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5189 5190
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5191 5192
			break;
		}
L
Linus Torvalds 已提交
5193

5194
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5195

R
Rusty Russell 已提交
5196
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5197

P
Peter Zijlstra 已提交
5198
		printk(KERN_CONT " %s", str);
5199
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5200
			printk(KERN_CONT " (cpu_power = %d)",
5201
				group->sgp->power);
5202
		}
L
Linus Torvalds 已提交
5203

I
Ingo Molnar 已提交
5204 5205
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5206
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5207

5208
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5209
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5210

5211 5212
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5213 5214
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5215 5216
	return 0;
}
L
Linus Torvalds 已提交
5217

I
Ingo Molnar 已提交
5218 5219 5220
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5221

5222
	if (!sched_debug_enabled)
5223 5224
		return;

I
Ingo Molnar 已提交
5225 5226 5227 5228
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5229

I
Ingo Molnar 已提交
5230 5231 5232
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5233
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5234
			break;
L
Linus Torvalds 已提交
5235 5236
		level++;
		sd = sd->parent;
5237
		if (!sd)
I
Ingo Molnar 已提交
5238 5239
			break;
	}
L
Linus Torvalds 已提交
5240
}
5241
#else /* !CONFIG_SCHED_DEBUG */
5242
# define sched_domain_debug(sd, cpu) do { } while (0)
5243 5244 5245 5246
static inline bool sched_debug(void)
{
	return false;
}
5247
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5248

5249
static int sd_degenerate(struct sched_domain *sd)
5250
{
5251
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5252 5253 5254 5255 5256 5257
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5258 5259 5260
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5261 5262 5263 5264 5265
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5266
	if (sd->flags & (SD_WAKE_AFFINE))
5267 5268 5269 5270 5271
		return 0;

	return 1;
}

5272 5273
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5274 5275 5276 5277 5278 5279
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5280
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5281 5282 5283 5284 5285 5286 5287
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5288 5289
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
5290 5291
				SD_SHARE_PKG_RESOURCES |
				SD_PREFER_SIBLING);
5292 5293
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5294 5295 5296 5297 5298 5299 5300
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5301
static void free_rootdomain(struct rcu_head *rcu)
5302
{
5303
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5304

5305
	cpupri_cleanup(&rd->cpupri);
5306
	cpudl_cleanup(&rd->cpudl);
5307
	free_cpumask_var(rd->dlo_mask);
5308 5309 5310 5311 5312 5313
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5314 5315
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5316
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5317 5318
	unsigned long flags;

5319
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5320 5321

	if (rq->rd) {
I
Ingo Molnar 已提交
5322
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5323

5324
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5325
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5326

5327
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5328

I
Ingo Molnar 已提交
5329
		/*
5330
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5331 5332 5333 5334 5335
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5336 5337 5338 5339 5340
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5341
	cpumask_set_cpu(rq->cpu, rd->span);
5342
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5343
		set_rq_online(rq);
G
Gregory Haskins 已提交
5344

5345
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5346 5347

	if (old_rd)
5348
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5349 5350
}

5351
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5352 5353 5354
{
	memset(rd, 0, sizeof(*rd));

5355
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5356
		goto out;
5357
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5358
		goto free_span;
5359
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5360
		goto free_online;
5361 5362
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5363

5364
	init_dl_bw(&rd->dl_bw);
5365 5366
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5367

5368
	if (cpupri_init(&rd->cpupri) != 0)
5369
		goto free_rto_mask;
5370
	return 0;
5371

5372 5373
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5374 5375
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5376 5377 5378 5379
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5380
out:
5381
	return -ENOMEM;
G
Gregory Haskins 已提交
5382 5383
}

5384 5385 5386 5387 5388 5389
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5390 5391
static void init_defrootdomain(void)
{
5392
	init_rootdomain(&def_root_domain);
5393

G
Gregory Haskins 已提交
5394 5395 5396
	atomic_set(&def_root_domain.refcount, 1);
}

5397
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5398 5399 5400 5401 5402 5403 5404
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5405
	if (init_rootdomain(rd) != 0) {
5406 5407 5408
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5409 5410 5411 5412

	return rd;
}

5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5432 5433 5434
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5435 5436 5437 5438 5439 5440 5441 5442

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5443
		kfree(sd->groups->sgp);
5444
		kfree(sd->groups);
5445
	}
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5460 5461 5462 5463 5464 5465 5466
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5467
 * two cpus are in the same cache domain, see cpus_share_cache().
5468 5469
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5470
DEFINE_PER_CPU(int, sd_llc_size);
5471
DEFINE_PER_CPU(int, sd_llc_id);
5472
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5473 5474
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5475 5476 5477 5478

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5479
	struct sched_domain *busy_sd = NULL;
5480
	int id = cpu;
5481
	int size = 1;
5482 5483

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5484
	if (sd) {
5485
		id = cpumask_first(sched_domain_span(sd));
5486
		size = cpumask_weight(sched_domain_span(sd));
5487
		busy_sd = sd->parent; /* sd_busy */
5488
	}
5489
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5490 5491

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5492
	per_cpu(sd_llc_size, cpu) = size;
5493
	per_cpu(sd_llc_id, cpu) = id;
5494 5495 5496

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5497 5498 5499

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5500 5501
}

L
Linus Torvalds 已提交
5502
/*
I
Ingo Molnar 已提交
5503
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5504 5505
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5506 5507
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5508
{
5509
	struct rq *rq = cpu_rq(cpu);
5510 5511 5512
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5513
	for (tmp = sd; tmp; ) {
5514 5515 5516
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5517

5518
		if (sd_parent_degenerate(tmp, parent)) {
5519
			tmp->parent = parent->parent;
5520 5521
			if (parent->parent)
				parent->parent->child = tmp;
5522 5523 5524 5525 5526 5527 5528
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5529
			destroy_sched_domain(parent, cpu);
5530 5531
		} else
			tmp = tmp->parent;
5532 5533
	}

5534
	if (sd && sd_degenerate(sd)) {
5535
		tmp = sd;
5536
		sd = sd->parent;
5537
		destroy_sched_domain(tmp, cpu);
5538 5539 5540
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5541

5542
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5543

G
Gregory Haskins 已提交
5544
	rq_attach_root(rq, rd);
5545
	tmp = rq->sd;
N
Nick Piggin 已提交
5546
	rcu_assign_pointer(rq->sd, sd);
5547
	destroy_sched_domains(tmp, cpu);
5548 5549

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5550 5551 5552
}

/* cpus with isolated domains */
5553
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5554 5555 5556 5557

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5558
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5559
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5560 5561 5562
	return 1;
}

I
Ingo Molnar 已提交
5563
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5564

5565 5566 5567 5568 5569
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5570 5571 5572
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5573
	struct sched_group_power **__percpu sgp;
5574 5575
};

5576
struct s_data {
5577
	struct sched_domain ** __percpu sd;
5578 5579 5580
	struct root_domain	*rd;
};

5581 5582
enum s_alloc {
	sa_rootdomain,
5583
	sa_sd,
5584
	sa_sd_storage,
5585 5586 5587
	sa_none,
};

5588 5589 5590
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5591 5592
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5593 5594
#define SDTL_OVERLAP	0x01

5595
struct sched_domain_topology_level {
5596 5597
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5598
	int		    flags;
5599
	int		    numa_level;
5600
	struct sd_data      data;
5601 5602
};

P
Peter Zijlstra 已提交
5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5659 5660 5661 5662 5663 5664
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5665
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5666
				GFP_KERNEL, cpu_to_node(cpu));
5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5680
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5681 5682 5683
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5684 5685 5686 5687 5688 5689
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5690
		sg->sgp->power_orig = sg->sgp->power;
5691

P
Peter Zijlstra 已提交
5692 5693 5694 5695 5696
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5697
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5698
		    group_balance_cpu(sg) == cpu)
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5718
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5719
{
5720 5721
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5722

5723 5724
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5725

5726
	if (sg) {
5727
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5728
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5729
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5730
	}
5731 5732

	return cpu;
5733 5734
}

5735
/*
5736 5737 5738
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5739 5740
 *
 * Assumes the sched_domain tree is fully constructed
5741
 */
5742 5743
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5744
{
5745 5746 5747
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5748
	struct cpumask *covered;
5749
	int i;
5750

5751 5752 5753
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

5754
	if (cpu != cpumask_first(span))
5755 5756
		return 0;

5757 5758 5759
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5760
	cpumask_clear(covered);
5761

5762 5763
	for_each_cpu(i, span) {
		struct sched_group *sg;
5764
		int group, j;
5765

5766 5767
		if (cpumask_test_cpu(i, covered))
			continue;
5768

5769
		group = get_group(i, sdd, &sg);
5770
		cpumask_clear(sched_group_cpus(sg));
5771
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5772
		cpumask_setall(sched_group_mask(sg));
5773

5774 5775 5776
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5777

5778 5779 5780
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5781

5782 5783 5784 5785 5786 5787 5788
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5789 5790

	return 0;
5791
}
5792

5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5805
	struct sched_group *sg = sd->groups;
5806

5807
	WARN_ON(!sg);
5808 5809 5810 5811 5812

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5813

P
Peter Zijlstra 已提交
5814
	if (cpu != group_balance_cpu(sg))
5815
		return;
5816

5817
	update_group_power(sd, cpu);
5818
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5819 5820
}

5821 5822 5823
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5824 5825
}

5826 5827 5828 5829 5830
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5831 5832 5833 5834 5835 5836
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5837 5838 5839 5840 5841 5842 5843 5844 5845
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5846 5847 5848 5849 5850 5851 5852 5853 5854
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5855 5856 5857
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5858

5859
static int default_relax_domain_level = -1;
5860
int sched_domain_level_max;
5861 5862 5863

static int __init setup_relax_domain_level(char *str)
{
5864 5865
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5866

5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5885
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5886 5887
	} else {
		/* turn on idle balance on this domain */
5888
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5889 5890 5891
	}
}

5892 5893 5894
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5895 5896 5897 5898 5899
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5900 5901
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5902 5903
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5904
	case sa_sd_storage:
5905
		__sdt_free(cpu_map); /* fall through */
5906 5907 5908 5909
	case sa_none:
		break;
	}
}
5910

5911 5912 5913
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5914 5915
	memset(d, 0, sizeof(*d));

5916 5917
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5918 5919 5920
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5921
	d->rd = alloc_rootdomain();
5922
	if (!d->rd)
5923
		return sa_sd;
5924 5925
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5926

5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5939
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5940
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5941 5942

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5943
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5944 5945
}

5946 5947
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5948
{
5949
	return topology_thread_cpumask(cpu);
5950
}
5951
#endif
5952

5953 5954 5955
/*
 * Topology list, bottom-up.
 */
5956
static struct sched_domain_topology_level default_topology[] = {
5957 5958
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
5959
#endif
5960
#ifdef CONFIG_SCHED_MC
5961
	{ sd_init_MC, cpu_coregroup_mask, },
5962
#endif
5963 5964 5965 5966
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
5967 5968 5969 5970 5971
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

5972 5973 5974
#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->init; tl++)

5975 5976 5977 5978 5979 5980 5981 5982 5983
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
5984
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6002
		.imbalance_pct		= 125,
6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
6020
					| 1*SD_NUMA
6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6123
		}
6124 6125 6126 6127 6128 6129

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6130 6131 6132 6133 6134
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6135
	 * The sched_domains_numa_distance[] array includes the actual distance
6136 6137 6138
	 * numbers.
	 */

6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6165
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6166 6167 6168 6169 6170 6171
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6172
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6204 6205

	sched_domains_numa_levels = level;
6206
}
6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6254 6255 6256 6257 6258
}
#else
static inline void sched_init_numa(void)
{
}
6259 6260 6261 6262 6263 6264 6265

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6266 6267
#endif /* CONFIG_NUMA */

6268 6269 6270 6271 6272
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6273
	for_each_sd_topology(tl) {
6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6284 6285 6286 6287
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6288 6289 6290
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6291
			struct sched_group_power *sgp;
6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6305 6306
			sg->next = sg;

6307
			*per_cpu_ptr(sdd->sg, j) = sg;
6308

P
Peter Zijlstra 已提交
6309
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6310 6311 6312 6313 6314
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6326
	for_each_sd_topology(tl) {
6327 6328 6329
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6343 6344
		}
		free_percpu(sdd->sd);
6345
		sdd->sd = NULL;
6346
		free_percpu(sdd->sg);
6347
		sdd->sg = NULL;
6348
		free_percpu(sdd->sgp);
6349
		sdd->sgp = NULL;
6350 6351 6352
	}
}

6353
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6354 6355
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6356
{
6357
	struct sched_domain *sd = tl->init(tl, cpu);
6358
	if (!sd)
6359
		return child;
6360 6361

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6362 6363 6364
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6365
		child->parent = sd;
6366
		sd->child = child;
6367
	}
6368
	set_domain_attribute(sd, attr);
6369 6370 6371 6372

	return sd;
}

6373 6374 6375 6376
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6377 6378
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6379
{
6380
	enum s_alloc alloc_state;
6381
	struct sched_domain *sd;
6382
	struct s_data d;
6383
	int i, ret = -ENOMEM;
6384

6385 6386 6387
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6388

6389
	/* Set up domains for cpus specified by the cpu_map. */
6390
	for_each_cpu(i, cpu_map) {
6391 6392
		struct sched_domain_topology_level *tl;

6393
		sd = NULL;
6394
		for_each_sd_topology(tl) {
6395
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6396 6397
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6398 6399
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6400 6401
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6402
		}
6403 6404 6405 6406 6407 6408
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6409 6410 6411 6412 6413 6414 6415
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6416
		}
6417
	}
6418

L
Linus Torvalds 已提交
6419
	/* Calculate CPU power for physical packages and nodes */
6420 6421 6422
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6423

6424 6425
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6426
			init_sched_groups_power(i, sd);
6427
		}
6428
	}
6429

L
Linus Torvalds 已提交
6430
	/* Attach the domains */
6431
	rcu_read_lock();
6432
	for_each_cpu(i, cpu_map) {
6433
		sd = *per_cpu_ptr(d.sd, i);
6434
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6435
	}
6436
	rcu_read_unlock();
6437

6438
	ret = 0;
6439
error:
6440
	__free_domain_allocs(&d, alloc_state, cpu_map);
6441
	return ret;
L
Linus Torvalds 已提交
6442
}
P
Paul Jackson 已提交
6443

6444
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6445
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6446 6447
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6448 6449 6450

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6451 6452
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6453
 */
6454
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6455

6456 6457 6458 6459 6460
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6461
int __weak arch_update_cpu_topology(void)
6462
{
6463
	return 0;
6464 6465
}

6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6491
/*
I
Ingo Molnar 已提交
6492
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6493 6494
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6495
 */
6496
static int init_sched_domains(const struct cpumask *cpu_map)
6497
{
6498 6499
	int err;

6500
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6501
	ndoms_cur = 1;
6502
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6503
	if (!doms_cur)
6504 6505
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6506
	err = build_sched_domains(doms_cur[0], NULL);
6507
	register_sched_domain_sysctl();
6508 6509

	return err;
6510 6511 6512 6513 6514 6515
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6516
static void detach_destroy_domains(const struct cpumask *cpu_map)
6517 6518 6519
{
	int i;

6520
	rcu_read_lock();
6521
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6522
		cpu_attach_domain(NULL, &def_root_domain, i);
6523
	rcu_read_unlock();
6524 6525
}

6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6542 6543
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6544
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6545 6546 6547
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6548
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6549 6550 6551
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6552 6553 6554
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6555 6556 6557 6558 6559 6560
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6561
 *
6562
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6563 6564
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6565
 *
P
Paul Jackson 已提交
6566 6567
 * Call with hotplug lock held
 */
6568
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6569
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6570
{
6571
	int i, j, n;
6572
	int new_topology;
P
Paul Jackson 已提交
6573

6574
	mutex_lock(&sched_domains_mutex);
6575

6576 6577 6578
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6579 6580 6581
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6582
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6583 6584 6585

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6586
		for (j = 0; j < n && !new_topology; j++) {
6587
			if (cpumask_equal(doms_cur[i], doms_new[j])
6588
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6589 6590 6591
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6592
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6593 6594 6595 6596
match1:
		;
	}

6597
	n = ndoms_cur;
6598
	if (doms_new == NULL) {
6599
		n = 0;
6600
		doms_new = &fallback_doms;
6601
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6602
		WARN_ON_ONCE(dattr_new);
6603 6604
	}

P
Paul Jackson 已提交
6605 6606
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6607
		for (j = 0; j < n && !new_topology; j++) {
6608
			if (cpumask_equal(doms_new[i], doms_cur[j])
6609
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6610 6611 6612
				goto match2;
		}
		/* no match - add a new doms_new */
6613
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6614 6615 6616 6617 6618
match2:
		;
	}

	/* Remember the new sched domains */
6619 6620
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6621
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6622
	doms_cur = doms_new;
6623
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6624
	ndoms_cur = ndoms_new;
6625 6626

	register_sched_domain_sysctl();
6627

6628
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6629 6630
}

6631 6632
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6633
/*
6634 6635 6636
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6637 6638 6639
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6640
 */
6641 6642
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6643
{
6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6666
	case CPU_ONLINE:
6667
	case CPU_DOWN_FAILED:
6668
		cpuset_update_active_cpus(true);
6669
		break;
6670 6671 6672
	default:
		return NOTIFY_DONE;
	}
6673
	return NOTIFY_OK;
6674
}
6675

6676 6677
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6678
{
6679
	switch (action) {
6680
	case CPU_DOWN_PREPARE:
6681
		cpuset_update_active_cpus(false);
6682 6683 6684 6685 6686
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6687 6688 6689
	default:
		return NOTIFY_DONE;
	}
6690
	return NOTIFY_OK;
6691 6692
}

L
Linus Torvalds 已提交
6693 6694
void __init sched_init_smp(void)
{
6695 6696 6697
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6698
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6699

6700 6701
	sched_init_numa();

6702 6703 6704 6705 6706
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
6707
	mutex_lock(&sched_domains_mutex);
6708
	init_sched_domains(cpu_active_mask);
6709 6710 6711
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6712
	mutex_unlock(&sched_domains_mutex);
6713

6714
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6715 6716
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6717

6718
	init_hrtick();
6719 6720

	/* Move init over to a non-isolated CPU */
6721
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6722
		BUG();
I
Ingo Molnar 已提交
6723
	sched_init_granularity();
6724
	free_cpumask_var(non_isolated_cpus);
6725

6726
	init_sched_rt_class();
6727
	init_sched_dl_class();
L
Linus Torvalds 已提交
6728 6729 6730 6731
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6732
	sched_init_granularity();
L
Linus Torvalds 已提交
6733 6734 6735
}
#endif /* CONFIG_SMP */

6736 6737
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6738 6739 6740 6741 6742 6743 6744
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6745
#ifdef CONFIG_CGROUP_SCHED
6746 6747 6748 6749
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6750
struct task_group root_task_group;
6751
LIST_HEAD(task_groups);
6752
#endif
P
Peter Zijlstra 已提交
6753

6754
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
6755

L
Linus Torvalds 已提交
6756 6757
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6758
	int i, j;
6759 6760 6761 6762 6763 6764 6765
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6766
#endif
6767
#ifdef CONFIG_CPUMASK_OFFSTACK
6768
	alloc_size += num_possible_cpus() * cpumask_size();
6769 6770
#endif
	if (alloc_size) {
6771
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6772 6773

#ifdef CONFIG_FAIR_GROUP_SCHED
6774
		root_task_group.se = (struct sched_entity **)ptr;
6775 6776
		ptr += nr_cpu_ids * sizeof(void **);

6777
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6778
		ptr += nr_cpu_ids * sizeof(void **);
6779

6780
#endif /* CONFIG_FAIR_GROUP_SCHED */
6781
#ifdef CONFIG_RT_GROUP_SCHED
6782
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6783 6784
		ptr += nr_cpu_ids * sizeof(void **);

6785
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6786 6787
		ptr += nr_cpu_ids * sizeof(void **);

6788
#endif /* CONFIG_RT_GROUP_SCHED */
6789 6790
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
6791
			per_cpu(load_balance_mask, i) = (void *)ptr;
6792 6793 6794
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6795
	}
I
Ingo Molnar 已提交
6796

6797 6798 6799
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
6800
			global_rt_period(), global_rt_runtime());
6801

G
Gregory Haskins 已提交
6802 6803 6804 6805
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6806
#ifdef CONFIG_RT_GROUP_SCHED
6807
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6808
			global_rt_period(), global_rt_runtime());
6809
#endif /* CONFIG_RT_GROUP_SCHED */
6810

D
Dhaval Giani 已提交
6811
#ifdef CONFIG_CGROUP_SCHED
6812 6813
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6814
	INIT_LIST_HEAD(&root_task_group.siblings);
6815
	autogroup_init(&init_task);
6816

D
Dhaval Giani 已提交
6817
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6818

6819
	for_each_possible_cpu(i) {
6820
		struct rq *rq;
L
Linus Torvalds 已提交
6821 6822

		rq = cpu_rq(i);
6823
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6824
		rq->nr_running = 0;
6825 6826
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6827
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6828
		init_rt_rq(&rq->rt, rq);
6829
		init_dl_rq(&rq->dl, rq);
I
Ingo Molnar 已提交
6830
#ifdef CONFIG_FAIR_GROUP_SCHED
6831
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6832
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6833
		/*
6834
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6835 6836 6837 6838
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6839
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6840 6841 6842
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6843
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6844 6845 6846
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6847
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6848
		 *
6849 6850
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6851
		 */
6852
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6853
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6854 6855 6856
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6857
#ifdef CONFIG_RT_GROUP_SCHED
6858
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6859
#endif
L
Linus Torvalds 已提交
6860

I
Ingo Molnar 已提交
6861 6862
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6863 6864 6865

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6866
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6867
		rq->sd = NULL;
G
Gregory Haskins 已提交
6868
		rq->rd = NULL;
6869
		rq->cpu_power = SCHED_POWER_SCALE;
6870
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6871
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6872
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6873
		rq->push_cpu = 0;
6874
		rq->cpu = i;
6875
		rq->online = 0;
6876 6877
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6878
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6879 6880 6881

		INIT_LIST_HEAD(&rq->cfs_tasks);

6882
		rq_attach_root(rq, &def_root_domain);
6883
#ifdef CONFIG_NO_HZ_COMMON
6884
		rq->nohz_flags = 0;
6885
#endif
6886 6887 6888
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
6889
#endif
P
Peter Zijlstra 已提交
6890
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6891 6892 6893
		atomic_set(&rq->nr_iowait, 0);
	}

6894
	set_load_weight(&init_task);
6895

6896 6897 6898 6899
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6913 6914 6915

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6916 6917 6918 6919
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6920

6921
#ifdef CONFIG_SMP
6922
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6923 6924 6925
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6926
	idle_thread_set_boot_cpu();
6927 6928
#endif
	init_sched_fair_class();
6929

6930
	scheduler_running = 1;
L
Linus Torvalds 已提交
6931 6932
}

6933
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6934 6935
static inline int preempt_count_equals(int preempt_offset)
{
6936
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6937

A
Arnd Bergmann 已提交
6938
	return (nested == preempt_offset);
6939 6940
}

6941
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6942 6943 6944
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6945
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6946 6947
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
6948
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6949 6950 6951 6952 6953
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6954 6955 6956 6957 6958 6959 6960
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6961 6962 6963 6964

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
6965 6966 6967 6968 6969 6970 6971
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
6972
	dump_stack();
L
Linus Torvalds 已提交
6973 6974 6975 6976 6977
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6978 6979
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6980
	const struct sched_class *prev_class = p->sched_class;
6981 6982 6983
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
P
Peter Zijlstra 已提交
6984
	int old_prio = p->prio;
6985
	int on_rq;
6986

P
Peter Zijlstra 已提交
6987
	on_rq = p->on_rq;
6988
	if (on_rq)
6989
		dequeue_task(rq, p, 0);
6990
	__setscheduler(rq, p, &attr);
6991
	if (on_rq) {
6992
		enqueue_task(rq, p, 0);
6993 6994
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
6995 6996

	check_class_changed(rq, p, prev_class, old_prio);
6997 6998
}

L
Linus Torvalds 已提交
6999 7000
void normalize_rt_tasks(void)
{
7001
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7002
	unsigned long flags;
7003
	struct rq *rq;
L
Linus Torvalds 已提交
7004

7005
	read_lock_irqsave(&tasklist_lock, flags);
7006
	do_each_thread(g, p) {
7007 7008 7009 7010 7011 7012
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7013 7014
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7015 7016 7017
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7018
#endif
I
Ingo Molnar 已提交
7019

7020
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7021 7022 7023 7024
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7025
			if (task_nice(p) < 0 && p->mm)
I
Ingo Molnar 已提交
7026
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7027
			continue;
I
Ingo Molnar 已提交
7028
		}
L
Linus Torvalds 已提交
7029

7030
		raw_spin_lock(&p->pi_lock);
7031
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7032

7033
		normalize_task(rq, p);
7034

7035
		__task_rq_unlock(rq);
7036
		raw_spin_unlock(&p->pi_lock);
7037 7038
	} while_each_thread(g, p);

7039
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7040 7041 7042
}

#endif /* CONFIG_MAGIC_SYSRQ */
7043

7044
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7045
/*
7046
 * These functions are only useful for the IA64 MCA handling, or kdb.
7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7060 7061
 *
 * Return: The current task for @cpu.
7062
 */
7063
struct task_struct *curr_task(int cpu)
7064 7065 7066 7067
{
	return cpu_curr(cpu);
}

7068 7069 7070
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7071 7072 7073 7074 7075 7076
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7077 7078
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7079 7080 7081 7082 7083 7084 7085
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7086
void set_curr_task(int cpu, struct task_struct *p)
7087 7088 7089 7090 7091
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7092

D
Dhaval Giani 已提交
7093
#ifdef CONFIG_CGROUP_SCHED
7094 7095 7096
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7097 7098 7099 7100
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7101
	autogroup_free(tg);
7102 7103 7104 7105
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7106
struct task_group *sched_create_group(struct task_group *parent)
7107 7108 7109 7110 7111 7112 7113
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7114
	if (!alloc_fair_sched_group(tg, parent))
7115 7116
		goto err;

7117
	if (!alloc_rt_sched_group(tg, parent))
7118 7119
		goto err;

7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7131
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7132
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7133 7134 7135 7136 7137

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7138
	list_add_rcu(&tg->siblings, &parent->children);
7139
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7140 7141
}

7142
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7143
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7144 7145
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7146
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7147 7148
}

7149
/* Destroy runqueue etc associated with a task group */
7150
void sched_destroy_group(struct task_group *tg)
7151 7152 7153 7154 7155 7156
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7157
{
7158
	unsigned long flags;
7159
	int i;
S
Srivatsa Vaddagiri 已提交
7160

7161 7162
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7163
		unregister_fair_sched_group(tg, i);
7164 7165

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7166
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7167
	list_del_rcu(&tg->siblings);
7168
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7169 7170
}

7171
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7172 7173 7174
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7175 7176
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7177
{
P
Peter Zijlstra 已提交
7178
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7179 7180 7181 7182 7183 7184
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7185
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7186
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7187

7188
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7189
		dequeue_task(rq, tsk, 0);
7190 7191
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7192

7193
	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
P
Peter Zijlstra 已提交
7194 7195 7196 7197 7198
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7199
#ifdef CONFIG_FAIR_GROUP_SCHED
7200 7201 7202
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7203
#endif
7204
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7205

7206 7207 7208
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7209
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7210

7211
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7212
}
D
Dhaval Giani 已提交
7213
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7214

7215 7216 7217 7218 7219
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7220

P
Peter Zijlstra 已提交
7221 7222
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7223
{
P
Peter Zijlstra 已提交
7224
	struct task_struct *g, *p;
7225

P
Peter Zijlstra 已提交
7226
	do_each_thread(g, p) {
7227
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7228 7229
			return 1;
	} while_each_thread(g, p);
7230

P
Peter Zijlstra 已提交
7231 7232
	return 0;
}
7233

P
Peter Zijlstra 已提交
7234 7235 7236 7237 7238
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7239

7240
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7241 7242 7243 7244 7245
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7246

P
Peter Zijlstra 已提交
7247 7248
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7249

P
Peter Zijlstra 已提交
7250 7251 7252
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7253 7254
	}

7255 7256 7257 7258 7259
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7260

7261 7262 7263
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7264 7265
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7266

P
Peter Zijlstra 已提交
7267
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7268

7269 7270 7271 7272 7273
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7274

7275 7276 7277
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7278 7279 7280
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7281

P
Peter Zijlstra 已提交
7282 7283 7284 7285
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7286

P
Peter Zijlstra 已提交
7287
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7288
	}
P
Peter Zijlstra 已提交
7289

P
Peter Zijlstra 已提交
7290 7291 7292 7293
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7294 7295
}

P
Peter Zijlstra 已提交
7296
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7297
{
7298 7299
	int ret;

P
Peter Zijlstra 已提交
7300 7301 7302 7303 7304 7305
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7306 7307 7308 7309 7310
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7311 7312
}

7313
static int tg_set_rt_bandwidth(struct task_group *tg,
7314
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7315
{
P
Peter Zijlstra 已提交
7316
	int i, err = 0;
P
Peter Zijlstra 已提交
7317 7318

	mutex_lock(&rt_constraints_mutex);
7319
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7320 7321
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7322
		goto unlock;
P
Peter Zijlstra 已提交
7323

7324
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7325 7326
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7327 7328 7329 7330

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7331
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7332
		rt_rq->rt_runtime = rt_runtime;
7333
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7334
	}
7335
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7336
unlock:
7337
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7338 7339 7340
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7341 7342
}

7343
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7344 7345 7346 7347 7348 7349 7350 7351
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7352
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7353 7354
}

7355
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7356 7357 7358
{
	u64 rt_runtime_us;

7359
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7360 7361
		return -1;

7362
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7363 7364 7365
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7366

7367
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7368 7369 7370 7371 7372 7373
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7374 7375 7376
	if (rt_period == 0)
		return -EINVAL;

7377
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7378 7379
}

7380
static long sched_group_rt_period(struct task_group *tg)
7381 7382 7383 7384 7385 7386 7387
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7388
#endif /* CONFIG_RT_GROUP_SCHED */
7389

7390
#ifdef CONFIG_RT_GROUP_SCHED
7391 7392 7393 7394 7395
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7396
	read_lock(&tasklist_lock);
7397
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7398
	read_unlock(&tasklist_lock);
7399 7400 7401 7402
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7403

7404
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7405 7406 7407 7408 7409 7410 7411 7412
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7413
#else /* !CONFIG_RT_GROUP_SCHED */
7414 7415
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7416
	unsigned long flags;
7417
	int i, ret = 0;
7418

7419
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7420 7421 7422
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7423
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7424
		rt_rq->rt_runtime = global_rt_runtime();
7425
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7426
	}
7427
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7428

7429
	return ret;
7430
}
7431
#endif /* CONFIG_RT_GROUP_SCHED */
7432

7433 7434
static int sched_dl_global_constraints(void)
{
7435 7436
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7437
	u64 new_bw = to_ratio(period, runtime);
7438
	int cpu, ret = 0;
7439
	unsigned long flags;
7440 7441 7442 7443 7444 7445 7446 7447 7448 7449

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7450 7451
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);
7452

7453
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7454 7455
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7456
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7457 7458 7459

		if (ret)
			break;
7460 7461
	}

7462
	return ret;
7463 7464
}

7465
static void sched_dl_do_global(void)
7466
{
7467 7468
	u64 new_bw = -1;
	int cpu;
7469
	unsigned long flags;
7470

7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);

7483
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7484
		dl_b->bw = new_bw;
7485
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7486
	}
7487 7488 7489 7490 7491 7492 7493
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7494 7495
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7496 7497 7498 7499 7500 7501 7502 7503 7504
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7505 7506
}

7507
int sched_rt_handler(struct ctl_table *table, int write,
7508
		void __user *buffer, size_t *lenp,
7509 7510 7511 7512
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
7513
	int ret;
7514 7515 7516 7517 7518

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7519
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7520 7521

	if (!ret && write) {
7522 7523 7524 7525
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

7526
		ret = sched_rt_global_constraints();
7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540
		if (ret)
			goto undo;

		ret = sched_dl_global_constraints();
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
7541 7542 7543 7544 7545
	}
	mutex_unlock(&mutex);

	return ret;
}
7546

7547
int sched_rr_handler(struct ctl_table *table, int write,
7548 7549 7550 7551 7552 7553 7554 7555
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7556 7557
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
7558
	if (!ret && write) {
7559 7560
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7561 7562 7563 7564 7565
	}
	mutex_unlock(&mutex);
	return ret;
}

7566
#ifdef CONFIG_CGROUP_SCHED
7567

7568
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7569
{
7570
	return css ? container_of(css, struct task_group, css) : NULL;
7571 7572
}

7573 7574
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7575
{
7576 7577
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7578

7579
	if (!parent) {
7580
		/* This is early initialization for the top cgroup */
7581
		return &root_task_group.css;
7582 7583
	}

7584
	tg = sched_create_group(parent);
7585 7586 7587 7588 7589 7590
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7591
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7592
{
7593 7594
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css_parent(css));
7595

T
Tejun Heo 已提交
7596 7597
	if (parent)
		sched_online_group(tg, parent);
7598 7599 7600
	return 0;
}

7601
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7602
{
7603
	struct task_group *tg = css_tg(css);
7604 7605 7606 7607

	sched_destroy_group(tg);
}

7608
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7609
{
7610
	struct task_group *tg = css_tg(css);
7611 7612 7613 7614

	sched_offline_group(tg);
}

7615
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7616
				 struct cgroup_taskset *tset)
7617
{
7618 7619
	struct task_struct *task;

7620
	cgroup_taskset_for_each(task, tset) {
7621
#ifdef CONFIG_RT_GROUP_SCHED
7622
		if (!sched_rt_can_attach(css_tg(css), task))
7623
			return -EINVAL;
7624
#else
7625 7626 7627
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7628
#endif
7629
	}
7630 7631
	return 0;
}
7632

7633
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7634
			      struct cgroup_taskset *tset)
7635
{
7636 7637
	struct task_struct *task;

7638
	cgroup_taskset_for_each(task, tset)
7639
		sched_move_task(task);
7640 7641
}

7642 7643 7644
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7657
#ifdef CONFIG_FAIR_GROUP_SCHED
7658 7659
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
7660
{
7661
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7662 7663
}

7664 7665
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
7666
{
7667
	struct task_group *tg = css_tg(css);
7668

7669
	return (u64) scale_load_down(tg->shares);
7670
}
7671 7672

#ifdef CONFIG_CFS_BANDWIDTH
7673 7674
static DEFINE_MUTEX(cfs_constraints_mutex);

7675 7676 7677
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7678 7679
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7680 7681
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7682
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7683
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7704 7705 7706 7707 7708
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7709
	runtime_enabled = quota != RUNTIME_INF;
7710
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7711 7712 7713 7714 7715 7716
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
7717 7718 7719
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7720

P
Paul Turner 已提交
7721
	__refill_cfs_bandwidth_runtime(cfs_b);
7722 7723 7724 7725 7726 7727
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7728 7729 7730 7731
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7732
		struct rq *rq = cfs_rq->rq;
7733 7734

		raw_spin_lock_irq(&rq->lock);
7735
		cfs_rq->runtime_enabled = runtime_enabled;
7736
		cfs_rq->runtime_remaining = 0;
7737

7738
		if (cfs_rq->throttled)
7739
			unthrottle_cfs_rq(cfs_rq);
7740 7741
		raw_spin_unlock_irq(&rq->lock);
	}
7742 7743
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
7744 7745
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7746

7747
	return ret;
7748 7749 7750 7751 7752 7753
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7754
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7767
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7768 7769
		return -1;

7770
	quota_us = tg->cfs_bandwidth.quota;
7771 7772 7773 7774 7775 7776 7777 7778 7779 7780
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7781
	quota = tg->cfs_bandwidth.quota;
7782 7783 7784 7785 7786 7787 7788 7789

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7790
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7791 7792 7793 7794 7795
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

7796 7797
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
7798
{
7799
	return tg_get_cfs_quota(css_tg(css));
7800 7801
}

7802 7803
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
7804
{
7805
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7806 7807
}

7808 7809
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7810
{
7811
	return tg_get_cfs_period(css_tg(css));
7812 7813
}

7814 7815
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
7816
{
7817
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7818 7819
}

7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7852
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7853 7854 7855 7856 7857
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7858
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7879
	int ret;
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7891 7892 7893 7894 7895
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7896
}
7897

7898
static int cpu_stats_show(struct seq_file *sf, void *v)
7899
{
7900
	struct task_group *tg = css_tg(seq_css(sf));
7901
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7902

7903 7904 7905
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7906 7907 7908

	return 0;
}
7909
#endif /* CONFIG_CFS_BANDWIDTH */
7910
#endif /* CONFIG_FAIR_GROUP_SCHED */
7911

7912
#ifdef CONFIG_RT_GROUP_SCHED
7913 7914
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
7915
{
7916
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
7917 7918
}

7919 7920
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
7921
{
7922
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
7923
}
7924

7925 7926
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
7927
{
7928
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7929 7930
}

7931 7932
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7933
{
7934
	return sched_group_rt_period(css_tg(css));
7935
}
7936
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7937

7938
static struct cftype cpu_files[] = {
7939
#ifdef CONFIG_FAIR_GROUP_SCHED
7940 7941
	{
		.name = "shares",
7942 7943
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7944
	},
7945
#endif
7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7957 7958
	{
		.name = "stat",
7959
		.seq_show = cpu_stats_show,
7960
	},
7961
#endif
7962
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7963
	{
P
Peter Zijlstra 已提交
7964
		.name = "rt_runtime_us",
7965 7966
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7967
	},
7968 7969
	{
		.name = "rt_period_us",
7970 7971
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7972
	},
7973
#endif
7974
	{ }	/* terminate */
7975 7976
};

7977
struct cgroup_subsys cpu_cgrp_subsys = {
7978 7979
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
7980 7981
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
7982 7983
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7984
	.exit		= cpu_cgroup_exit,
7985
	.base_cftypes	= cpu_files,
7986 7987 7988
	.early_init	= 1,
};

7989
#endif	/* CONFIG_CGROUP_SCHED */
7990

7991 7992 7993 7994 7995
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}