core.c 193.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
G
Glauber Costa 已提交
77 78 79
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
80

81
#include "sched.h"
82
#include "../workqueue_sched.h"
83

84
#define CREATE_TRACE_POINTS
85
#include <trace/events/sched.h>
86

87
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
88
{
89 90
	unsigned long delta;
	ktime_t soft, hard, now;
91

92 93 94 95 96 97
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
98

99 100 101 102 103 104 105 106
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

107 108
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
109

110
static void update_rq_clock_task(struct rq *rq, s64 delta);
111

112
void update_rq_clock(struct rq *rq)
113
{
114
	s64 delta;
115

116
	if (rq->skip_clock_update > 0)
117
		return;
118

119 120 121
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
122 123
}

I
Ingo Molnar 已提交
124 125 126
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
127 128 129 130

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
131
const_debug unsigned int sysctl_sched_features =
132
#include "features.h"
P
Peter Zijlstra 已提交
133 134 135 136 137 138 139 140
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

141
static __read_mostly char *sched_feat_names[] = {
142
#include "features.h"
P
Peter Zijlstra 已提交
143 144 145 146 147
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
148
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
149 150 151
{
	int i;

152
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
153 154 155
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
156
	}
L
Li Zefan 已提交
157
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
158

L
Li Zefan 已提交
159
	return 0;
P
Peter Zijlstra 已提交
160 161
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#ifdef HAVE_JUMP_LABEL

#define jump_label_key__true  jump_label_key_enabled
#define jump_label_key__false jump_label_key_disabled

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
	if (jump_label_enabled(&sched_feat_keys[i]))
		jump_label_dec(&sched_feat_keys[i]);
}

static void sched_feat_enable(int i)
{
	if (!jump_label_enabled(&sched_feat_keys[i]))
		jump_label_inc(&sched_feat_keys[i]);
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

P
Peter Zijlstra 已提交
192 193 194 195 196
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
197
	char *cmp;
P
Peter Zijlstra 已提交
198 199 200 201 202 203 204 205 206 207
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
208
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
209

H
Hillf Danton 已提交
210
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
211 212 213 214
		neg = 1;
		cmp += 3;
	}

215
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
216
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
217
			if (neg) {
P
Peter Zijlstra 已提交
218
				sysctl_sched_features &= ~(1UL << i);
219 220
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
221
				sysctl_sched_features |= (1UL << i);
222 223
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
224 225 226 227
			break;
		}
	}

228
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
229 230
		return -EINVAL;

231
	*ppos += cnt;
P
Peter Zijlstra 已提交
232 233 234 235

	return cnt;
}

L
Li Zefan 已提交
236 237 238 239 240
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

241
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
242 243 244 245 246
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
247 248 249 250 251 252 253 254 255 256
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
257
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
258

259 260 261 262 263 264
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

265 266 267 268 269 270 271 272
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
273
/*
P
Peter Zijlstra 已提交
274
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
275 276
 * default: 1s
 */
P
Peter Zijlstra 已提交
277
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
278

279
__read_mostly int scheduler_running;
280

P
Peter Zijlstra 已提交
281 282 283 284 285
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
286 287


L
Linus Torvalds 已提交
288

289
/*
290
 * __task_rq_lock - lock the rq @p resides on.
291
 */
292
static inline struct rq *__task_rq_lock(struct task_struct *p)
293 294
	__acquires(rq->lock)
{
295 296
	struct rq *rq;

297 298
	lockdep_assert_held(&p->pi_lock);

299
	for (;;) {
300
		rq = task_rq(p);
301
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
302
		if (likely(rq == task_rq(p)))
303
			return rq;
304
		raw_spin_unlock(&rq->lock);
305 306 307
	}
}

L
Linus Torvalds 已提交
308
/*
309
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
310
 */
311
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
312
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
313 314
	__acquires(rq->lock)
{
315
	struct rq *rq;
L
Linus Torvalds 已提交
316

317
	for (;;) {
318
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
319
		rq = task_rq(p);
320
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
321
		if (likely(rq == task_rq(p)))
322
			return rq;
323 324
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
325 326 327
	}
}

A
Alexey Dobriyan 已提交
328
static void __task_rq_unlock(struct rq *rq)
329 330
	__releases(rq->lock)
{
331
	raw_spin_unlock(&rq->lock);
332 333
}

334 335
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
336
	__releases(rq->lock)
337
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
338
{
339 340
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
341 342 343
}

/*
344
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
345
 */
A
Alexey Dobriyan 已提交
346
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
347 348
	__acquires(rq->lock)
{
349
	struct rq *rq;
L
Linus Torvalds 已提交
350 351 352

	local_irq_disable();
	rq = this_rq();
353
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
354 355 356 357

	return rq;
}

P
Peter Zijlstra 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

386
	raw_spin_lock(&rq->lock);
387
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
388
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
389
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
390 391 392 393

	return HRTIMER_NORESTART;
}

394
#ifdef CONFIG_SMP
395 396 397 398
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
399
{
400
	struct rq *rq = arg;
401

402
	raw_spin_lock(&rq->lock);
403 404
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
405
	raw_spin_unlock(&rq->lock);
406 407
}

408 409 410 411 412
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
413
void hrtick_start(struct rq *rq, u64 delay)
414
{
415 416
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
417

418
	hrtimer_set_expires(timer, time);
419 420 421 422

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
423
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
424 425
		rq->hrtick_csd_pending = 1;
	}
426 427 428 429 430 431 432 433 434 435 436 437 438 439
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
440
		hrtick_clear(cpu_rq(cpu));
441 442 443 444 445 446
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

447
static __init void init_hrtick(void)
448 449 450
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
451 452 453 454 455 456
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
457
void hrtick_start(struct rq *rq, u64 delay)
458
{
459
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
460
			HRTIMER_MODE_REL_PINNED, 0);
461
}
462

A
Andrew Morton 已提交
463
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
464 465
{
}
466
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
467

468
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
469
{
470 471
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
472

473 474 475 476
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
477

478 479
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
480
}
A
Andrew Morton 已提交
481
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
482 483 484 485 486 487 488 489
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

490 491 492
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
493
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
494

I
Ingo Molnar 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

508
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
509 510 511
{
	int cpu;

512
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
513

514
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
515 516
		return;

517
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
518 519 520 521 522 523 524 525 526 527 528

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

529
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
530 531 532 533
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

534
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
535 536
		return;
	resched_task(cpu_curr(cpu));
537
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
538
}
539 540

#ifdef CONFIG_NO_HZ
541 542 543 544 545 546 547 548 549 550 551 552 553 554
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

555
	rcu_read_lock();
556
	for_each_domain(cpu, sd) {
557 558 559 560 561 562
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
563
	}
564 565
unlock:
	rcu_read_unlock();
566 567
	return cpu;
}
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
594 595

	/*
596 597 598
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
599
	 */
600
	set_tsk_need_resched(rq->idle);
601

602 603 604 605
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
606 607
}

608
static inline bool got_nohz_idle_kick(void)
609
{
610 611
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
612 613
}

614
#else /* CONFIG_NO_HZ */
615

616
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
617
{
618
	return false;
P
Peter Zijlstra 已提交
619 620
}

621
#endif /* CONFIG_NO_HZ */
622

623
void sched_avg_update(struct rq *rq)
624
{
625 626 627
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
628 629 630 631 632 633
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
634 635 636
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
637 638
}

639
#else /* !CONFIG_SMP */
640
void resched_task(struct task_struct *p)
641
{
642
	assert_raw_spin_locked(&task_rq(p)->lock);
643
	set_tsk_need_resched(p);
644
}
645
#endif /* CONFIG_SMP */
646

647 648
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
649
/*
650 651 652 653
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
654
 */
655
int walk_tg_tree_from(struct task_group *from,
656
			     tg_visitor down, tg_visitor up, void *data)
657 658
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
659
	int ret;
660

661 662
	parent = from;

663
down:
P
Peter Zijlstra 已提交
664 665
	ret = (*down)(parent, data);
	if (ret)
666
		goto out;
667 668 669 670 671 672 673
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
674
	ret = (*up)(parent, data);
675 676
	if (ret || parent == from)
		goto out;
677 678 679 680 681

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
682
out:
P
Peter Zijlstra 已提交
683
	return ret;
684 685
}

686
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
687
{
688
	return 0;
P
Peter Zijlstra 已提交
689
}
690 691
#endif

692
void update_cpu_load(struct rq *this_rq);
693

694 695
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
696 697 698
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
699 700 701 702
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
703
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
704
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
705 706
		return;
	}
707

708
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
709
	load->inv_weight = prio_to_wmult[prio];
710 711
}

712
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
713
{
714
	update_rq_clock(rq);
I
Ingo Molnar 已提交
715
	sched_info_queued(p);
716
	p->sched_class->enqueue_task(rq, p, flags);
717 718
}

719
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
720
{
721
	update_rq_clock(rq);
722
	sched_info_dequeued(p);
723
	p->sched_class->dequeue_task(rq, p, flags);
724 725
}

726 727 728
/*
 * activate_task - move a task to the runqueue.
 */
729
void activate_task(struct rq *rq, struct task_struct *p, int flags)
730 731 732 733
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

734
	enqueue_task(rq, p, flags);
735 736 737 738 739
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
740
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
741 742 743 744
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

745
	dequeue_task(rq, p, flags);
746 747
}

748 749
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

750 751 752 753 754 755 756
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
757 758 759
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
760
 */
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
815 816 817
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
818
#endif /* CONFIG_64BIT */
819

820 821 822 823
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
824 825 826
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
827
	s64 delta;
828 829 830 831 832 833 834 835
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
836 837 838
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

839
	irq_time_write_begin();
840 841 842 843 844 845 846
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
847
		__this_cpu_add(cpu_hardirq_time, delta);
848
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
849
		__this_cpu_add(cpu_softirq_time, delta);
850

851
	irq_time_write_end();
852 853
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
854
EXPORT_SYMBOL_GPL(account_system_vtime);
855

G
Glauber Costa 已提交
856 857 858 859
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

#ifdef CONFIG_PARAVIRT
static inline u64 steal_ticks(u64 steal)
860
{
G
Glauber Costa 已提交
861 862
	if (unlikely(steal > NSEC_PER_SEC))
		return div_u64(steal, TICK_NSEC);
863

G
Glauber Costa 已提交
864 865 866 867
	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
}
#endif

868
static void update_rq_clock_task(struct rq *rq, s64 delta)
869
{
870 871 872 873 874 875 876 877
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
878
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_branch((&paravirt_steal_rq_enabled))) {
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

920 921
	rq->clock_task += delta;

922 923 924 925
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
926 927
}

928
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
929 930
static int irqtime_account_hi_update(void)
{
931
	u64 *cpustat = kcpustat_this_cpu->cpustat;
932 933 934 935 936 937
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
938
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
939 940 941 942 943 944 945
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
946
	u64 *cpustat = kcpustat_this_cpu->cpustat;
947 948 949 950 951 952
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
953
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
954 955 956 957 958
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

959
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
960

961 962
#define sched_clock_irqtime	(0)

963
#endif
964

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

995
/*
I
Ingo Molnar 已提交
996
 * __normal_prio - return the priority that is based on the static prio
997 998 999
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1000
	return p->static_prio;
1001 1002
}

1003 1004 1005 1006 1007 1008 1009
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1010
static inline int normal_prio(struct task_struct *p)
1011 1012 1013
{
	int prio;

1014
	if (task_has_rt_policy(p))
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1028
static int effective_prio(struct task_struct *p)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1041 1042 1043 1044
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1045
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1046 1047 1048 1049
{
	return cpu_curr(task_cpu(p)) == p;
}

1050 1051
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1052
				       int oldprio)
1053 1054 1055
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1056 1057 1058 1059
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
1060 1061
}

1062
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
1083
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1084 1085 1086
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
1087
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1088
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1089
{
1090 1091 1092 1093 1094
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1095 1096
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1097 1098

#ifdef CONFIG_LOCKDEP
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
	 * see set_task_rq().
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1109 1110 1111
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1112 1113
#endif

1114
	trace_sched_migrate_task(p, new_cpu);
1115

1116 1117
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
1118
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1119
	}
I
Ingo Molnar 已提交
1120 1121

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1122 1123
}

1124
struct migration_arg {
1125
	struct task_struct *task;
L
Linus Torvalds 已提交
1126
	int dest_cpu;
1127
};
L
Linus Torvalds 已提交
1128

1129 1130
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1131 1132 1133
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1134 1135 1136 1137 1138 1139 1140
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1141 1142 1143 1144 1145 1146
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1147
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1148 1149
{
	unsigned long flags;
I
Ingo Molnar 已提交
1150
	int running, on_rq;
R
Roland McGrath 已提交
1151
	unsigned long ncsw;
1152
	struct rq *rq;
L
Linus Torvalds 已提交
1153

1154 1155 1156 1157 1158 1159 1160 1161
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1174 1175 1176
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1177
			cpu_relax();
R
Roland McGrath 已提交
1178
		}
1179

1180 1181 1182 1183 1184 1185
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1186
		trace_sched_wait_task(p);
1187
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1188
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1189
		ncsw = 0;
1190
		if (!match_state || p->state == match_state)
1191
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1192
		task_rq_unlock(rq, p, &flags);
1193

R
Roland McGrath 已提交
1194 1195 1196 1197 1198 1199
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1210

1211 1212 1213 1214 1215
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1216
		 * So if it was still runnable (but just not actively
1217 1218 1219 1220
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1221 1222 1223 1224
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1225 1226
			continue;
		}
1227

1228 1229 1230 1231 1232 1233 1234
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1235 1236

	return ncsw;
L
Linus Torvalds 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1246
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1247 1248 1249 1250 1251
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1252
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1262
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1263
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1264

1265
#ifdef CONFIG_SMP
1266
/*
1267
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1268
 */
1269 1270 1271 1272 1273 1274 1275
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
1276
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277 1278 1279
			return dest_cpu;

	/* Any allowed, online CPU? */
1280
	dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
1281 1282 1283 1284
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
1285 1286 1287 1288 1289 1290 1291 1292 1293
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
1294 1295 1296 1297 1298
	}

	return dest_cpu;
}

1299
/*
1300
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1301
 */
1302
static inline
1303
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1304
{
1305
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1317
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1318
		     !cpu_online(cpu)))
1319
		cpu = select_fallback_rq(task_cpu(p), p);
1320 1321

	return cpu;
1322
}
1323 1324 1325 1326 1327 1328

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1329 1330
#endif

P
Peter Zijlstra 已提交
1331
static void
1332
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1333
{
P
Peter Zijlstra 已提交
1334
#ifdef CONFIG_SCHEDSTATS
1335 1336
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1347
		rcu_read_lock();
P
Peter Zijlstra 已提交
1348 1349 1350 1351 1352 1353
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1354
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1355
	}
1356 1357 1358 1359

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1360 1361 1362
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1363
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1364 1365

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1366
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1367 1368 1369 1370 1371 1372

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1373
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1374
	p->on_rq = 1;
1375 1376 1377 1378

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1379 1380
}

1381 1382 1383
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1384
static void
1385
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1386
{
1387
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1388 1389 1390 1391 1392 1393 1394
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1395
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1441
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1442
static void sched_ttwu_pending(void)
1443 1444
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1445 1446
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1447 1448 1449

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1450 1451 1452
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1453 1454 1455 1456 1457 1458 1459 1460
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1461
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1478
	sched_ttwu_pending();
1479 1480 1481 1482

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1483 1484
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1485
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1486
	}
1487
	irq_exit();
1488 1489 1490 1491
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1492
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1493 1494
		smp_send_reschedule(cpu);
}
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_cpu) {
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;

}
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1514 1515 1516 1517 1518

static inline int ttwu_share_cache(int this_cpu, int that_cpu)
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1519
#endif /* CONFIG_SMP */
1520

1521 1522 1523 1524
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1525
#if defined(CONFIG_SMP)
1526
	if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) {
1527
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1528 1529 1530 1531 1532
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1533 1534 1535
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1536 1537 1538
}

/**
L
Linus Torvalds 已提交
1539
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1540
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1541
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1542
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1543 1544 1545 1546 1547 1548 1549
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1550 1551
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1552
 */
1553 1554
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1555 1556
{
	unsigned long flags;
1557
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1558

1559
	smp_wmb();
1560
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1561
	if (!(p->state & state))
L
Linus Torvalds 已提交
1562 1563
		goto out;

1564
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1565 1566
	cpu = task_cpu(p);

1567 1568
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1569 1570

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1571
	/*
1572 1573
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1574
	 */
1575 1576 1577
	while (p->on_cpu) {
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
		/*
1578 1579 1580 1581 1582
		 * In case the architecture enables interrupts in
		 * context_switch(), we cannot busy wait, since that
		 * would lead to deadlocks when an interrupt hits and
		 * tries to wake up @prev. So bail and do a complete
		 * remote wakeup.
1583
		 */
1584
		if (ttwu_activate_remote(p, wake_flags))
1585
			goto stat;
1586
#else
1587
		cpu_relax();
1588
#endif
1589
	}
1590
	/*
1591
	 * Pairs with the smp_wmb() in finish_lock_switch().
1592
	 */
1593
	smp_rmb();
L
Linus Torvalds 已提交
1594

1595
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1596
	p->state = TASK_WAKING;
1597

1598
	if (p->sched_class->task_waking)
1599
		p->sched_class->task_waking(p);
1600

1601
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1602 1603
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1604
		set_task_cpu(p, cpu);
1605
	}
L
Linus Torvalds 已提交
1606 1607
#endif /* CONFIG_SMP */

1608 1609
	ttwu_queue(p, cpu);
stat:
1610
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1611
out:
1612
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1613 1614 1615 1616

	return success;
}

T
Tejun Heo 已提交
1617 1618 1619 1620
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1621
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1622
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1623
 * the current task.
T
Tejun Heo 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1633 1634 1635 1636 1637 1638
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1639
	if (!(p->state & TASK_NORMAL))
1640
		goto out;
T
Tejun Heo 已提交
1641

P
Peter Zijlstra 已提交
1642
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1643 1644
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1645
	ttwu_do_wakeup(rq, p, 0);
1646
	ttwu_stat(p, smp_processor_id(), 0);
1647 1648
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1649 1650
}

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1662
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1663
{
1664
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1665 1666 1667
}
EXPORT_SYMBOL(wake_up_process);

1668
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1669 1670 1671 1672 1673 1674 1675
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1676 1677 1678 1679 1680
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1681 1682 1683
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1684 1685
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1686
	p->se.prev_sum_exec_runtime	= 0;
1687
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1688
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1689
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1690 1691

#ifdef CONFIG_SCHEDSTATS
1692
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1693
#endif
N
Nick Piggin 已提交
1694

P
Peter Zijlstra 已提交
1695
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1696

1697 1698 1699
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
1700 1701 1702 1703 1704
}

/*
 * fork()/clone()-time setup:
 */
1705
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1706
{
1707
	unsigned long flags;
I
Ingo Molnar 已提交
1708 1709 1710
	int cpu = get_cpu();

	__sched_fork(p);
1711
	/*
1712
	 * We mark the process as running here. This guarantees that
1713 1714 1715
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1716
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1717

1718 1719 1720 1721 1722
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1723 1724 1725 1726
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1727
		if (task_has_rt_policy(p)) {
1728
			p->policy = SCHED_NORMAL;
1729
			p->static_prio = NICE_TO_PRIO(0);
1730 1731 1732 1733 1734 1735
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1736

1737 1738 1739 1740 1741 1742
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1743

H
Hiroshi Shimamoto 已提交
1744 1745
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1746

P
Peter Zijlstra 已提交
1747 1748 1749
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1750 1751 1752 1753 1754 1755 1756
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1757
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1758
	set_task_cpu(p, cpu);
1759
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1760

1761
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1762
	if (likely(sched_info_on()))
1763
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1764
#endif
P
Peter Zijlstra 已提交
1765 1766
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1767
#endif
1768
#ifdef CONFIG_PREEMPT_COUNT
1769
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1770
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1771
#endif
1772
#ifdef CONFIG_SMP
1773
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1774
#endif
1775

N
Nick Piggin 已提交
1776
	put_cpu();
L
Linus Torvalds 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1786
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1787 1788
{
	unsigned long flags;
I
Ingo Molnar 已提交
1789
	struct rq *rq;
1790

1791
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1792 1793 1794 1795 1796 1797
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1798
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1799 1800
#endif

1801
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1802
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1803
	p->on_rq = 1;
1804
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1805
	check_preempt_curr(rq, p, WF_FORK);
1806
#ifdef CONFIG_SMP
1807 1808
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1809
#endif
1810
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1811 1812
}

1813 1814 1815
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1816
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1817
 * @notifier: notifier struct to register
1818 1819 1820 1821 1822 1823 1824 1825 1826
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1827
 * @notifier: notifier struct to unregister
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1857
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1869
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1870

1871 1872 1873
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1874
 * @prev: the current task that is being switched out
1875 1876 1877 1878 1879 1880 1881 1882 1883
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1884 1885 1886
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1887
{
1888 1889
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1890
	fire_sched_out_preempt_notifiers(prev, next);
1891 1892
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
1893
	trace_sched_switch(prev, next);
1894 1895
}

L
Linus Torvalds 已提交
1896 1897
/**
 * finish_task_switch - clean up after a task-switch
1898
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1899 1900
 * @prev: the thread we just switched away from.
 *
1901 1902 1903 1904
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1905 1906
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1907
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1908 1909 1910
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1911
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1912 1913 1914
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1915
	long prev_state;
L
Linus Torvalds 已提交
1916 1917 1918 1919 1920

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1921
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1922 1923
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1924
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1925 1926 1927 1928 1929
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1930
	prev_state = prev->state;
1931
	finish_arch_switch(prev);
1932 1933 1934
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1935
	perf_event_task_sched_in(prev, current);
1936 1937 1938
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1939
	finish_lock_switch(rq, prev);
1940
	trace_sched_stat_sleeptime(current, rq->clock);
S
Steven Rostedt 已提交
1941

1942
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1943 1944
	if (mm)
		mmdrop(mm);
1945
	if (unlikely(prev_state == TASK_DEAD)) {
1946 1947 1948
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1949
		 */
1950
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1951
		put_task_struct(prev);
1952
	}
L
Linus Torvalds 已提交
1953 1954
}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1970
		raw_spin_lock_irqsave(&rq->lock, flags);
1971 1972
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1973
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1974 1975 1976 1977 1978 1979

		rq->post_schedule = 0;
	}
}

#else
1980

1981 1982 1983 1984 1985 1986
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1987 1988
}

1989 1990
#endif

L
Linus Torvalds 已提交
1991 1992 1993 1994
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1995
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1996 1997
	__releases(rq->lock)
{
1998 1999
	struct rq *rq = this_rq();

2000
	finish_task_switch(rq, prev);
2001

2002 2003 2004 2005 2006
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2007

2008 2009 2010 2011
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2012
	if (current->set_child_tid)
2013
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2014 2015 2016 2017 2018 2019
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2020
static inline void
2021
context_switch(struct rq *rq, struct task_struct *prev,
2022
	       struct task_struct *next)
L
Linus Torvalds 已提交
2023
{
I
Ingo Molnar 已提交
2024
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2025

2026
	prepare_task_switch(rq, prev, next);
2027

I
Ingo Molnar 已提交
2028 2029
	mm = next->mm;
	oldmm = prev->active_mm;
2030 2031 2032 2033 2034
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2035
	arch_start_context_switch(prev);
2036

2037
	if (!mm) {
L
Linus Torvalds 已提交
2038 2039 2040 2041 2042 2043
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2044
	if (!prev->mm) {
L
Linus Torvalds 已提交
2045 2046 2047
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2048 2049 2050 2051 2052 2053 2054
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2055
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2056
#endif
L
Linus Torvalds 已提交
2057 2058 2059 2060

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2061 2062 2063 2064 2065 2066 2067
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2085
}
L
Linus Torvalds 已提交
2086 2087

unsigned long nr_uninterruptible(void)
2088
{
L
Linus Torvalds 已提交
2089
	unsigned long i, sum = 0;
2090

2091
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2092
		sum += cpu_rq(i)->nr_uninterruptible;
2093 2094

	/*
L
Linus Torvalds 已提交
2095 2096
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2097
	 */
L
Linus Torvalds 已提交
2098 2099
	if (unlikely((long)sum < 0))
		sum = 0;
2100

L
Linus Torvalds 已提交
2101
	return sum;
2102 2103
}

L
Linus Torvalds 已提交
2104
unsigned long long nr_context_switches(void)
2105
{
2106 2107
	int i;
	unsigned long long sum = 0;
2108

2109
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2110
		sum += cpu_rq(i)->nr_switches;
2111

L
Linus Torvalds 已提交
2112 2113
	return sum;
}
2114

L
Linus Torvalds 已提交
2115 2116 2117
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2118

2119
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2120
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2121

L
Linus Torvalds 已提交
2122 2123
	return sum;
}
2124

2125
unsigned long nr_iowait_cpu(int cpu)
2126
{
2127
	struct rq *this = cpu_rq(cpu);
2128 2129
	return atomic_read(&this->nr_iowait);
}
2130

2131 2132 2133 2134 2135
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2136

2137

2138 2139 2140 2141 2142
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2143

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2159 2160 2161 2162 2163 2164 2165 2166 2167
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2168 2169 2170 2171 2172 2173 2174 2175
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

2176
void calc_load_account_idle(struct rq *this_rq)
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(unsigned long ticks)
{
	long delta, active, n;

	if (time_before(jiffies, calc_load_update))
		return;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
	 * If we were idle for multiple load cycles, apply them.
	 */
	if (ticks >= LOAD_FREQ) {
		n = ticks / LOAD_FREQ;

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		calc_load_update += n * LOAD_FREQ;
	}

	/*
	 * Its possible the remainder of the above division also crosses
	 * a LOAD_FREQ period, the regular check in calc_global_load()
	 * which comes after this will take care of that.
	 *
	 * Consider us being 11 ticks before a cycle completion, and us
	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
	 * age us 4 cycles, and the test in calc_global_load() will
	 * pick up the final one.
	 */
}
2319
#else
2320
void calc_load_account_idle(struct rq *this_rq)
2321 2322 2323 2324 2325 2326 2327
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
2328 2329 2330 2331

static void calc_global_nohz(unsigned long ticks)
{
}
2332 2333
#endif

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2347 2348 2349
}

/*
2350 2351
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2352
 */
2353
void calc_global_load(unsigned long ticks)
2354
{
2355
	long active;
L
Linus Torvalds 已提交
2356

2357 2358 2359
	calc_global_nohz(ticks);

	if (time_before(jiffies, calc_load_update + 10))
2360
		return;
L
Linus Torvalds 已提交
2361

2362 2363
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2364

2365 2366 2367
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2368

2369 2370
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
2371

2372
/*
2373 2374
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2375 2376 2377
 */
static void calc_load_account_active(struct rq *this_rq)
{
2378
	long delta;
2379

2380 2381
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2382

2383 2384 2385
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
2386
		atomic_long_add(delta, &calc_load_tasks);
2387 2388

	this_rq->calc_load_update += LOAD_FREQ;
2389 2390
}

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2458
/*
I
Ingo Molnar 已提交
2459
 * Update rq->cpu_load[] statistics. This function is usually called every
2460 2461
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2462
 */
2463
void update_cpu_load(struct rq *this_rq)
2464
{
2465
	unsigned long this_load = this_rq->load.weight;
2466 2467
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
2468
	int i, scale;
2469

I
Ingo Molnar 已提交
2470
	this_rq->nr_load_updates++;
2471

2472 2473 2474 2475 2476 2477 2478
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
2479
	/* Update our load: */
2480 2481
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2482
		unsigned long old_load, new_load;
2483

I
Ingo Molnar 已提交
2484
		/* scale is effectively 1 << i now, and >> i divides by scale */
2485

I
Ingo Molnar 已提交
2486
		old_load = this_rq->cpu_load[i];
2487
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2488
		new_load = this_load;
I
Ingo Molnar 已提交
2489 2490 2491 2492 2493 2494
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2495 2496 2497
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2498
	}
2499 2500

	sched_avg_update(this_rq);
2501 2502 2503 2504 2505
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
2506

2507
	calc_load_account_active(this_rq);
2508 2509
}

I
Ingo Molnar 已提交
2510
#ifdef CONFIG_SMP
2511

2512
/*
P
Peter Zijlstra 已提交
2513 2514
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2515
 */
P
Peter Zijlstra 已提交
2516
void sched_exec(void)
2517
{
P
Peter Zijlstra 已提交
2518
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2519
	unsigned long flags;
2520
	int dest_cpu;
2521

2522
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2523
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2524 2525
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2526

2527
	if (likely(cpu_active(dest_cpu))) {
2528
		struct migration_arg arg = { p, dest_cpu };
2529

2530 2531
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2532 2533
		return;
	}
2534
unlock:
2535
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2536
}
I
Ingo Molnar 已提交
2537

L
Linus Torvalds 已提交
2538 2539 2540
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2541
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2542 2543

EXPORT_PER_CPU_SYMBOL(kstat);
2544
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2545 2546

/*
2547
 * Return any ns on the sched_clock that have not yet been accounted in
2548
 * @p in case that task is currently running.
2549 2550
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2551
 */
2552 2553 2554 2555 2556 2557
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2558
		ns = rq->clock_task - p->se.exec_start;
2559 2560 2561 2562 2563 2564 2565
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2566
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2567 2568
{
	unsigned long flags;
2569
	struct rq *rq;
2570
	u64 ns = 0;
2571

2572
	rq = task_rq_lock(p, &flags);
2573
	ns = do_task_delta_exec(p, rq);
2574
	task_rq_unlock(rq, p, &flags);
2575

2576 2577
	return ns;
}
2578

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2592
	task_rq_unlock(rq, p, &flags);
2593 2594 2595

	return ns;
}
2596

2597 2598 2599 2600 2601
#ifdef CONFIG_CGROUP_CPUACCT
struct cgroup_subsys cpuacct_subsys;
struct cpuacct root_cpuacct;
#endif

2602 2603
static inline void task_group_account_field(struct task_struct *p, int index,
					    u64 tmp)
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
{
#ifdef CONFIG_CGROUP_CPUACCT
	struct kernel_cpustat *kcpustat;
	struct cpuacct *ca;
#endif
	/*
	 * Since all updates are sure to touch the root cgroup, we
	 * get ourselves ahead and touch it first. If the root cgroup
	 * is the only cgroup, then nothing else should be necessary.
	 *
	 */
	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;

#ifdef CONFIG_CGROUP_CPUACCT
	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(p);
	while (ca && (ca != &root_cpuacct)) {
		kcpustat = this_cpu_ptr(ca->cpustat);
		kcpustat->cpustat[index] += tmp;
		ca = parent_ca(ca);
	}
	rcu_read_unlock();
#endif
}


L
Linus Torvalds 已提交
2633 2634 2635 2636
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
2637
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2638
 */
2639 2640
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2641
{
2642
	int index;
L
Linus Torvalds 已提交
2643

2644
	/* Add user time to process. */
2645 2646
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
2647
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
2648

2649
	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2650

L
Linus Torvalds 已提交
2651
	/* Add user time to cpustat. */
2652
	task_group_account_field(p, index, (__force u64) cputime);
2653

2654 2655
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
2656 2657
}

2658 2659 2660 2661
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
2662
 * @cputime_scaled: cputime scaled by cpu frequency
2663
 */
2664 2665
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
2666
{
2667
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2668

2669
	/* Add guest time to process. */
2670 2671
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
2672
	account_group_user_time(p, cputime);
2673
	p->gtime += cputime;
2674

2675
	/* Add guest time to cpustat. */
2676
	if (TASK_NICE(p) > 0) {
2677 2678
		cpustat[CPUTIME_NICE] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2679
	} else {
2680 2681
		cpustat[CPUTIME_USER] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2682
	}
2683 2684
}

2685 2686 2687 2688 2689 2690 2691 2692 2693
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
2694
			cputime_t cputime_scaled, int index)
2695 2696
{
	/* Add system time to process. */
2697 2698
	p->stime += cputime;
	p->stimescaled += cputime_scaled;
2699 2700 2701
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
2702
	task_group_account_field(p, index, (__force u64) cputime);
2703 2704 2705 2706 2707

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
2708 2709 2710 2711 2712
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
2713
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2714 2715
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
2716
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2717
{
2718
	int index;
L
Linus Torvalds 已提交
2719

2720
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2721
		account_guest_time(p, cputime, cputime_scaled);
2722 2723
		return;
	}
2724

L
Linus Torvalds 已提交
2725
	if (hardirq_count() - hardirq_offset)
2726
		index = CPUTIME_IRQ;
2727
	else if (in_serving_softirq())
2728
		index = CPUTIME_SOFTIRQ;
L
Linus Torvalds 已提交
2729
	else
2730
		index = CPUTIME_SYSTEM;
2731

2732
	__account_system_time(p, cputime, cputime_scaled, index);
L
Linus Torvalds 已提交
2733 2734
}

2735
/*
L
Linus Torvalds 已提交
2736
 * Account for involuntary wait time.
2737
 * @cputime: the cpu time spent in involuntary wait
2738
 */
2739
void account_steal_time(cputime_t cputime)
2740
{
2741
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2742

2743
	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2744 2745
}

L
Linus Torvalds 已提交
2746
/*
2747 2748
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
2749
 */
2750
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
2751
{
2752
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2753
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2754

2755
	if (atomic_read(&rq->nr_iowait) > 0)
2756
		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2757
	else
2758
		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
L
Linus Torvalds 已提交
2759 2760
}

G
Glauber Costa 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
static __always_inline bool steal_account_process_tick(void)
{
#ifdef CONFIG_PARAVIRT
	if (static_branch(&paravirt_steal_enabled)) {
		u64 steal, st = 0;

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;

		st = steal_ticks(steal);
		this_rq()->prev_steal_time += st * TICK_NSEC;

		account_steal_time(st);
		return st;
	}
#endif
	return false;
}

2780 2781
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2808
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2809

G
Glauber Costa 已提交
2810 2811 2812
	if (steal_account_process_tick())
		return;

2813
	if (irqtime_account_hi_update()) {
2814
		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2815
	} else if (irqtime_account_si_update()) {
2816
		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2817 2818 2819 2820 2821 2822 2823
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2824
					CPUTIME_SOFTIRQ);
2825 2826 2827 2828 2829 2830 2831 2832
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2833
					CPUTIME_SYSTEM);
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
2845
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2846 2847 2848
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
2849
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2850 2851 2852 2853 2854 2855 2856 2857

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
2858
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2859 2860
	struct rq *rq = this_rq();

2861 2862 2863 2864 2865
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

G
Glauber Costa 已提交
2866 2867 2868
	if (steal_account_process_tick())
		return;

2869
	if (user_tick)
2870
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2871
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2872
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2873 2874
				    one_jiffy_scaled);
	else
2875
		account_idle_time(cputime_one_jiffy);
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
2894 2895 2896 2897 2898 2899

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

2900
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
2901 2902
}

2903 2904
#endif

2905 2906 2907 2908
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
2909
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2910
{
2911 2912
	*ut = p->utime;
	*st = p->stime;
2913 2914
}

2915
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2916
{
2917 2918 2919 2920 2921 2922
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
2923 2924
}
#else
2925 2926

#ifndef nsecs_to_cputime
2927
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2928 2929
#endif

2930
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2931
{
2932
	cputime_t rtime, utime = p->utime, total = utime + p->stime;
2933 2934 2935 2936

	/*
	 * Use CFS's precise accounting:
	 */
2937
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2938 2939

	if (total) {
2940
		u64 temp = (__force u64) rtime;
2941

2942 2943 2944
		temp *= (__force u64) utime;
		do_div(temp, (__force u32) total);
		utime = (__force cputime_t) temp;
2945 2946
	} else
		utime = rtime;
2947

2948 2949 2950
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
2951
	p->prev_utime = max(p->prev_utime, utime);
2952
	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2953

2954 2955
	*ut = p->prev_utime;
	*st = p->prev_stime;
2956 2957
}

2958 2959 2960 2961
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2962
{
2963 2964 2965
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
2966

2967
	thread_group_cputime(p, &cputime);
2968

2969
	total = cputime.utime + cputime.stime;
2970
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2971

2972
	if (total) {
2973
		u64 temp = (__force u64) rtime;
2974

2975 2976 2977
		temp *= (__force u64) cputime.utime;
		do_div(temp, (__force u32) total);
		utime = (__force cputime_t) temp;
2978 2979 2980 2981
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
2982
	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
2983 2984 2985

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
2986 2987 2988
}
#endif

2989 2990 2991 2992 2993 2994 2995 2996
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2997
	struct task_struct *curr = rq->curr;
2998 2999

	sched_clock_tick();
I
Ingo Molnar 已提交
3000

3001
	raw_spin_lock(&rq->lock);
3002
	update_rq_clock(rq);
3003
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3004
	curr->sched_class->task_tick(rq, curr, 0);
3005
	raw_spin_unlock(&rq->lock);
3006

3007
	perf_event_task_tick();
3008

3009
#ifdef CONFIG_SMP
3010
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
3011
	trigger_load_balance(rq, cpu);
3012
#endif
L
Linus Torvalds 已提交
3013 3014
}

3015
notrace unsigned long get_parent_ip(unsigned long addr)
3016 3017 3018 3019 3020 3021 3022 3023
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3024

3025 3026 3027
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3028
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3029
{
3030
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3031 3032 3033
	/*
	 * Underflow?
	 */
3034 3035
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3036
#endif
L
Linus Torvalds 已提交
3037
	preempt_count() += val;
3038
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3039 3040 3041
	/*
	 * Spinlock count overflowing soon?
	 */
3042 3043
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3044 3045 3046
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3047 3048 3049
}
EXPORT_SYMBOL(add_preempt_count);

3050
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3051
{
3052
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3053 3054 3055
	/*
	 * Underflow?
	 */
3056
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3057
		return;
L
Linus Torvalds 已提交
3058 3059 3060
	/*
	 * Is the spinlock portion underflowing?
	 */
3061 3062 3063
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3064
#endif
3065

3066 3067
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3068 3069 3070 3071 3072 3073 3074
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3075
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3076
 */
I
Ingo Molnar 已提交
3077
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3078
{
3079 3080
	struct pt_regs *regs = get_irq_regs();

3081 3082 3083
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3084 3085
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3086

I
Ingo Molnar 已提交
3087
	debug_show_held_locks(prev);
3088
	print_modules();
I
Ingo Molnar 已提交
3089 3090
	if (irqs_disabled())
		print_irqtrace_events(prev);
3091 3092 3093 3094 3095

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3096
}
L
Linus Torvalds 已提交
3097

I
Ingo Molnar 已提交
3098 3099 3100 3101 3102
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3103
	/*
I
Ingo Molnar 已提交
3104
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3105 3106 3107
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3108
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3109
		__schedule_bug(prev);
3110
	rcu_sleep_check();
I
Ingo Molnar 已提交
3111

L
Linus Torvalds 已提交
3112 3113
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3114
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3115 3116
}

P
Peter Zijlstra 已提交
3117
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3118
{
3119
	if (prev->on_rq || rq->skip_clock_update < 0)
3120
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
3121
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3122 3123
}

I
Ingo Molnar 已提交
3124 3125 3126 3127
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3128
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3129
{
3130
	const struct sched_class *class;
I
Ingo Molnar 已提交
3131
	struct task_struct *p;
L
Linus Torvalds 已提交
3132 3133

	/*
I
Ingo Molnar 已提交
3134 3135
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3136
	 */
3137
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3138
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3139 3140
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3141 3142
	}

3143
	for_each_class(class) {
3144
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3145 3146 3147
		if (p)
			return p;
	}
3148 3149

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3150
}
L
Linus Torvalds 已提交
3151

I
Ingo Molnar 已提交
3152
/*
3153
 * __schedule() is the main scheduler function.
I
Ingo Molnar 已提交
3154
 */
3155
static void __sched __schedule(void)
I
Ingo Molnar 已提交
3156 3157
{
	struct task_struct *prev, *next;
3158
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3159
	struct rq *rq;
3160
	int cpu;
I
Ingo Molnar 已提交
3161

3162 3163
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3164 3165
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3166
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3167 3168 3169
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3170

3171
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3172
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3173

3174
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
3175

3176
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3177
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3178
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3179
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3180
		} else {
3181 3182 3183
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3184
			/*
3185 3186 3187
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3188 3189 3190 3191 3192 3193 3194 3195 3196
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
3197
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3198 3199
	}

3200
	pre_schedule(rq, prev);
3201

I
Ingo Molnar 已提交
3202
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3203 3204
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3205
	put_prev_task(rq, prev);
3206
	next = pick_next_task(rq);
3207 3208
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
3209 3210 3211 3212 3213 3214

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3215
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3216
		/*
3217 3218 3219 3220
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
3221 3222 3223
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3224
	} else
3225
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3226

3227
	post_schedule(rq);
L
Linus Torvalds 已提交
3228 3229

	preempt_enable_no_resched();
3230
	if (need_resched())
L
Linus Torvalds 已提交
3231 3232
		goto need_resched;
}
3233

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
static inline void sched_submit_work(struct task_struct *tsk)
{
	if (!tsk->state)
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
3246
asmlinkage void __sched schedule(void)
3247
{
3248 3249 3250
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3251 3252
	__schedule();
}
L
Linus Torvalds 已提交
3253 3254
EXPORT_SYMBOL(schedule);

3255
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3256

3257 3258 3259
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
3260
		return false;
3261 3262

	/*
3263 3264 3265 3266
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
3267
	 */
3268
	barrier();
3269

3270
	return owner->on_cpu;
3271
}
3272

3273 3274 3275 3276 3277 3278 3279 3280
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
3281

3282
	rcu_read_lock();
3283 3284
	while (owner_running(lock, owner)) {
		if (need_resched())
3285
			break;
3286

3287
		arch_mutex_cpu_relax();
3288
	}
3289
	rcu_read_unlock();
3290

3291
	/*
3292 3293 3294
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3295
	 */
3296
	return lock->owner == NULL;
3297 3298 3299
}
#endif

L
Linus Torvalds 已提交
3300 3301
#ifdef CONFIG_PREEMPT
/*
3302
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3303
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3304 3305
 * occur there and call schedule directly.
 */
3306
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3307 3308
{
	struct thread_info *ti = current_thread_info();
3309

L
Linus Torvalds 已提交
3310 3311
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3312
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3313
	 */
N
Nick Piggin 已提交
3314
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3315 3316
		return;

3317
	do {
3318
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3319
		__schedule();
3320
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3321

3322 3323 3324 3325 3326
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3327
	} while (need_resched());
L
Linus Torvalds 已提交
3328 3329 3330 3331
}
EXPORT_SYMBOL(preempt_schedule);

/*
3332
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3333 3334 3335 3336 3337 3338 3339
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3340

3341
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3342 3343
	BUG_ON(ti->preempt_count || !irqs_disabled());

3344 3345 3346
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3347
		__schedule();
3348 3349
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3350

3351 3352 3353 3354 3355
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3356
	} while (need_resched());
L
Linus Torvalds 已提交
3357 3358 3359 3360
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3361
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3362
			  void *key)
L
Linus Torvalds 已提交
3363
{
P
Peter Zijlstra 已提交
3364
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3365 3366 3367 3368
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3369 3370
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3371 3372 3373
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3374
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3375 3376
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3377
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3378
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3379
{
3380
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3381

3382
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3383 3384
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3385
		if (curr->func(curr, mode, wake_flags, key) &&
3386
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3387 3388 3389 3390 3391 3392 3393 3394 3395
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3396
 * @key: is directly passed to the wakeup function
3397 3398 3399
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3400
 */
3401
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3402
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3415
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3416 3417 3418
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
3419
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3420

3421 3422 3423 3424
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3425
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3426

L
Linus Torvalds 已提交
3427
/**
3428
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3429 3430 3431
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3432
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3433 3434 3435 3436 3437 3438 3439
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3440 3441 3442
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3443
 */
3444 3445
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3446 3447
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3448
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3449 3450 3451 3452 3453

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3454
		wake_flags = 0;
L
Linus Torvalds 已提交
3455 3456

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3457
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3458 3459
	spin_unlock_irqrestore(&q->lock, flags);
}
3460 3461 3462 3463 3464 3465 3466 3467 3468
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3469 3470
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3471 3472 3473 3474 3475 3476 3477 3478
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3479 3480 3481
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3482
 */
3483
void complete(struct completion *x)
L
Linus Torvalds 已提交
3484 3485 3486 3487 3488
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3489
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3490 3491 3492 3493
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3494 3495 3496 3497 3498
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3499 3500 3501
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3502
 */
3503
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3504 3505 3506 3507 3508
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3509
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3510 3511 3512 3513
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3514 3515
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3516 3517 3518 3519
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3520
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3521
		do {
3522
			if (signal_pending_state(state, current)) {
3523 3524
				timeout = -ERESTARTSYS;
				break;
3525 3526
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3527 3528 3529
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3530
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3531
		__remove_wait_queue(&x->wait, &wait);
3532 3533
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3534 3535
	}
	x->done--;
3536
	return timeout ?: 1;
L
Linus Torvalds 已提交
3537 3538
}

3539 3540
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3541 3542 3543 3544
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3545
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3546
	spin_unlock_irq(&x->wait.lock);
3547 3548
	return timeout;
}
L
Linus Torvalds 已提交
3549

3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3560
void __sched wait_for_completion(struct completion *x)
3561 3562
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3563
}
3564
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3565

3566 3567 3568 3569 3570 3571 3572 3573
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3574 3575 3576
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3577
 */
3578
unsigned long __sched
3579
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3580
{
3581
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3582
}
3583
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3584

3585 3586 3587 3588 3589 3590
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3591 3592
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3593
 */
3594
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3595
{
3596 3597 3598 3599
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3600
}
3601
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3602

3603 3604 3605 3606 3607 3608 3609
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3610 3611 3612
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3613
 */
3614
long __sched
3615 3616
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3617
{
3618
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3619
}
3620
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3621

3622 3623 3624 3625 3626 3627
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3628 3629
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3630
 */
M
Matthew Wilcox 已提交
3631 3632 3633 3634 3635 3636 3637 3638 3639
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3640 3641 3642 3643 3644 3645 3646 3647
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3648 3649 3650
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3651
 */
3652
long __sched
3653 3654 3655 3656 3657 3658 3659
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3674
	unsigned long flags;
3675 3676
	int ret = 1;

3677
	spin_lock_irqsave(&x->wait.lock, flags);
3678 3679 3680 3681
	if (!x->done)
		ret = 0;
	else
		x->done--;
3682
	spin_unlock_irqrestore(&x->wait.lock, flags);
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3697
	unsigned long flags;
3698 3699
	int ret = 1;

3700
	spin_lock_irqsave(&x->wait.lock, flags);
3701 3702
	if (!x->done)
		ret = 0;
3703
	spin_unlock_irqrestore(&x->wait.lock, flags);
3704 3705 3706 3707
	return ret;
}
EXPORT_SYMBOL(completion_done);

3708 3709
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3710
{
I
Ingo Molnar 已提交
3711 3712 3713 3714
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3715

3716
	__set_current_state(state);
L
Linus Torvalds 已提交
3717

3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3732 3733 3734
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3735
long __sched
I
Ingo Molnar 已提交
3736
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3737
{
3738
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3739 3740 3741
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3742
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3743
{
3744
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3745 3746 3747
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3748
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3749
{
3750
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3751 3752 3753
}
EXPORT_SYMBOL(sleep_on_timeout);

3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3766
void rt_mutex_setprio(struct task_struct *p, int prio)
3767
{
3768
	int oldprio, on_rq, running;
3769
	struct rq *rq;
3770
	const struct sched_class *prev_class;
3771 3772 3773

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3774
	rq = __task_rq_lock(p);
3775

3776
	trace_sched_pi_setprio(p, prio);
3777
	oldprio = p->prio;
3778
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3779
	on_rq = p->on_rq;
3780
	running = task_current(rq, p);
3781
	if (on_rq)
3782
		dequeue_task(rq, p, 0);
3783 3784
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3785 3786 3787 3788 3789 3790

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3791 3792
	p->prio = prio;

3793 3794
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3795
	if (on_rq)
3796
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3797

P
Peter Zijlstra 已提交
3798
	check_class_changed(rq, p, prev_class, oldprio);
3799
	__task_rq_unlock(rq);
3800 3801 3802 3803
}

#endif

3804
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3805
{
I
Ingo Molnar 已提交
3806
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3807
	unsigned long flags;
3808
	struct rq *rq;
L
Linus Torvalds 已提交
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3821
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3822
	 */
3823
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3824 3825 3826
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3827
	on_rq = p->on_rq;
3828
	if (on_rq)
3829
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3830 3831

	p->static_prio = NICE_TO_PRIO(nice);
3832
	set_load_weight(p);
3833 3834 3835
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3836

I
Ingo Molnar 已提交
3837
	if (on_rq) {
3838
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3839
		/*
3840 3841
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3842
		 */
3843
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3844 3845 3846
			resched_task(rq->curr);
	}
out_unlock:
3847
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3848 3849 3850
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3851 3852 3853 3854 3855
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3856
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3857
{
3858 3859
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3860

3861
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3862 3863 3864
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3865 3866 3867 3868 3869 3870 3871 3872 3873
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3874
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3875
{
3876
	long nice, retval;
L
Linus Torvalds 已提交
3877 3878 3879 3880 3881 3882

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3883 3884
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3885 3886 3887
	if (increment > 40)
		increment = 40;

3888
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3889 3890 3891 3892 3893
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3894 3895 3896
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3915
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3916 3917 3918 3919 3920 3921 3922 3923
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3924
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3925 3926 3927
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3928
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3929 3930 3931 3932 3933 3934 3935

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3950 3951 3952 3953 3954 3955
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3956
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3957 3958 3959 3960 3961 3962 3963 3964
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3965
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3966
{
3967
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3968 3969 3970
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3971 3972
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3973 3974 3975
{
	p->policy = policy;
	p->rt_priority = prio;
3976 3977 3978
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3979 3980 3981 3982
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3983
	set_load_weight(p);
L
Linus Torvalds 已提交
3984 3985
}

3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3996 3997 3998 3999 4000
	if (cred->user->user_ns == pcred->user->user_ns)
		match = (cred->euid == pcred->euid ||
			 cred->euid == pcred->uid);
	else
		match = false;
4001 4002 4003 4004
	rcu_read_unlock();
	return match;
}

4005
static int __sched_setscheduler(struct task_struct *p, int policy,
4006
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4007
{
4008
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4009
	unsigned long flags;
4010
	const struct sched_class *prev_class;
4011
	struct rq *rq;
4012
	int reset_on_fork;
L
Linus Torvalds 已提交
4013

4014 4015
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4016 4017
recheck:
	/* double check policy once rq lock held */
4018 4019
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4020
		policy = oldpolicy = p->policy;
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4031 4032
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4033 4034
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4035 4036
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4037
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4038
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4039
		return -EINVAL;
4040
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4041 4042
		return -EINVAL;

4043 4044 4045
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4046
	if (user && !capable(CAP_SYS_NICE)) {
4047
		if (rt_policy(policy)) {
4048 4049
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4060

I
Ingo Molnar 已提交
4061
		/*
4062 4063
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4064
		 */
4065 4066 4067 4068
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
4069

4070
		/* can't change other user's priorities */
4071
		if (!check_same_owner(p))
4072
			return -EPERM;
4073 4074 4075 4076

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4077
	}
L
Linus Torvalds 已提交
4078

4079
	if (user) {
4080
		retval = security_task_setscheduler(p);
4081 4082 4083 4084
		if (retval)
			return retval;
	}

4085 4086 4087
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
4088
	 *
L
Lucas De Marchi 已提交
4089
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4090 4091
	 * runqueue lock must be held.
	 */
4092
	rq = task_rq_lock(p, &flags);
4093

4094 4095 4096 4097
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
4098
		task_rq_unlock(rq, p, &flags);
4099 4100 4101
		return -EINVAL;
	}

4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {

		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return 0;
	}

4113 4114 4115 4116 4117 4118 4119
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4120 4121
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4122
			task_rq_unlock(rq, p, &flags);
4123 4124 4125 4126 4127
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
4128 4129 4130
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4131
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
4132 4133
		goto recheck;
	}
P
Peter Zijlstra 已提交
4134
	on_rq = p->on_rq;
4135
	running = task_current(rq, p);
4136
	if (on_rq)
4137
		deactivate_task(rq, p, 0);
4138 4139
	if (running)
		p->sched_class->put_prev_task(rq, p);
4140

4141 4142
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4143
	oldprio = p->prio;
4144
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4145
	__setscheduler(rq, p, policy, param->sched_priority);
4146

4147 4148
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4149
	if (on_rq)
I
Ingo Molnar 已提交
4150
		activate_task(rq, p, 0);
4151

P
Peter Zijlstra 已提交
4152
	check_class_changed(rq, p, prev_class, oldprio);
4153
	task_rq_unlock(rq, p, &flags);
4154

4155 4156
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4157 4158
	return 0;
}
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4169
		       const struct sched_param *param)
4170 4171 4172
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4173 4174
EXPORT_SYMBOL_GPL(sched_setscheduler);

4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4187
			       const struct sched_param *param)
4188 4189 4190 4191
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4192 4193
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4194 4195 4196
{
	struct sched_param lparam;
	struct task_struct *p;
4197
	int retval;
L
Linus Torvalds 已提交
4198 4199 4200 4201 4202

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4203 4204 4205

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4206
	p = find_process_by_pid(pid);
4207 4208 4209
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4210

L
Linus Torvalds 已提交
4211 4212 4213 4214 4215 4216 4217 4218 4219
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4220 4221
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4222
{
4223 4224 4225 4226
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4227 4228 4229 4230 4231 4232 4233 4234
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4235
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4236 4237 4238 4239 4240 4241 4242 4243
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4244
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4245
{
4246
	struct task_struct *p;
4247
	int retval;
L
Linus Torvalds 已提交
4248 4249

	if (pid < 0)
4250
		return -EINVAL;
L
Linus Torvalds 已提交
4251 4252

	retval = -ESRCH;
4253
	rcu_read_lock();
L
Linus Torvalds 已提交
4254 4255 4256 4257
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4258 4259
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4260
	}
4261
	rcu_read_unlock();
L
Linus Torvalds 已提交
4262 4263 4264 4265
	return retval;
}

/**
4266
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4267 4268 4269
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4270
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4271 4272
{
	struct sched_param lp;
4273
	struct task_struct *p;
4274
	int retval;
L
Linus Torvalds 已提交
4275 4276

	if (!param || pid < 0)
4277
		return -EINVAL;
L
Linus Torvalds 已提交
4278

4279
	rcu_read_lock();
L
Linus Torvalds 已提交
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4290
	rcu_read_unlock();
L
Linus Torvalds 已提交
4291 4292 4293 4294 4295 4296 4297 4298 4299

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4300
	rcu_read_unlock();
L
Linus Torvalds 已提交
4301 4302 4303
	return retval;
}

4304
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4305
{
4306
	cpumask_var_t cpus_allowed, new_mask;
4307 4308
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4309

4310
	get_online_cpus();
4311
	rcu_read_lock();
L
Linus Torvalds 已提交
4312 4313 4314

	p = find_process_by_pid(pid);
	if (!p) {
4315
		rcu_read_unlock();
4316
		put_online_cpus();
L
Linus Torvalds 已提交
4317 4318 4319
		return -ESRCH;
	}

4320
	/* Prevent p going away */
L
Linus Torvalds 已提交
4321
	get_task_struct(p);
4322
	rcu_read_unlock();
L
Linus Torvalds 已提交
4323

4324 4325 4326 4327 4328 4329 4330 4331
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4332
	retval = -EPERM;
4333
	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
L
Linus Torvalds 已提交
4334 4335
		goto out_unlock;

4336
	retval = security_task_setscheduler(p);
4337 4338 4339
	if (retval)
		goto out_unlock;

4340 4341
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4342
again:
4343
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4344

P
Paul Menage 已提交
4345
	if (!retval) {
4346 4347
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4348 4349 4350 4351 4352
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4353
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4354 4355 4356
			goto again;
		}
	}
L
Linus Torvalds 已提交
4357
out_unlock:
4358 4359 4360 4361
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4362
	put_task_struct(p);
4363
	put_online_cpus();
L
Linus Torvalds 已提交
4364 4365 4366 4367
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4368
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4369
{
4370 4371 4372 4373 4374
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4375 4376 4377 4378 4379 4380 4381 4382 4383
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4384 4385
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4386
{
4387
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4388 4389
	int retval;

4390 4391
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4392

4393 4394 4395 4396 4397
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4398 4399
}

4400
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4401
{
4402
	struct task_struct *p;
4403
	unsigned long flags;
L
Linus Torvalds 已提交
4404 4405
	int retval;

4406
	get_online_cpus();
4407
	rcu_read_lock();
L
Linus Torvalds 已提交
4408 4409 4410 4411 4412 4413

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4414 4415 4416 4417
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4418
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4419
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4420
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4421 4422

out_unlock:
4423
	rcu_read_unlock();
4424
	put_online_cpus();
L
Linus Torvalds 已提交
4425

4426
	return retval;
L
Linus Torvalds 已提交
4427 4428 4429 4430 4431 4432 4433 4434
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4435 4436
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4437 4438
{
	int ret;
4439
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4440

A
Anton Blanchard 已提交
4441
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4442 4443
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4444 4445
		return -EINVAL;

4446 4447
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4448

4449 4450
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4451
		size_t retlen = min_t(size_t, len, cpumask_size());
4452 4453

		if (copy_to_user(user_mask_ptr, mask, retlen))
4454 4455
			ret = -EFAULT;
		else
4456
			ret = retlen;
4457 4458
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4459

4460
	return ret;
L
Linus Torvalds 已提交
4461 4462 4463 4464 4465
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4466 4467
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4468
 */
4469
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4470
{
4471
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4472

4473
	schedstat_inc(rq, yld_count);
4474
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4475 4476 4477 4478 4479 4480

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4481
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4482
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4483 4484 4485 4486 4487 4488 4489
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4490 4491 4492 4493 4494
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4495
static void __cond_resched(void)
L
Linus Torvalds 已提交
4496
{
4497
	add_preempt_count(PREEMPT_ACTIVE);
4498
	__schedule();
4499
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4500 4501
}

4502
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4503
{
P
Peter Zijlstra 已提交
4504
	if (should_resched()) {
L
Linus Torvalds 已提交
4505 4506 4507 4508 4509
		__cond_resched();
		return 1;
	}
	return 0;
}
4510
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4511 4512

/*
4513
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4514 4515
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4516
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4517 4518 4519
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4520
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4521
{
P
Peter Zijlstra 已提交
4522
	int resched = should_resched();
J
Jan Kara 已提交
4523 4524
	int ret = 0;

4525 4526
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4527
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4528
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4529
		if (resched)
N
Nick Piggin 已提交
4530 4531 4532
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4533
		ret = 1;
L
Linus Torvalds 已提交
4534 4535
		spin_lock(lock);
	}
J
Jan Kara 已提交
4536
	return ret;
L
Linus Torvalds 已提交
4537
}
4538
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4539

4540
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4541 4542 4543
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4544
	if (should_resched()) {
4545
		local_bh_enable();
L
Linus Torvalds 已提交
4546 4547 4548 4549 4550 4551
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4552
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4553 4554 4555 4556

/**
 * yield - yield the current processor to other threads.
 *
4557
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4558 4559 4560 4561 4562 4563 4564 4565 4566
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4567 4568 4569 4570
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4571 4572
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4607
	if (yielded) {
4608
		schedstat_inc(rq, yld_count);
4609 4610 4611 4612 4613 4614
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
4615 4616 4617 4618 4619 4620 4621
	} else {
		/*
		 * We might have set it in task_yield_fair(), but are
		 * not going to schedule(), so don't want to skip
		 * the next update.
		 */
		rq->skip_clock_update = 0;
4622
	}
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4635
/*
I
Ingo Molnar 已提交
4636
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4637 4638 4639 4640
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4641
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4642

4643
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4644
	atomic_inc(&rq->nr_iowait);
4645
	blk_flush_plug(current);
4646
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4647
	schedule();
4648
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4649
	atomic_dec(&rq->nr_iowait);
4650
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4651 4652 4653 4654 4655
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4656
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4657 4658
	long ret;

4659
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4660
	atomic_inc(&rq->nr_iowait);
4661
	blk_flush_plug(current);
4662
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4663
	ret = schedule_timeout(timeout);
4664
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4665
	atomic_dec(&rq->nr_iowait);
4666
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4677
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4678 4679 4680 4681 4682 4683 4684 4685 4686
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4687
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4688
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4702
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4703 4704 4705 4706 4707 4708 4709 4710 4711
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4712
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4713
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4727
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4728
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4729
{
4730
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4731
	unsigned int time_slice;
4732 4733
	unsigned long flags;
	struct rq *rq;
4734
	int retval;
L
Linus Torvalds 已提交
4735 4736 4737
	struct timespec t;

	if (pid < 0)
4738
		return -EINVAL;
L
Linus Torvalds 已提交
4739 4740

	retval = -ESRCH;
4741
	rcu_read_lock();
L
Linus Torvalds 已提交
4742 4743 4744 4745 4746 4747 4748 4749
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4750 4751
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4752
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4753

4754
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4755
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4756 4757
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4758

L
Linus Torvalds 已提交
4759
out_unlock:
4760
	rcu_read_unlock();
L
Linus Torvalds 已提交
4761 4762 4763
	return retval;
}

4764
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4765

4766
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4767 4768
{
	unsigned long free = 0;
4769
	unsigned state;
L
Linus Torvalds 已提交
4770 4771

	state = p->state ? __ffs(p->state) + 1 : 0;
4772
	printk(KERN_INFO "%-15.15s %c", p->comm,
4773
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4774
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4775
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4776
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4777
	else
P
Peter Zijlstra 已提交
4778
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4779 4780
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4781
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4782
	else
P
Peter Zijlstra 已提交
4783
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4784 4785
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4786
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4787
#endif
P
Peter Zijlstra 已提交
4788
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4789
		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4790
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4791

4792
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4793 4794
}

I
Ingo Molnar 已提交
4795
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4796
{
4797
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4798

4799
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4800 4801
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4802
#else
P
Peter Zijlstra 已提交
4803 4804
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4805
#endif
4806
	rcu_read_lock();
L
Linus Torvalds 已提交
4807 4808 4809
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4810
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4811 4812
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4813
		if (!state_filter || (p->state & state_filter))
4814
			sched_show_task(p);
L
Linus Torvalds 已提交
4815 4816
	} while_each_thread(g, p);

4817 4818
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4819 4820 4821
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4822
	rcu_read_unlock();
I
Ingo Molnar 已提交
4823 4824 4825
	/*
	 * Only show locks if all tasks are dumped:
	 */
4826
	if (!state_filter)
I
Ingo Molnar 已提交
4827
		debug_show_all_locks();
L
Linus Torvalds 已提交
4828 4829
}

I
Ingo Molnar 已提交
4830 4831
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4832
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4833 4834
}

4835 4836 4837 4838 4839 4840 4841 4842
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4843
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4844
{
4845
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4846 4847
	unsigned long flags;

4848
	raw_spin_lock_irqsave(&rq->lock, flags);
4849

I
Ingo Molnar 已提交
4850
	__sched_fork(idle);
4851
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4852 4853
	idle->se.exec_start = sched_clock();

4854
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4866
	__set_task_cpu(idle, cpu);
4867
	rcu_read_unlock();
L
Linus Torvalds 已提交
4868 4869

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4870 4871
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4872
#endif
4873
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4874 4875

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4876
	task_thread_info(idle)->preempt_count = 0;
4877

I
Ingo Molnar 已提交
4878 4879 4880 4881
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4882
	ftrace_graph_init_idle_task(idle, cpu);
4883 4884 4885
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4886 4887
}

L
Linus Torvalds 已提交
4888
#ifdef CONFIG_SMP
4889 4890 4891 4892
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4893 4894 4895

	cpumask_copy(&p->cpus_allowed, new_mask);
	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4896 4897
}

L
Linus Torvalds 已提交
4898 4899 4900
/*
 * This is how migration works:
 *
4901 4902 4903 4904 4905 4906
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4907
 *    it and puts it into the right queue.
4908 4909
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4910 4911 4912 4913 4914 4915 4916 4917
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4918
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4919 4920
 * call is not atomic; no spinlocks may be held.
 */
4921
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4922 4923
{
	unsigned long flags;
4924
	struct rq *rq;
4925
	unsigned int dest_cpu;
4926
	int ret = 0;
L
Linus Torvalds 已提交
4927 4928

	rq = task_rq_lock(p, &flags);
4929

4930 4931 4932
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4933
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4934 4935 4936 4937
		ret = -EINVAL;
		goto out;
	}

4938
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4939 4940 4941 4942
		ret = -EINVAL;
		goto out;
	}

4943
	do_set_cpus_allowed(p, new_mask);
4944

L
Linus Torvalds 已提交
4945
	/* Can the task run on the task's current CPU? If so, we're done */
4946
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4947 4948
		goto out;

4949
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4950
	if (p->on_rq) {
4951
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4952
		/* Need help from migration thread: drop lock and wait. */
4953
		task_rq_unlock(rq, p, &flags);
4954
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4955 4956 4957 4958
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4959
	task_rq_unlock(rq, p, &flags);
4960

L
Linus Torvalds 已提交
4961 4962
	return ret;
}
4963
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4964 4965

/*
I
Ingo Molnar 已提交
4966
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4967 4968 4969 4970 4971 4972
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4973 4974
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4975
 */
4976
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4977
{
4978
	struct rq *rq_dest, *rq_src;
4979
	int ret = 0;
L
Linus Torvalds 已提交
4980

4981
	if (unlikely(!cpu_active(dest_cpu)))
4982
		return ret;
L
Linus Torvalds 已提交
4983 4984 4985 4986

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4987
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4988 4989 4990
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4991
		goto done;
L
Linus Torvalds 已提交
4992
	/* Affinity changed (again). */
4993
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4994
		goto fail;
L
Linus Torvalds 已提交
4995

4996 4997 4998 4999
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
5000
	if (p->on_rq) {
5001
		deactivate_task(rq_src, p, 0);
5002
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5003
		activate_task(rq_dest, p, 0);
5004
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5005
	}
L
Linus Torvalds 已提交
5006
done:
5007
	ret = 1;
L
Linus Torvalds 已提交
5008
fail:
L
Linus Torvalds 已提交
5009
	double_rq_unlock(rq_src, rq_dest);
5010
	raw_spin_unlock(&p->pi_lock);
5011
	return ret;
L
Linus Torvalds 已提交
5012 5013 5014
}

/*
5015 5016 5017
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5018
 */
5019
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5020
{
5021
	struct migration_arg *arg = data;
5022

5023 5024 5025 5026
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5027
	local_irq_disable();
5028
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5029
	local_irq_enable();
L
Linus Torvalds 已提交
5030
	return 0;
5031 5032
}

L
Linus Torvalds 已提交
5033
#ifdef CONFIG_HOTPLUG_CPU
5034

5035
/*
5036 5037
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5038
 */
5039
void idle_task_exit(void)
L
Linus Torvalds 已提交
5040
{
5041
	struct mm_struct *mm = current->active_mm;
5042

5043
	BUG_ON(cpu_online(smp_processor_id()));
5044

5045 5046 5047
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
5048 5049 5050 5051 5052 5053 5054 5055 5056
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5057
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5058
{
5059
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5060 5061 5062 5063 5064

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
5065
/*
5066
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
5067
 */
5068
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
5069
{
5070 5071
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
5072 5073
}

5074
/*
5075 5076 5077 5078 5079 5080
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5081
 */
5082
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
5083
{
5084
	struct rq *rq = cpu_rq(dead_cpu);
5085 5086
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5087 5088

	/*
5089 5090 5091 5092 5093 5094 5095
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5096
	 */
5097
	rq->stop = NULL;
5098

5099 5100 5101
	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);

I
Ingo Molnar 已提交
5102
	for ( ; ; ) {
5103 5104 5105 5106 5107
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5108
			break;
5109

5110
		next = pick_next_task(rq);
5111
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5112
		next->sched_class->put_prev_task(rq, next);
5113

5114 5115 5116 5117 5118 5119 5120
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5121
	}
5122

5123
	rq->stop = stop;
5124
}
5125

L
Linus Torvalds 已提交
5126 5127
#endif /* CONFIG_HOTPLUG_CPU */

5128 5129 5130
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5131 5132
	{
		.procname	= "sched_domain",
5133
		.mode		= 0555,
5134
	},
5135
	{}
5136 5137 5138
};

static struct ctl_table sd_ctl_root[] = {
5139 5140
	{
		.procname	= "kernel",
5141
		.mode		= 0555,
5142 5143
		.child		= sd_ctl_dir,
	},
5144
	{}
5145 5146 5147 5148 5149
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5150
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5151 5152 5153 5154

	return entry;
}

5155 5156
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5157
	struct ctl_table *entry;
5158

5159 5160 5161
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5162
	 * will always be set. In the lowest directory the names are
5163 5164 5165
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5166 5167
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5168 5169 5170
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5171 5172 5173 5174 5175

	kfree(*tablep);
	*tablep = NULL;
}

5176
static void
5177
set_table_entry(struct ctl_table *entry,
5178
		const char *procname, void *data, int maxlen,
5179
		umode_t mode, proc_handler *proc_handler)
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5191
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5192

5193 5194 5195
	if (table == NULL)
		return NULL;

5196
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5197
		sizeof(long), 0644, proc_doulongvec_minmax);
5198
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5199
		sizeof(long), 0644, proc_doulongvec_minmax);
5200
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5201
		sizeof(int), 0644, proc_dointvec_minmax);
5202
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5203
		sizeof(int), 0644, proc_dointvec_minmax);
5204
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5205
		sizeof(int), 0644, proc_dointvec_minmax);
5206
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5207
		sizeof(int), 0644, proc_dointvec_minmax);
5208
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5209
		sizeof(int), 0644, proc_dointvec_minmax);
5210
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5211
		sizeof(int), 0644, proc_dointvec_minmax);
5212
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5213
		sizeof(int), 0644, proc_dointvec_minmax);
5214
	set_table_entry(&table[9], "cache_nice_tries",
5215 5216
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5217
	set_table_entry(&table[10], "flags", &sd->flags,
5218
		sizeof(int), 0644, proc_dointvec_minmax);
5219 5220 5221
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5222 5223 5224 5225

	return table;
}

5226
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5227 5228 5229 5230 5231 5232 5233 5234 5235
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5236 5237
	if (table == NULL)
		return NULL;
5238 5239 5240 5241 5242

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5243
		entry->mode = 0555;
5244 5245 5246 5247 5248 5249 5250 5251
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5252
static void register_sched_domain_sysctl(void)
5253
{
5254
	int i, cpu_num = num_possible_cpus();
5255 5256 5257
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5258 5259 5260
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5261 5262 5263
	if (entry == NULL)
		return;

5264
	for_each_possible_cpu(i) {
5265 5266
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5267
		entry->mode = 0555;
5268
		entry->child = sd_alloc_ctl_cpu_table(i);
5269
		entry++;
5270
	}
5271 5272

	WARN_ON(sd_sysctl_header);
5273 5274
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5275

5276
/* may be called multiple times per register */
5277 5278
static void unregister_sched_domain_sysctl(void)
{
5279 5280
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5281
	sd_sysctl_header = NULL;
5282 5283
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5284
}
5285
#else
5286 5287 5288 5289
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5290 5291 5292 5293
{
}
#endif

5294 5295 5296 5297 5298
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5299
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5319
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5320 5321 5322 5323
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5324 5325 5326 5327
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5328 5329
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5330
{
5331
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5332
	unsigned long flags;
5333
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5334

5335
	switch (action & ~CPU_TASKS_FROZEN) {
5336

L
Linus Torvalds 已提交
5337
	case CPU_UP_PREPARE:
5338
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5339
		break;
5340

L
Linus Torvalds 已提交
5341
	case CPU_ONLINE:
5342
		/* Update our root-domain */
5343
		raw_spin_lock_irqsave(&rq->lock, flags);
5344
		if (rq->rd) {
5345
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5346 5347

			set_rq_online(rq);
5348
		}
5349
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5350
		break;
5351

L
Linus Torvalds 已提交
5352
#ifdef CONFIG_HOTPLUG_CPU
5353
	case CPU_DYING:
5354
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5355
		/* Update our root-domain */
5356
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5357
		if (rq->rd) {
5358
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5359
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5360
		}
5361 5362
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5363
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5364 5365 5366

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
5367
		break;
L
Linus Torvalds 已提交
5368 5369
#endif
	}
5370 5371 5372

	update_max_interval();

L
Linus Torvalds 已提交
5373 5374 5375
	return NOTIFY_OK;
}

5376 5377 5378
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5379
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5380
 */
5381
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5382
	.notifier_call = migration_call,
5383
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5384 5385
};

5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5411
static int __init migration_init(void)
L
Linus Torvalds 已提交
5412 5413
{
	void *cpu = (void *)(long)smp_processor_id();
5414
	int err;
5415

5416
	/* Initialize migration for the boot CPU */
5417 5418
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5419 5420
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5421

5422 5423 5424 5425
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5426
	return 0;
L
Linus Torvalds 已提交
5427
}
5428
early_initcall(migration_init);
L
Linus Torvalds 已提交
5429 5430 5431
#endif

#ifdef CONFIG_SMP
5432

5433 5434
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5435
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5436

5437 5438 5439 5440 5441 5442 5443 5444 5445 5446
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5447
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5448
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5449
{
I
Ingo Molnar 已提交
5450
	struct sched_group *group = sd->groups;
5451
	char str[256];
L
Linus Torvalds 已提交
5452

R
Rusty Russell 已提交
5453
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5454
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5455 5456 5457 5458

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5459
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5460
		if (sd->parent)
P
Peter Zijlstra 已提交
5461 5462
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5463
		return -1;
N
Nick Piggin 已提交
5464 5465
	}

P
Peter Zijlstra 已提交
5466
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5467

5468
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5469 5470
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5471
	}
5472
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5473 5474
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5475
	}
L
Linus Torvalds 已提交
5476

I
Ingo Molnar 已提交
5477
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5478
	do {
I
Ingo Molnar 已提交
5479
		if (!group) {
P
Peter Zijlstra 已提交
5480 5481
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5482 5483 5484
			break;
		}

5485
		if (!group->sgp->power) {
P
Peter Zijlstra 已提交
5486 5487 5488
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5489 5490
			break;
		}
L
Linus Torvalds 已提交
5491

5492
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5493 5494
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5495 5496
			break;
		}
L
Linus Torvalds 已提交
5497

5498
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5499 5500
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5501 5502
			break;
		}
L
Linus Torvalds 已提交
5503

5504
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5505

R
Rusty Russell 已提交
5506
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5507

P
Peter Zijlstra 已提交
5508
		printk(KERN_CONT " %s", str);
5509
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5510
			printk(KERN_CONT " (cpu_power = %d)",
5511
				group->sgp->power);
5512
		}
L
Linus Torvalds 已提交
5513

I
Ingo Molnar 已提交
5514 5515
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5516
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5517

5518
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5519
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5520

5521 5522
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5523 5524
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5525 5526
	return 0;
}
L
Linus Torvalds 已提交
5527

I
Ingo Molnar 已提交
5528 5529 5530
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5531

5532 5533 5534
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
5535 5536 5537 5538
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5539

I
Ingo Molnar 已提交
5540 5541 5542
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5543
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5544
			break;
L
Linus Torvalds 已提交
5545 5546
		level++;
		sd = sd->parent;
5547
		if (!sd)
I
Ingo Molnar 已提交
5548 5549
			break;
	}
L
Linus Torvalds 已提交
5550
}
5551
#else /* !CONFIG_SCHED_DEBUG */
5552
# define sched_domain_debug(sd, cpu) do { } while (0)
5553
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5554

5555
static int sd_degenerate(struct sched_domain *sd)
5556
{
5557
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5558 5559 5560 5561 5562 5563
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5564 5565 5566
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5567 5568 5569 5570 5571
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5572
	if (sd->flags & (SD_WAKE_AFFINE))
5573 5574 5575 5576 5577
		return 0;

	return 1;
}

5578 5579
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5580 5581 5582 5583 5584 5585
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5586
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5587 5588 5589 5590 5591 5592 5593
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5594 5595 5596
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5597 5598
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5599 5600 5601 5602 5603 5604 5605
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5606
static void free_rootdomain(struct rcu_head *rcu)
5607
{
5608
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5609

5610
	cpupri_cleanup(&rd->cpupri);
5611 5612 5613 5614 5615 5616
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5617 5618
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5619
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5620 5621
	unsigned long flags;

5622
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5623 5624

	if (rq->rd) {
I
Ingo Molnar 已提交
5625
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5626

5627
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5628
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5629

5630
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5631

I
Ingo Molnar 已提交
5632 5633 5634 5635 5636 5637 5638
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5639 5640 5641 5642 5643
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5644
	cpumask_set_cpu(rq->cpu, rd->span);
5645
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5646
		set_rq_online(rq);
G
Gregory Haskins 已提交
5647

5648
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5649 5650

	if (old_rd)
5651
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5652 5653
}

5654
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5655 5656 5657
{
	memset(rd, 0, sizeof(*rd));

5658
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5659
		goto out;
5660
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5661
		goto free_span;
5662
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5663
		goto free_online;
5664

5665
	if (cpupri_init(&rd->cpupri) != 0)
5666
		goto free_rto_mask;
5667
	return 0;
5668

5669 5670
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5671 5672 5673 5674
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5675
out:
5676
	return -ENOMEM;
G
Gregory Haskins 已提交
5677 5678
}

5679 5680 5681 5682 5683 5684
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5685 5686
static void init_defrootdomain(void)
{
5687
	init_rootdomain(&def_root_domain);
5688

G
Gregory Haskins 已提交
5689 5690 5691
	atomic_set(&def_root_domain.refcount, 1);
}

5692
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5693 5694 5695 5696 5697 5698 5699
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5700
	if (init_rootdomain(rd) != 0) {
5701 5702 5703
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5704 5705 5706 5707

	return rd;
}

5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5727 5728 5729
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5730 5731 5732 5733 5734 5735 5736 5737

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5738
		kfree(sd->groups->sgp);
5739
		kfree(sd->groups);
5740
	}
5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
 * two cpus are in the same cache domain, see ttwu_share_cache().
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
	if (sd)
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5780
/*
I
Ingo Molnar 已提交
5781
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5782 5783
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5784 5785
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5786
{
5787
	struct rq *rq = cpu_rq(cpu);
5788 5789 5790
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5791
	for (tmp = sd; tmp; ) {
5792 5793 5794
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5795

5796
		if (sd_parent_degenerate(tmp, parent)) {
5797
			tmp->parent = parent->parent;
5798 5799
			if (parent->parent)
				parent->parent->child = tmp;
5800
			destroy_sched_domain(parent, cpu);
5801 5802
		} else
			tmp = tmp->parent;
5803 5804
	}

5805
	if (sd && sd_degenerate(sd)) {
5806
		tmp = sd;
5807
		sd = sd->parent;
5808
		destroy_sched_domain(tmp, cpu);
5809 5810 5811
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5812

5813
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5814

G
Gregory Haskins 已提交
5815
	rq_attach_root(rq, rd);
5816
	tmp = rq->sd;
N
Nick Piggin 已提交
5817
	rcu_assign_pointer(rq->sd, sd);
5818
	destroy_sched_domains(tmp, cpu);
5819 5820

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5821 5822 5823
}

/* cpus with isolated domains */
5824
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5825 5826 5827 5828

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5829
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5830
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5831 5832 5833
	return 1;
}

I
Ingo Molnar 已提交
5834
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5835

5836
#ifdef CONFIG_NUMA
5837

5838 5839 5840 5841 5842
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
5843
 * Find the next node to include in a given scheduling domain. Simply
5844 5845 5846 5847
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
5848
static int find_next_best_node(int node, nodemask_t *used_nodes)
5849
{
5850
	int i, n, val, min_val, best_node = -1;
5851 5852 5853

	min_val = INT_MAX;

5854
	for (i = 0; i < nr_node_ids; i++) {
5855
		/* Start at @node */
5856
		n = (node + i) % nr_node_ids;
5857 5858 5859 5860 5861

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
5862
		if (node_isset(n, *used_nodes))
5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

5874 5875
	if (best_node != -1)
		node_set(best_node, *used_nodes);
5876 5877 5878 5879 5880 5881
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
5882
 * @span: resulting cpumask
5883
 *
I
Ingo Molnar 已提交
5884
 * Given a node, construct a good cpumask for its sched_domain to span. It
5885 5886 5887
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
5888
static void sched_domain_node_span(int node, struct cpumask *span)
5889
{
5890
	nodemask_t used_nodes;
5891
	int i;
5892

5893
	cpumask_clear(span);
5894
	nodes_clear(used_nodes);
5895

5896
	cpumask_or(span, span, cpumask_of_node(node));
5897
	node_set(node, used_nodes);
5898 5899

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5900
		int next_node = find_next_best_node(node, &used_nodes);
5901 5902
		if (next_node < 0)
			break;
5903
		cpumask_or(span, span, cpumask_of_node(next_node));
5904 5905
	}
}
5906 5907 5908 5909 5910 5911 5912 5913 5914

static const struct cpumask *cpu_node_mask(int cpu)
{
	lockdep_assert_held(&sched_domains_mutex);

	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);

	return sched_domains_tmpmask;
}
5915 5916 5917 5918 5919

static const struct cpumask *cpu_allnodes_mask(int cpu)
{
	return cpu_possible_mask;
}
5920
#endif /* CONFIG_NUMA */
5921

5922 5923 5924 5925 5926
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5927
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5928

5929 5930 5931
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5932
	struct sched_group_power **__percpu sgp;
5933 5934
};

5935
struct s_data {
5936
	struct sched_domain ** __percpu sd;
5937 5938 5939
	struct root_domain	*rd;
};

5940 5941
enum s_alloc {
	sa_rootdomain,
5942
	sa_sd,
5943
	sa_sd_storage,
5944 5945 5946
	sa_none,
};

5947 5948 5949
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5950 5951
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5952 5953
#define SDTL_OVERLAP	0x01

5954
struct sched_domain_topology_level {
5955 5956
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5957
	int		    flags;
5958
	struct sd_data      data;
5959 5960
};

5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5980
				GFP_KERNEL, cpu_to_node(cpu));
5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);

		child = *per_cpu_ptr(sdd->sd, i);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
		atomic_inc(&sg->sgp->ref);

		if (cpumask_test_cpu(cpu, sg_span))
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6019
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6020
{
6021 6022
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6023

6024 6025
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6026

6027
	if (sg) {
6028
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6029
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6030
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6031
	}
6032 6033

	return cpu;
6034 6035
}

6036
/*
6037 6038 6039
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
6040 6041
 *
 * Assumes the sched_domain tree is fully constructed
6042
 */
6043 6044
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6045
{
6046 6047 6048
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6049
	struct cpumask *covered;
6050
	int i;
6051

6052 6053 6054 6055 6056 6057
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

6058 6059 6060
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6061
	cpumask_clear(covered);
6062

6063 6064 6065 6066
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
6067

6068 6069
		if (cpumask_test_cpu(i, covered))
			continue;
6070

6071
		cpumask_clear(sched_group_cpus(sg));
6072
		sg->sgp->power = 0;
6073

6074 6075 6076
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6077

6078 6079 6080
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6081

6082 6083 6084 6085 6086 6087 6088
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6089 6090

	return 0;
6091
}
6092

6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
6105
	struct sched_group *sg = sd->groups;
6106

6107 6108 6109 6110 6111 6112
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6113

6114 6115
	if (cpu != group_first_cpu(sg))
		return;
6116

6117
	update_group_power(sd, cpu);
6118
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6119 6120
}

6121 6122 6123
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
6124 6125
}

6126 6127 6128 6129 6130
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6131 6132 6133 6134 6135 6136
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6137 6138 6139 6140 6141 6142 6143 6144 6145
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
6159 6160 6161
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
6162

6163
static int default_relax_domain_level = -1;
6164
int sched_domain_level_max;
6165 6166 6167

static int __init setup_relax_domain_level(char *str)
{
6168 6169 6170
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
6171
	if (val < sched_domain_level_max)
6172 6173
		default_relax_domain_level = val;

6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6192
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6193 6194
	} else {
		/* turn on idle balance on this domain */
6195
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6196 6197 6198
	}
}

6199 6200 6201
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6202 6203 6204 6205 6206
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6207 6208
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6209 6210
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6211
	case sa_sd_storage:
6212
		__sdt_free(cpu_map); /* fall through */
6213 6214 6215 6216
	case sa_none:
		break;
	}
}
6217

6218 6219 6220
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6221 6222
	memset(d, 0, sizeof(*d));

6223 6224
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6225 6226 6227
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6228
	d->rd = alloc_rootdomain();
6229
	if (!d->rd)
6230
		return sa_sd;
6231 6232
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6233

6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6246
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6247
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6248 6249

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6250
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6251 6252
}

6253 6254
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6255
{
6256
	return topology_thread_cpumask(cpu);
6257
}
6258
#endif
6259

6260 6261 6262
/*
 * Topology list, bottom-up.
 */
6263
static struct sched_domain_topology_level default_topology[] = {
6264 6265
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6266
#endif
6267
#ifdef CONFIG_SCHED_MC
6268
	{ sd_init_MC, cpu_coregroup_mask, },
6269
#endif
6270 6271 6272 6273 6274
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
#ifdef CONFIG_NUMA
6275
	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6276
	{ sd_init_ALLNODES, cpu_allnodes_mask, },
L
Linus Torvalds 已提交
6277
#endif
6278 6279 6280 6281 6282
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6299 6300 6301 6302
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6303 6304 6305
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6306
			struct sched_group_power *sgp;
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sg, j) = sg;
6321 6322 6323 6324 6325 6326 6327

			sgp = kzalloc_node(sizeof(struct sched_group_power),
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6343 6344 6345
			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
			if (sd && (sd->flags & SD_OVERLAP))
				free_sched_groups(sd->groups, 0);
6346
			kfree(*per_cpu_ptr(sdd->sd, j));
6347
			kfree(*per_cpu_ptr(sdd->sg, j));
6348
			kfree(*per_cpu_ptr(sdd->sgp, j));
6349 6350 6351
		}
		free_percpu(sdd->sd);
		free_percpu(sdd->sg);
6352
		free_percpu(sdd->sgp);
6353 6354 6355
	}
}

6356 6357
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6358
		struct sched_domain_attr *attr, struct sched_domain *child,
6359 6360
		int cpu)
{
6361
	struct sched_domain *sd = tl->init(tl, cpu);
6362
	if (!sd)
6363
		return child;
6364 6365 6366

	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6367 6368 6369
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6370
		child->parent = sd;
6371
	}
6372
	sd->child = child;
6373 6374 6375 6376

	return sd;
}

6377 6378 6379 6380
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6381 6382
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6383 6384
{
	enum s_alloc alloc_state = sa_none;
6385
	struct sched_domain *sd;
6386
	struct s_data d;
6387
	int i, ret = -ENOMEM;
6388

6389 6390 6391
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6392

6393
	/* Set up domains for cpus specified by the cpu_map. */
6394
	for_each_cpu(i, cpu_map) {
6395 6396
		struct sched_domain_topology_level *tl;

6397
		sd = NULL;
6398
		for (tl = sched_domain_topology; tl->init; tl++) {
6399
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6400 6401
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6402 6403
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6404
		}
6405

6406 6407 6408
		while (sd->child)
			sd = sd->child;

6409
		*per_cpu_ptr(d.sd, i) = sd;
6410 6411 6412 6413 6414 6415
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6416 6417 6418 6419 6420 6421 6422
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6423
		}
6424
	}
6425

L
Linus Torvalds 已提交
6426
	/* Calculate CPU power for physical packages and nodes */
6427 6428 6429
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6430

6431 6432
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6433
			init_sched_groups_power(i, sd);
6434
		}
6435
	}
6436

L
Linus Torvalds 已提交
6437
	/* Attach the domains */
6438
	rcu_read_lock();
6439
	for_each_cpu(i, cpu_map) {
6440
		sd = *per_cpu_ptr(d.sd, i);
6441
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6442
	}
6443
	rcu_read_unlock();
6444

6445
	ret = 0;
6446
error:
6447
	__free_domain_allocs(&d, alloc_state, cpu_map);
6448
	return ret;
L
Linus Torvalds 已提交
6449
}
P
Paul Jackson 已提交
6450

6451
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6452
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6453 6454
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6455 6456 6457

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6458 6459
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6460
 */
6461
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6462

6463 6464 6465 6466 6467 6468
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6469
{
6470
	return 0;
6471 6472
}

6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6498
/*
I
Ingo Molnar 已提交
6499
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6500 6501
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6502
 */
6503
static int init_sched_domains(const struct cpumask *cpu_map)
6504
{
6505 6506
	int err;

6507
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6508
	ndoms_cur = 1;
6509
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6510
	if (!doms_cur)
6511 6512
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6513
	dattr_cur = NULL;
6514
	err = build_sched_domains(doms_cur[0], NULL);
6515
	register_sched_domain_sysctl();
6516 6517

	return err;
6518 6519 6520 6521 6522 6523
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6524
static void detach_destroy_domains(const struct cpumask *cpu_map)
6525 6526 6527
{
	int i;

6528
	rcu_read_lock();
6529
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6530
		cpu_attach_domain(NULL, &def_root_domain, i);
6531
	rcu_read_unlock();
6532 6533
}

6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6550 6551
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6552
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6553 6554 6555
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6556
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6557 6558 6559
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6560 6561 6562
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6563 6564 6565 6566 6567 6568
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6569
 *
6570
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6571 6572
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6573
 *
P
Paul Jackson 已提交
6574 6575
 * Call with hotplug lock held
 */
6576
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6577
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6578
{
6579
	int i, j, n;
6580
	int new_topology;
P
Paul Jackson 已提交
6581

6582
	mutex_lock(&sched_domains_mutex);
6583

6584 6585 6586
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6587 6588 6589
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6590
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6591 6592 6593

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6594
		for (j = 0; j < n && !new_topology; j++) {
6595
			if (cpumask_equal(doms_cur[i], doms_new[j])
6596
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6597 6598 6599
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6600
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6601 6602 6603 6604
match1:
		;
	}

6605 6606
	if (doms_new == NULL) {
		ndoms_cur = 0;
6607
		doms_new = &fallback_doms;
6608
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6609
		WARN_ON_ONCE(dattr_new);
6610 6611
	}

P
Paul Jackson 已提交
6612 6613
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6614
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6615
			if (cpumask_equal(doms_new[i], doms_cur[j])
6616
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6617 6618 6619
				goto match2;
		}
		/* no match - add a new doms_new */
6620
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6621 6622 6623 6624 6625
match2:
		;
	}

	/* Remember the new sched domains */
6626 6627
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6628
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6629
	doms_cur = doms_new;
6630
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6631
	ndoms_cur = ndoms_new;
6632 6633

	register_sched_domain_sysctl();
6634

6635
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6636 6637
}

6638
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6639
static void reinit_sched_domains(void)
6640
{
6641
	get_online_cpus();
6642 6643 6644 6645

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

6646
	rebuild_sched_domains();
6647
	put_online_cpus();
6648 6649 6650 6651
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
6652
	unsigned int level = 0;
6653

6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6665 6666 6667
		return -EINVAL;

	if (smt)
6668
		sched_smt_power_savings = level;
6669
	else
6670
		sched_mc_power_savings = level;
6671

6672
	reinit_sched_domains();
6673

6674
	return count;
6675 6676 6677
}

#ifdef CONFIG_SCHED_MC
6678 6679 6680
static ssize_t sched_mc_power_savings_show(struct device *dev,
					   struct device_attribute *attr,
					   char *buf)
6681
{
6682
	return sprintf(buf, "%u\n", sched_mc_power_savings);
6683
}
6684 6685
static ssize_t sched_mc_power_savings_store(struct device *dev,
					    struct device_attribute *attr,
6686
					    const char *buf, size_t count)
6687 6688 6689
{
	return sched_power_savings_store(buf, count, 0);
}
6690 6691 6692
static DEVICE_ATTR(sched_mc_power_savings, 0644,
		   sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6693 6694 6695
#endif

#ifdef CONFIG_SCHED_SMT
6696 6697 6698
static ssize_t sched_smt_power_savings_show(struct device *dev,
					    struct device_attribute *attr,
					    char *buf)
6699
{
6700
	return sprintf(buf, "%u\n", sched_smt_power_savings);
6701
}
6702 6703
static ssize_t sched_smt_power_savings_store(struct device *dev,
					    struct device_attribute *attr,
6704
					     const char *buf, size_t count)
6705 6706 6707
{
	return sched_power_savings_store(buf, count, 1);
}
6708
static DEVICE_ATTR(sched_smt_power_savings, 0644,
6709
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
6710 6711 6712
		   sched_smt_power_savings_store);
#endif

6713
int __init sched_create_sysfs_power_savings_entries(struct device *dev)
A
Adrian Bunk 已提交
6714 6715 6716 6717 6718
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
6719
		err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
A
Adrian Bunk 已提交
6720 6721 6722
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
6723
		err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
A
Adrian Bunk 已提交
6724 6725 6726
#endif
	return err;
}
6727
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6728

L
Linus Torvalds 已提交
6729
/*
6730 6731 6732
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
6733
 */
6734 6735
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6736
{
6737
	switch (action & ~CPU_TASKS_FROZEN) {
6738
	case CPU_ONLINE:
6739
	case CPU_DOWN_FAILED:
6740
		cpuset_update_active_cpus();
6741
		return NOTIFY_OK;
6742 6743 6744 6745
	default:
		return NOTIFY_DONE;
	}
}
6746

6747 6748
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6749 6750 6751 6752 6753
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
6754 6755 6756 6757 6758
	default:
		return NOTIFY_DONE;
	}
}

L
Linus Torvalds 已提交
6759 6760
void __init sched_init_smp(void)
{
6761 6762 6763
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6764
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6765

6766
	get_online_cpus();
6767
	mutex_lock(&sched_domains_mutex);
6768
	init_sched_domains(cpu_active_mask);
6769 6770 6771
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6772
	mutex_unlock(&sched_domains_mutex);
6773
	put_online_cpus();
6774

6775 6776
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6777 6778 6779 6780

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6781
	init_hrtick();
6782 6783

	/* Move init over to a non-isolated CPU */
6784
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6785
		BUG();
I
Ingo Molnar 已提交
6786
	sched_init_granularity();
6787
	free_cpumask_var(non_isolated_cpus);
6788

6789
	init_sched_rt_class();
L
Linus Torvalds 已提交
6790 6791 6792 6793
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6794
	sched_init_granularity();
L
Linus Torvalds 已提交
6795 6796 6797
}
#endif /* CONFIG_SMP */

6798 6799
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6800 6801 6802 6803 6804 6805 6806
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6807 6808
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6809
#endif
P
Peter Zijlstra 已提交
6810

6811
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6812

L
Linus Torvalds 已提交
6813 6814
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6815
	int i, j;
6816 6817 6818 6819 6820 6821 6822
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6823
#endif
6824
#ifdef CONFIG_CPUMASK_OFFSTACK
6825
	alloc_size += num_possible_cpus() * cpumask_size();
6826 6827
#endif
	if (alloc_size) {
6828
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6829 6830

#ifdef CONFIG_FAIR_GROUP_SCHED
6831
		root_task_group.se = (struct sched_entity **)ptr;
6832 6833
		ptr += nr_cpu_ids * sizeof(void **);

6834
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6835
		ptr += nr_cpu_ids * sizeof(void **);
6836

6837
#endif /* CONFIG_FAIR_GROUP_SCHED */
6838
#ifdef CONFIG_RT_GROUP_SCHED
6839
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6840 6841
		ptr += nr_cpu_ids * sizeof(void **);

6842
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6843 6844
		ptr += nr_cpu_ids * sizeof(void **);

6845
#endif /* CONFIG_RT_GROUP_SCHED */
6846 6847 6848 6849 6850 6851
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6852
	}
I
Ingo Molnar 已提交
6853

G
Gregory Haskins 已提交
6854 6855 6856 6857
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6858 6859 6860 6861
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6862
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6863
			global_rt_period(), global_rt_runtime());
6864
#endif /* CONFIG_RT_GROUP_SCHED */
6865

D
Dhaval Giani 已提交
6866
#ifdef CONFIG_CGROUP_SCHED
6867 6868
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6869
	INIT_LIST_HEAD(&root_task_group.siblings);
6870
	autogroup_init(&init_task);
6871

D
Dhaval Giani 已提交
6872
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6873

6874 6875 6876 6877 6878 6879
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6880
	for_each_possible_cpu(i) {
6881
		struct rq *rq;
L
Linus Torvalds 已提交
6882 6883

		rq = cpu_rq(i);
6884
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6885
		rq->nr_running = 0;
6886 6887
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6888
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6889
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6890
#ifdef CONFIG_FAIR_GROUP_SCHED
6891
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6892
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6893
		/*
6894
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6895 6896 6897 6898
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6899
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6900 6901 6902
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6903
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6904 6905 6906
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6907
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6908
		 *
6909 6910
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6911
		 */
6912
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6913
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6914 6915 6916
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6917
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6918
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6919
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6920
#endif
L
Linus Torvalds 已提交
6921

I
Ingo Molnar 已提交
6922 6923
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6924 6925 6926

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6927
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6928
		rq->sd = NULL;
G
Gregory Haskins 已提交
6929
		rq->rd = NULL;
6930
		rq->cpu_power = SCHED_POWER_SCALE;
6931
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6932
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6933
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6934
		rq->push_cpu = 0;
6935
		rq->cpu = i;
6936
		rq->online = 0;
6937 6938
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6939
		rq_attach_root(rq, &def_root_domain);
6940
#ifdef CONFIG_NO_HZ
6941
		rq->nohz_flags = 0;
6942
#endif
L
Linus Torvalds 已提交
6943
#endif
P
Peter Zijlstra 已提交
6944
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6945 6946 6947
		atomic_set(&rq->nr_iowait, 0);
	}

6948
	set_load_weight(&init_task);
6949

6950 6951 6952 6953
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6954
#ifdef CONFIG_RT_MUTEXES
6955
	plist_head_init(&init_task.pi_waiters);
6956 6957
#endif

L
Linus Torvalds 已提交
6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6971 6972 6973

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6974 6975 6976 6977
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6978

6979
#ifdef CONFIG_SMP
6980
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6981 6982 6983
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6984 6985
#endif
	init_sched_fair_class();
6986

6987
	scheduler_running = 1;
L
Linus Torvalds 已提交
6988 6989
}

6990
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6991 6992
static inline int preempt_count_equals(int preempt_offset)
{
6993
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6994

A
Arnd Bergmann 已提交
6995
	return (nested == preempt_offset);
6996 6997
}

6998
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6999 7000 7001
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7002
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7003 7004
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7005 7006 7007 7008 7009
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7010 7011 7012 7013 7014 7015 7016
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7017 7018 7019 7020 7021

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7022 7023 7024 7025 7026
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7027 7028
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7029 7030
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7031
	int on_rq;
7032

P
Peter Zijlstra 已提交
7033
	on_rq = p->on_rq;
7034 7035 7036 7037 7038 7039 7040
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7041 7042

	check_class_changed(rq, p, prev_class, old_prio);
7043 7044
}

L
Linus Torvalds 已提交
7045 7046
void normalize_rt_tasks(void)
{
7047
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7048
	unsigned long flags;
7049
	struct rq *rq;
L
Linus Torvalds 已提交
7050

7051
	read_lock_irqsave(&tasklist_lock, flags);
7052
	do_each_thread(g, p) {
7053 7054 7055 7056 7057 7058
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7059 7060
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7061 7062 7063
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7064
#endif
I
Ingo Molnar 已提交
7065 7066 7067 7068 7069 7070 7071 7072

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7073
			continue;
I
Ingo Molnar 已提交
7074
		}
L
Linus Torvalds 已提交
7075

7076
		raw_spin_lock(&p->pi_lock);
7077
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7078

7079
		normalize_task(rq, p);
7080

7081
		__task_rq_unlock(rq);
7082
		raw_spin_unlock(&p->pi_lock);
7083 7084
	} while_each_thread(g, p);

7085
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7086 7087 7088
}

#endif /* CONFIG_MAGIC_SYSRQ */
7089

7090
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7091
/*
7092
 * These functions are only useful for the IA64 MCA handling, or kdb.
7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7107
struct task_struct *curr_task(int cpu)
7108 7109 7110 7111
{
	return cpu_curr(cpu);
}

7112 7113 7114
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7115 7116 7117 7118 7119 7120
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7121 7122
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7123 7124 7125 7126 7127 7128 7129
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7130
void set_curr_task(int cpu, struct task_struct *p)
7131 7132 7133 7134 7135
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7136

D
Dhaval Giani 已提交
7137
#ifdef CONFIG_CGROUP_SCHED
7138 7139 7140
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7141 7142 7143 7144
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7145
	autogroup_free(tg);
7146 7147 7148 7149
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7150
struct task_group *sched_create_group(struct task_group *parent)
7151 7152 7153 7154 7155 7156 7157 7158
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7159
	if (!alloc_fair_sched_group(tg, parent))
7160 7161
		goto err;

7162
	if (!alloc_rt_sched_group(tg, parent))
7163 7164
		goto err;

7165
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7166
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7167 7168 7169 7170 7171

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7172
	list_add_rcu(&tg->siblings, &parent->children);
7173
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7174

7175
	return tg;
S
Srivatsa Vaddagiri 已提交
7176 7177

err:
P
Peter Zijlstra 已提交
7178
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7179 7180 7181
	return ERR_PTR(-ENOMEM);
}

7182
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7183
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7184 7185
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7186
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7187 7188
}

7189
/* Destroy runqueue etc associated with a task group */
7190
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7191
{
7192
	unsigned long flags;
7193
	int i;
S
Srivatsa Vaddagiri 已提交
7194

7195 7196
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7197
		unregister_fair_sched_group(tg, i);
7198 7199

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7200
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7201
	list_del_rcu(&tg->siblings);
7202
	spin_unlock_irqrestore(&task_group_lock, flags);
7203 7204

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7205
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7206 7207
}

7208
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7209 7210 7211
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7212 7213
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7214 7215 7216 7217 7218 7219 7220
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7221
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7222
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7223

7224
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7225
		dequeue_task(rq, tsk, 0);
7226 7227
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7228

P
Peter Zijlstra 已提交
7229
#ifdef CONFIG_FAIR_GROUP_SCHED
7230 7231 7232
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7233
#endif
7234
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7235

7236 7237 7238
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7239
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7240

7241
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7242
}
D
Dhaval Giani 已提交
7243
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7244

7245
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7246 7247 7248
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7249
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7250

P
Peter Zijlstra 已提交
7251
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7252
}
7253 7254 7255 7256 7257 7258 7259
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7260

P
Peter Zijlstra 已提交
7261 7262
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7263
{
P
Peter Zijlstra 已提交
7264
	struct task_struct *g, *p;
7265

P
Peter Zijlstra 已提交
7266
	do_each_thread(g, p) {
7267
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7268 7269
			return 1;
	} while_each_thread(g, p);
7270

P
Peter Zijlstra 已提交
7271 7272
	return 0;
}
7273

P
Peter Zijlstra 已提交
7274 7275 7276 7277 7278
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7279

7280
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7281 7282 7283 7284 7285
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7286

P
Peter Zijlstra 已提交
7287 7288
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7289

P
Peter Zijlstra 已提交
7290 7291 7292
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7293 7294
	}

7295 7296 7297 7298 7299
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7300

7301 7302 7303
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7304 7305
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7306

P
Peter Zijlstra 已提交
7307
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7308

7309 7310 7311 7312 7313
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7314

7315 7316 7317
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7318 7319 7320
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7321

P
Peter Zijlstra 已提交
7322 7323 7324 7325
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7326

P
Peter Zijlstra 已提交
7327
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7328
	}
P
Peter Zijlstra 已提交
7329

P
Peter Zijlstra 已提交
7330 7331 7332 7333
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7334 7335
}

P
Peter Zijlstra 已提交
7336
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7337
{
7338 7339
	int ret;

P
Peter Zijlstra 已提交
7340 7341 7342 7343 7344 7345
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7346 7347 7348 7349 7350
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7351 7352
}

7353
static int tg_set_rt_bandwidth(struct task_group *tg,
7354
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7355
{
P
Peter Zijlstra 已提交
7356
	int i, err = 0;
P
Peter Zijlstra 已提交
7357 7358

	mutex_lock(&rt_constraints_mutex);
7359
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7360 7361
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7362
		goto unlock;
P
Peter Zijlstra 已提交
7363

7364
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7365 7366
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7367 7368 7369 7370

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7371
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7372
		rt_rq->rt_runtime = rt_runtime;
7373
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7374
	}
7375
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7376
unlock:
7377
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7378 7379 7380
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7381 7382
}

7383 7384 7385 7386 7387 7388 7389 7390 7391
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7392
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7393 7394
}

P
Peter Zijlstra 已提交
7395 7396 7397 7398
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7399
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7400 7401
		return -1;

7402
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7403 7404 7405
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7406 7407 7408 7409 7410 7411 7412 7413

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7414 7415 7416
	if (rt_period == 0)
		return -EINVAL;

7417
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7431
	u64 runtime, period;
7432 7433
	int ret = 0;

7434 7435 7436
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7437 7438 7439 7440 7441 7442 7443 7444
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7445

7446
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7447
	read_lock(&tasklist_lock);
7448
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7449
	read_unlock(&tasklist_lock);
7450 7451 7452 7453
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7454 7455 7456 7457 7458 7459 7460 7461 7462 7463

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7464
#else /* !CONFIG_RT_GROUP_SCHED */
7465 7466
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7467 7468 7469
	unsigned long flags;
	int i;

7470 7471 7472
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7473 7474 7475 7476 7477 7478 7479
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7480
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7481 7482 7483
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7484
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7485
		rt_rq->rt_runtime = global_rt_runtime();
7486
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7487
	}
7488
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7489

7490 7491
	return 0;
}
7492
#endif /* CONFIG_RT_GROUP_SCHED */
7493 7494

int sched_rt_handler(struct ctl_table *table, int write,
7495
		void __user *buffer, size_t *lenp,
7496 7497 7498 7499 7500 7501 7502 7503 7504 7505
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7506
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7523

7524
#ifdef CONFIG_CGROUP_SCHED
7525 7526

/* return corresponding task_group object of a cgroup */
7527
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7528
{
7529 7530
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7531 7532 7533
}

static struct cgroup_subsys_state *
7534
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7535
{
7536
	struct task_group *tg, *parent;
7537

7538
	if (!cgrp->parent) {
7539
		/* This is early initialization for the top cgroup */
7540
		return &root_task_group.css;
7541 7542
	}

7543 7544
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7545 7546 7547 7548 7549 7550
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
7551 7552
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7553
{
7554
	struct task_group *tg = cgroup_tg(cgrp);
7555 7556 7557 7558

	sched_destroy_group(tg);
}

7559 7560
static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
				 struct cgroup_taskset *tset)
7561
{
7562 7563 7564
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7565
#ifdef CONFIG_RT_GROUP_SCHED
7566 7567
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7568
#else
7569 7570 7571
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7572
#endif
7573
	}
7574 7575
	return 0;
}
7576

7577 7578
static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
			      struct cgroup_taskset *tset)
7579
{
7580 7581 7582 7583
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7584 7585
}

7586
static void
7587 7588
cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7601
#ifdef CONFIG_FAIR_GROUP_SCHED
7602
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7603
				u64 shareval)
7604
{
7605
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7606 7607
}

7608
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7609
{
7610
	struct task_group *tg = cgroup_tg(cgrp);
7611

7612
	return (u64) scale_load_down(tg->shares);
7613
}
7614 7615

#ifdef CONFIG_CFS_BANDWIDTH
7616 7617
static DEFINE_MUTEX(cfs_constraints_mutex);

7618 7619 7620
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7621 7622
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7623 7624
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7625
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7626
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7647 7648 7649 7650 7651
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7652
	runtime_enabled = quota != RUNTIME_INF;
7653 7654
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7655 7656 7657
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7658

P
Paul Turner 已提交
7659
	__refill_cfs_bandwidth_runtime(cfs_b);
7660 7661 7662 7663 7664 7665
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7666 7667 7668 7669
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7670
		struct rq *rq = cfs_rq->rq;
7671 7672

		raw_spin_lock_irq(&rq->lock);
7673
		cfs_rq->runtime_enabled = runtime_enabled;
7674
		cfs_rq->runtime_remaining = 0;
7675

7676
		if (cfs_rq->throttled)
7677
			unthrottle_cfs_rq(cfs_rq);
7678 7679
		raw_spin_unlock_irq(&rq->lock);
	}
7680 7681
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7682

7683
	return ret;
7684 7685 7686 7687 7688 7689
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7690
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7703
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7704 7705
		return -1;

7706
	quota_us = tg->cfs_bandwidth.quota;
7707 7708 7709 7710 7711 7712 7713 7714 7715 7716
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7717
	quota = tg->cfs_bandwidth.quota;
7718 7719 7720 7721 7722 7723 7724 7725

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7726
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7786
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7787 7788 7789 7790 7791
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7792
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7813
	int ret;
7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7825 7826 7827 7828 7829
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7830
}
7831 7832 7833 7834 7835

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7836
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7837 7838 7839 7840 7841 7842 7843

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7844
#endif /* CONFIG_CFS_BANDWIDTH */
7845
#endif /* CONFIG_FAIR_GROUP_SCHED */
7846

7847
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7848
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7849
				s64 val)
P
Peter Zijlstra 已提交
7850
{
7851
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7852 7853
}

7854
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7855
{
7856
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7857
}
7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7869
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7870

7871
static struct cftype cpu_files[] = {
7872
#ifdef CONFIG_FAIR_GROUP_SCHED
7873 7874
	{
		.name = "shares",
7875 7876
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7877
	},
7878
#endif
7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7890 7891 7892 7893
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7894
#endif
7895
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7896
	{
P
Peter Zijlstra 已提交
7897
		.name = "rt_runtime_us",
7898 7899
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7900
	},
7901 7902
	{
		.name = "rt_period_us",
7903 7904
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7905
	},
7906
#endif
7907 7908 7909 7910
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7911
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7912 7913 7914
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7915 7916 7917
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
7918 7919
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7920
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7921 7922
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7923 7924 7925
	.early_init	= 1,
};

7926
#endif	/* CONFIG_CGROUP_SCHED */
7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
7939
	struct cgroup_subsys *ss, struct cgroup *cgrp)
7940
{
7941
	struct cpuacct *ca;
7942

7943 7944 7945 7946
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7947
	if (!ca)
7948
		goto out;
7949 7950

	ca->cpuusage = alloc_percpu(u64);
7951 7952 7953
	if (!ca->cpuusage)
		goto out_free_ca;

7954 7955 7956
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
7957

7958
	return &ca->css;
7959

7960
out_free_cpuusage:
7961 7962 7963 7964 7965
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
7966 7967 7968
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
7969
static void
7970
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7971
{
7972
	struct cpuacct *ca = cgroup_ca(cgrp);
7973

7974
	free_percpu(ca->cpustat);
7975 7976 7977 7978
	free_percpu(ca->cpuusage);
	kfree(ca);
}

7979 7980
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
7981
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7982 7983 7984 7985 7986 7987
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
7988
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7989
	data = *cpuusage;
7990
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7991 7992 7993 7994 7995 7996 7997 7998 7999
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8000
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8001 8002 8003 8004 8005

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8006
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8007
	*cpuusage = val;
8008
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8009 8010 8011 8012 8013
#else
	*cpuusage = val;
#endif
}

8014
/* return total cpu usage (in nanoseconds) of a group */
8015
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8016
{
8017
	struct cpuacct *ca = cgroup_ca(cgrp);
8018 8019 8020
	u64 totalcpuusage = 0;
	int i;

8021 8022
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8023 8024 8025 8026

	return totalcpuusage;
}

8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8039 8040
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8041 8042 8043 8044 8045

out:
	return err;
}

8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8061 8062 8063 8064 8065 8066
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8067
			      struct cgroup_map_cb *cb)
8068 8069
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8070 8071
	int cpu;
	s64 val = 0;
8072

8073 8074 8075 8076
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8077
	}
8078 8079
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8080

8081 8082 8083 8084 8085 8086
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8087
	}
8088 8089 8090 8091

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8092 8093 8094
	return 0;
}

8095 8096 8097
static struct cftype files[] = {
	{
		.name = "usage",
8098 8099
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8100
	},
8101 8102 8103 8104
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8105 8106 8107 8108
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8109 8110
};

8111
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8112
{
8113
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8114 8115 8116 8117 8118 8119 8120
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8121
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8122 8123
{
	struct cpuacct *ca;
8124
	int cpu;
8125

L
Li Zefan 已提交
8126
	if (unlikely(!cpuacct_subsys.active))
8127 8128
		return;

8129
	cpu = task_cpu(tsk);
8130 8131 8132

	rcu_read_lock();

8133 8134
	ca = task_ca(tsk);

8135
	for (; ca; ca = parent_ca(ca)) {
8136
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8137 8138
		*cpuusage += cputime;
	}
8139 8140

	rcu_read_unlock();
8141 8142 8143 8144 8145 8146 8147 8148 8149 8150
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */