core.c 196.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
L
Linus Torvalds 已提交
75

76
#include <asm/switch_to.h>
77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
79
#include <asm/mutex.h>
G
Glauber Costa 已提交
80 81 82
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
83

84
#include "sched.h"
85
#include "../workqueue_sched.h"
86
#include "../smpboot.h"
87

88
#define CREATE_TRACE_POINTS
89
#include <trace/events/sched.h>
90

91
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92
{
93 94
	unsigned long delta;
	ktime_t soft, hard, now;
95

96 97 98 99 100 101
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
102

103 104 105 106 107 108 109 110
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

111 112
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113

114
static void update_rq_clock_task(struct rq *rq, s64 delta);
115

116
void update_rq_clock(struct rq *rq)
117
{
118
	s64 delta;
119

120
	if (rq->skip_clock_update > 0)
121
		return;
122

123 124 125
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
126 127
}

I
Ingo Molnar 已提交
128 129 130
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
131 132 133 134

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
135
const_debug unsigned int sysctl_sched_features =
136
#include "features.h"
P
Peter Zijlstra 已提交
137 138 139 140 141 142 143 144
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

145
static __read_mostly char *sched_feat_names[] = {
146
#include "features.h"
P
Peter Zijlstra 已提交
147 148 149 150 151
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
152
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
153 154 155
{
	int i;

156
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
157 158 159
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
160
	}
L
Li Zefan 已提交
161
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
162

L
Li Zefan 已提交
163
	return 0;
P
Peter Zijlstra 已提交
164 165
}

166 167
#ifdef HAVE_JUMP_LABEL

168 169
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
170 171 172 173

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

174
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 176 177 178 179 180 181
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
182 183
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
184 185 186 187
}

static void sched_feat_enable(int i)
{
188 189
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
190 191 192 193 194 195
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

P
Peter Zijlstra 已提交
196 197 198 199 200
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
201
	char *cmp;
P
Peter Zijlstra 已提交
202 203 204 205 206 207 208 209 210 211
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
212
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
213

H
Hillf Danton 已提交
214
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
215 216 217 218
		neg = 1;
		cmp += 3;
	}

219
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
220
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
221
			if (neg) {
P
Peter Zijlstra 已提交
222
				sysctl_sched_features &= ~(1UL << i);
223 224
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
225
				sysctl_sched_features |= (1UL << i);
226 227
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
228 229 230 231
			break;
		}
	}

232
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
233 234
		return -EINVAL;

235
	*ppos += cnt;
P
Peter Zijlstra 已提交
236 237 238 239

	return cnt;
}

L
Li Zefan 已提交
240 241 242 243 244
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

245
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
246 247 248 249 250
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
251 252 253 254 255 256 257 258 259 260
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
261
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
262

263 264 265 266 267 268
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

269 270 271 272 273 274 275 276
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
277
/*
P
Peter Zijlstra 已提交
278
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
279 280
 * default: 1s
 */
P
Peter Zijlstra 已提交
281
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
282

283
__read_mostly int scheduler_running;
284

P
Peter Zijlstra 已提交
285 286 287 288 289
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
290 291


L
Linus Torvalds 已提交
292

293
/*
294
 * __task_rq_lock - lock the rq @p resides on.
295
 */
296
static inline struct rq *__task_rq_lock(struct task_struct *p)
297 298
	__acquires(rq->lock)
{
299 300
	struct rq *rq;

301 302
	lockdep_assert_held(&p->pi_lock);

303
	for (;;) {
304
		rq = task_rq(p);
305
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
306
		if (likely(rq == task_rq(p)))
307
			return rq;
308
		raw_spin_unlock(&rq->lock);
309 310 311
	}
}

L
Linus Torvalds 已提交
312
/*
313
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
314
 */
315
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
316
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
317 318
	__acquires(rq->lock)
{
319
	struct rq *rq;
L
Linus Torvalds 已提交
320

321
	for (;;) {
322
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
323
		rq = task_rq(p);
324
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
325
		if (likely(rq == task_rq(p)))
326
			return rq;
327 328
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
329 330 331
	}
}

A
Alexey Dobriyan 已提交
332
static void __task_rq_unlock(struct rq *rq)
333 334
	__releases(rq->lock)
{
335
	raw_spin_unlock(&rq->lock);
336 337
}

338 339
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
340
	__releases(rq->lock)
341
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
342
{
343 344
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
345 346 347
}

/*
348
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
349
 */
A
Alexey Dobriyan 已提交
350
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
351 352
	__acquires(rq->lock)
{
353
	struct rq *rq;
L
Linus Torvalds 已提交
354 355 356

	local_irq_disable();
	rq = this_rq();
357
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
358 359 360 361

	return rq;
}

P
Peter Zijlstra 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

390
	raw_spin_lock(&rq->lock);
391
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
392
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
394 395 396 397

	return HRTIMER_NORESTART;
}

398
#ifdef CONFIG_SMP
399 400 401 402
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
403
{
404
	struct rq *rq = arg;
405

406
	raw_spin_lock(&rq->lock);
407 408
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
409
	raw_spin_unlock(&rq->lock);
410 411
}

412 413 414 415 416
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
417
void hrtick_start(struct rq *rq, u64 delay)
418
{
419 420
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
421

422
	hrtimer_set_expires(timer, time);
423 424 425 426

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
427
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
428 429
		rq->hrtick_csd_pending = 1;
	}
430 431 432 433 434 435 436 437 438 439 440 441 442 443
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
444
		hrtick_clear(cpu_rq(cpu));
445 446 447 448 449 450
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

451
static __init void init_hrtick(void)
452 453 454
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
455 456 457 458 459 460
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
461
void hrtick_start(struct rq *rq, u64 delay)
462
{
463
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
464
			HRTIMER_MODE_REL_PINNED, 0);
465
}
466

A
Andrew Morton 已提交
467
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
468 469
{
}
470
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
471

472
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
473
{
474 475
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
476

477 478 479 480
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
481

482 483
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
484
}
A
Andrew Morton 已提交
485
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
486 487 488 489 490 491 492 493
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

494 495 496
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
497
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
498

I
Ingo Molnar 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

512
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
513 514 515
{
	int cpu;

516
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
517

518
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
519 520
		return;

521
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
522 523 524 525 526 527 528 529 530 531 532

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

533
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
534 535 536 537
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

538
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
539 540
		return;
	resched_task(cpu_curr(cpu));
541
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
542
}
543 544

#ifdef CONFIG_NO_HZ
545 546 547 548 549 550 551 552 553 554 555 556 557 558
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

559
	rcu_read_lock();
560
	for_each_domain(cpu, sd) {
561 562 563 564 565 566
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
567
	}
568 569
unlock:
	rcu_read_unlock();
570 571
	return cpu;
}
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
598 599

	/*
600 601 602
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
603
	 */
604
	set_tsk_need_resched(rq->idle);
605

606 607 608 609
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
610 611
}

612
static inline bool got_nohz_idle_kick(void)
613
{
614 615
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
616 617
}

618
#else /* CONFIG_NO_HZ */
619

620
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
621
{
622
	return false;
P
Peter Zijlstra 已提交
623 624
}

625
#endif /* CONFIG_NO_HZ */
626

627
void sched_avg_update(struct rq *rq)
628
{
629 630 631
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
632 633 634 635 636 637
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
638 639 640
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
641 642
}

643
#else /* !CONFIG_SMP */
644
void resched_task(struct task_struct *p)
645
{
646
	assert_raw_spin_locked(&task_rq(p)->lock);
647
	set_tsk_need_resched(p);
648
}
649
#endif /* CONFIG_SMP */
650

651 652
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
653
/*
654 655 656 657
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
658
 */
659
int walk_tg_tree_from(struct task_group *from,
660
			     tg_visitor down, tg_visitor up, void *data)
661 662
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
663
	int ret;
664

665 666
	parent = from;

667
down:
P
Peter Zijlstra 已提交
668 669
	ret = (*down)(parent, data);
	if (ret)
670
		goto out;
671 672 673 674 675 676 677
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
678
	ret = (*up)(parent, data);
679 680
	if (ret || parent == from)
		goto out;
681 682 683 684 685

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
686
out:
P
Peter Zijlstra 已提交
687
	return ret;
688 689
}

690
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
691
{
692
	return 0;
P
Peter Zijlstra 已提交
693
}
694 695
#endif

696 697
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
698 699 700
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
701 702 703 704
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
705
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
706
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
707 708
		return;
	}
709

710
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
711
	load->inv_weight = prio_to_wmult[prio];
712 713
}

714
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
715
{
716
	update_rq_clock(rq);
I
Ingo Molnar 已提交
717
	sched_info_queued(p);
718
	p->sched_class->enqueue_task(rq, p, flags);
719 720
}

721
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
722
{
723
	update_rq_clock(rq);
724
	sched_info_dequeued(p);
725
	p->sched_class->dequeue_task(rq, p, flags);
726 727
}

728
void activate_task(struct rq *rq, struct task_struct *p, int flags)
729 730 731 732
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

733
	enqueue_task(rq, p, flags);
734 735
}

736
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
737 738 739 740
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

741
	dequeue_task(rq, p, flags);
742 743
}

744 745
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

746 747 748 749 750 751 752
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
753 754 755
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
756
 */
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
811 812 813
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
814
#endif /* CONFIG_64BIT */
815

816 817 818 819
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
820 821 822
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
823
	s64 delta;
824 825 826 827 828 829 830 831
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
832 833 834
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

835
	irq_time_write_begin();
836 837 838 839 840 841 842
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
843
		__this_cpu_add(cpu_hardirq_time, delta);
844
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
845
		__this_cpu_add(cpu_softirq_time, delta);
846

847
	irq_time_write_end();
848 849
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
850
EXPORT_SYMBOL_GPL(account_system_vtime);
851

G
Glauber Costa 已提交
852 853 854 855
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

#ifdef CONFIG_PARAVIRT
static inline u64 steal_ticks(u64 steal)
856
{
G
Glauber Costa 已提交
857 858
	if (unlikely(steal > NSEC_PER_SEC))
		return div_u64(steal, TICK_NSEC);
859

G
Glauber Costa 已提交
860 861 862 863
	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
}
#endif

864
static void update_rq_clock_task(struct rq *rq, s64 delta)
865
{
866 867 868 869 870 871 872 873
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
874
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
896 897
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
898
	if (static_key_false((&paravirt_steal_rq_enabled))) {
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

916 917
	rq->clock_task += delta;

918 919 920 921
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
922 923
}

924
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
925 926
static int irqtime_account_hi_update(void)
{
927
	u64 *cpustat = kcpustat_this_cpu->cpustat;
928 929 930 931 932 933
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
934
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
935 936 937 938 939 940 941
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
942
	u64 *cpustat = kcpustat_this_cpu->cpustat;
943 944 945 946 947 948
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
949
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
950 951 952 953 954
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

955
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
956

957 958
#define sched_clock_irqtime	(0)

959
#endif
960

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

991
/*
I
Ingo Molnar 已提交
992
 * __normal_prio - return the priority that is based on the static prio
993 994 995
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
996
	return p->static_prio;
997 998
}

999 1000 1001 1002 1003 1004 1005
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1006
static inline int normal_prio(struct task_struct *p)
1007 1008 1009
{
	int prio;

1010
	if (task_has_rt_policy(p))
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1024
static int effective_prio(struct task_struct *p)
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1037 1038 1039 1040
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1041
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1042 1043 1044 1045
{
	return cpu_curr(task_cpu(p)) == p;
}

1046 1047
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1048
				       int oldprio)
1049 1050 1051
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1052 1053 1054 1055
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
1056 1057
}

1058
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
1079
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1080 1081 1082
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
1083
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1084
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1085
{
1086 1087 1088 1089 1090
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1091 1092
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1093 1094

#ifdef CONFIG_LOCKDEP
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
	 * see set_task_rq().
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1105 1106 1107
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1108 1109
#endif

1110
	trace_sched_migrate_task(p, new_cpu);
1111

1112 1113
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
1114
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1115
	}
I
Ingo Molnar 已提交
1116 1117

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1118 1119
}

1120
struct migration_arg {
1121
	struct task_struct *task;
L
Linus Torvalds 已提交
1122
	int dest_cpu;
1123
};
L
Linus Torvalds 已提交
1124

1125 1126
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1127 1128 1129
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1130 1131 1132 1133 1134 1135 1136
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1137 1138 1139 1140 1141 1142
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1143
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1144 1145
{
	unsigned long flags;
I
Ingo Molnar 已提交
1146
	int running, on_rq;
R
Roland McGrath 已提交
1147
	unsigned long ncsw;
1148
	struct rq *rq;
L
Linus Torvalds 已提交
1149

1150 1151 1152 1153 1154 1155 1156 1157
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1170 1171 1172
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1173
			cpu_relax();
R
Roland McGrath 已提交
1174
		}
1175

1176 1177 1178 1179 1180 1181
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1182
		trace_sched_wait_task(p);
1183
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1184
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1185
		ncsw = 0;
1186
		if (!match_state || p->state == match_state)
1187
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1188
		task_rq_unlock(rq, p, &flags);
1189

R
Roland McGrath 已提交
1190 1191 1192 1193 1194 1195
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1206

1207 1208 1209 1210 1211
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1212
		 * So if it was still runnable (but just not actively
1213 1214 1215 1216
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1217 1218 1219 1220
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1221 1222
			continue;
		}
1223

1224 1225 1226 1227 1228 1229 1230
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1231 1232

	return ncsw;
L
Linus Torvalds 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1242
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1243 1244 1245 1246 1247
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1248
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1258
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1259
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1260

1261
#ifdef CONFIG_SMP
1262
/*
1263
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1264
 */
1265 1266 1267
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1268 1269
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1270 1271

	/* Look for allowed, online CPU in same node. */
1272
	for_each_cpu(dest_cpu, nodemask) {
1273 1274 1275 1276
		if (!cpu_online(dest_cpu))
			continue;
		if (!cpu_active(dest_cpu))
			continue;
1277
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1278
			return dest_cpu;
1279
	}
1280

1281 1282
	for (;;) {
		/* Any allowed, online CPU? */
1283
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1284 1285 1286 1287 1288 1289
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1290

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1320 1321 1322 1323 1324
	}

	return dest_cpu;
}

1325
/*
1326
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1327
 */
1328
static inline
1329
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1330
{
1331
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1343
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1344
		     !cpu_online(cpu)))
1345
		cpu = select_fallback_rq(task_cpu(p), p);
1346 1347

	return cpu;
1348
}
1349 1350 1351 1352 1353 1354

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1355 1356
#endif

P
Peter Zijlstra 已提交
1357
static void
1358
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1359
{
P
Peter Zijlstra 已提交
1360
#ifdef CONFIG_SCHEDSTATS
1361 1362
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1373
		rcu_read_lock();
P
Peter Zijlstra 已提交
1374 1375 1376 1377 1378 1379
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1380
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1381
	}
1382 1383 1384 1385

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1386 1387 1388
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1389
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1390 1391

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1392
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1393 1394 1395 1396 1397 1398

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1399
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1400
	p->on_rq = 1;
1401 1402 1403 1404

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1405 1406
}

1407 1408 1409
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1410
static void
1411
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1412
{
1413
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1414 1415 1416 1417 1418 1419 1420
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1421
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1467
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1468
static void sched_ttwu_pending(void)
1469 1470
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1471 1472
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1473 1474 1475

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1476 1477 1478
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1479 1480 1481 1482 1483 1484 1485 1486
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1487
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1504
	sched_ttwu_pending();
1505 1506 1507 1508

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1509 1510
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1511
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1512
	}
1513
	irq_exit();
1514 1515 1516 1517
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1518
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1519 1520
		smp_send_reschedule(cpu);
}
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539

#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_cpu) {
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;

}
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1540

1541
bool cpus_share_cache(int this_cpu, int that_cpu)
1542 1543 1544
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1545
#endif /* CONFIG_SMP */
1546

1547 1548 1549 1550
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1551
#if defined(CONFIG_SMP)
1552
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1553
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1554 1555 1556 1557 1558
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1559 1560 1561
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1562 1563 1564
}

/**
L
Linus Torvalds 已提交
1565
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1566
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1567
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1568
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1569 1570 1571 1572 1573 1574 1575
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1576 1577
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1578
 */
1579 1580
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1581 1582
{
	unsigned long flags;
1583
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1584

1585
	smp_wmb();
1586
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1587
	if (!(p->state & state))
L
Linus Torvalds 已提交
1588 1589
		goto out;

1590
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1591 1592
	cpu = task_cpu(p);

1593 1594
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1595 1596

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1597
	/*
1598 1599
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1600
	 */
1601 1602 1603
	while (p->on_cpu) {
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
		/*
1604 1605 1606 1607 1608
		 * In case the architecture enables interrupts in
		 * context_switch(), we cannot busy wait, since that
		 * would lead to deadlocks when an interrupt hits and
		 * tries to wake up @prev. So bail and do a complete
		 * remote wakeup.
1609
		 */
1610
		if (ttwu_activate_remote(p, wake_flags))
1611
			goto stat;
1612
#else
1613
		cpu_relax();
1614
#endif
1615
	}
1616
	/*
1617
	 * Pairs with the smp_wmb() in finish_lock_switch().
1618
	 */
1619
	smp_rmb();
L
Linus Torvalds 已提交
1620

1621
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1622
	p->state = TASK_WAKING;
1623

1624
	if (p->sched_class->task_waking)
1625
		p->sched_class->task_waking(p);
1626

1627
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1628 1629
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1630
		set_task_cpu(p, cpu);
1631
	}
L
Linus Torvalds 已提交
1632 1633
#endif /* CONFIG_SMP */

1634 1635
	ttwu_queue(p, cpu);
stat:
1636
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1637
out:
1638
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1639 1640 1641 1642

	return success;
}

T
Tejun Heo 已提交
1643 1644 1645 1646
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1647
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1648
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1649
 * the current task.
T
Tejun Heo 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1659 1660 1661 1662 1663 1664
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1665
	if (!(p->state & TASK_NORMAL))
1666
		goto out;
T
Tejun Heo 已提交
1667

P
Peter Zijlstra 已提交
1668
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1669 1670
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1671
	ttwu_do_wakeup(rq, p, 0);
1672
	ttwu_stat(p, smp_processor_id(), 0);
1673 1674
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1675 1676
}

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1688
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1689
{
1690
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1691 1692 1693
}
EXPORT_SYMBOL(wake_up_process);

1694
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1695 1696 1697 1698 1699 1700 1701
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1702 1703 1704 1705 1706
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1707 1708 1709
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1710 1711
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1712
	p->se.prev_sum_exec_runtime	= 0;
1713
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1714
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1715
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1716 1717

#ifdef CONFIG_SCHEDSTATS
1718
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1719
#endif
N
Nick Piggin 已提交
1720

P
Peter Zijlstra 已提交
1721
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1722

1723 1724 1725
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
1726 1727 1728 1729 1730
}

/*
 * fork()/clone()-time setup:
 */
1731
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1732
{
1733
	unsigned long flags;
I
Ingo Molnar 已提交
1734 1735 1736
	int cpu = get_cpu();

	__sched_fork(p);
1737
	/*
1738
	 * We mark the process as running here. This guarantees that
1739 1740 1741
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1742
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1743

1744 1745 1746 1747 1748
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1749 1750 1751 1752
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1753
		if (task_has_rt_policy(p)) {
1754
			p->policy = SCHED_NORMAL;
1755
			p->static_prio = NICE_TO_PRIO(0);
1756 1757 1758 1759 1760 1761
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1762

1763 1764 1765 1766 1767 1768
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1769

H
Hiroshi Shimamoto 已提交
1770 1771
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1772

P
Peter Zijlstra 已提交
1773 1774 1775
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1776 1777 1778 1779 1780 1781 1782
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1783
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1784
	set_task_cpu(p, cpu);
1785
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1786

1787
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1788
	if (likely(sched_info_on()))
1789
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1790
#endif
P
Peter Zijlstra 已提交
1791 1792
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1793
#endif
1794
#ifdef CONFIG_PREEMPT_COUNT
1795
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1796
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1797
#endif
1798
#ifdef CONFIG_SMP
1799
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1800
#endif
1801

N
Nick Piggin 已提交
1802
	put_cpu();
L
Linus Torvalds 已提交
1803 1804 1805 1806 1807 1808 1809 1810 1811
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1812
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1813 1814
{
	unsigned long flags;
I
Ingo Molnar 已提交
1815
	struct rq *rq;
1816

1817
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1818 1819 1820 1821 1822 1823
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1824
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1825 1826
#endif

1827
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1828
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1829
	p->on_rq = 1;
1830
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1831
	check_preempt_curr(rq, p, WF_FORK);
1832
#ifdef CONFIG_SMP
1833 1834
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1835
#endif
1836
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1837 1838
}

1839 1840 1841
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1842
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1843
 * @notifier: notifier struct to register
1844 1845 1846 1847 1848 1849 1850 1851 1852
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1853
 * @notifier: notifier struct to unregister
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1883
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1895
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1896

1897 1898 1899
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1900
 * @prev: the current task that is being switched out
1901 1902 1903 1904 1905 1906 1907 1908 1909
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1910 1911 1912
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1913
{
1914 1915
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1916
	fire_sched_out_preempt_notifiers(prev, next);
1917 1918
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
1919
	trace_sched_switch(prev, next);
1920 1921
}

L
Linus Torvalds 已提交
1922 1923
/**
 * finish_task_switch - clean up after a task-switch
1924
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1925 1926
 * @prev: the thread we just switched away from.
 *
1927 1928 1929 1930
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1931 1932
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1933
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1934 1935 1936
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1937
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1938 1939 1940
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1941
	long prev_state;
L
Linus Torvalds 已提交
1942 1943 1944 1945 1946

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1947
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1948 1949
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1950
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1951 1952 1953 1954 1955
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1956
	prev_state = prev->state;
1957
	finish_arch_switch(prev);
1958 1959 1960
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1961
	perf_event_task_sched_in(prev, current);
1962 1963 1964
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1965
	finish_lock_switch(rq, prev);
1966
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1967

1968
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1969 1970
	if (mm)
		mmdrop(mm);
1971
	if (unlikely(prev_state == TASK_DEAD)) {
1972 1973 1974
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1975
		 */
1976
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1977
		put_task_struct(prev);
1978
	}
L
Linus Torvalds 已提交
1979 1980
}

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1996
		raw_spin_lock_irqsave(&rq->lock, flags);
1997 1998
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1999
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2000 2001 2002 2003 2004 2005

		rq->post_schedule = 0;
	}
}

#else
2006

2007 2008 2009 2010 2011 2012
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2013 2014
}

2015 2016
#endif

L
Linus Torvalds 已提交
2017 2018 2019 2020
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2021
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2022 2023
	__releases(rq->lock)
{
2024 2025
	struct rq *rq = this_rq();

2026
	finish_task_switch(rq, prev);
2027

2028 2029 2030 2031 2032
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2033

2034 2035 2036 2037
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2038
	if (current->set_child_tid)
2039
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2040 2041 2042 2043 2044 2045
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2046
static inline void
2047
context_switch(struct rq *rq, struct task_struct *prev,
2048
	       struct task_struct *next)
L
Linus Torvalds 已提交
2049
{
I
Ingo Molnar 已提交
2050
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2051

2052
	prepare_task_switch(rq, prev, next);
2053

I
Ingo Molnar 已提交
2054 2055
	mm = next->mm;
	oldmm = prev->active_mm;
2056 2057 2058 2059 2060
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2061
	arch_start_context_switch(prev);
2062

2063
	if (!mm) {
L
Linus Torvalds 已提交
2064 2065 2066 2067 2068 2069
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2070
	if (!prev->mm) {
L
Linus Torvalds 已提交
2071 2072 2073
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2074 2075 2076 2077 2078 2079 2080
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2081
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2082
#endif
L
Linus Torvalds 已提交
2083 2084

	/* Here we just switch the register state and the stack. */
2085
	rcu_switch_from(prev);
L
Linus Torvalds 已提交
2086 2087
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2088 2089 2090 2091 2092 2093 2094
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2112
}
L
Linus Torvalds 已提交
2113 2114

unsigned long nr_uninterruptible(void)
2115
{
L
Linus Torvalds 已提交
2116
	unsigned long i, sum = 0;
2117

2118
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2119
		sum += cpu_rq(i)->nr_uninterruptible;
2120 2121

	/*
L
Linus Torvalds 已提交
2122 2123
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2124
	 */
L
Linus Torvalds 已提交
2125 2126
	if (unlikely((long)sum < 0))
		sum = 0;
2127

L
Linus Torvalds 已提交
2128
	return sum;
2129 2130
}

L
Linus Torvalds 已提交
2131
unsigned long long nr_context_switches(void)
2132
{
2133 2134
	int i;
	unsigned long long sum = 0;
2135

2136
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2137
		sum += cpu_rq(i)->nr_switches;
2138

L
Linus Torvalds 已提交
2139 2140
	return sum;
}
2141

L
Linus Torvalds 已提交
2142 2143 2144
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2145

2146
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2147
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2148

L
Linus Torvalds 已提交
2149 2150
	return sum;
}
2151

2152
unsigned long nr_iowait_cpu(int cpu)
2153
{
2154
	struct rq *this = cpu_rq(cpu);
2155 2156
	return atomic_read(&this->nr_iowait);
}
2157

2158 2159 2160 2161 2162
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2163

2164

2165 2166 2167 2168 2169
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2170

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2186 2187 2188 2189 2190 2191 2192 2193 2194
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2195 2196 2197 2198 2199 2200 2201 2202
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

2203
void calc_load_account_idle(struct rq *this_rq)
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2302
static void calc_global_nohz(void)
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
{
	long delta, active, n;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
2317
	 * It could be the one fold was all it took, we done!
2318
	 */
2319 2320
	if (time_before(jiffies, calc_load_update + 10))
		return;
2321

2322 2323 2324 2325 2326
	/*
	 * Catch-up, fold however many we are behind still
	 */
	delta = jiffies - calc_load_update - 10;
	n = 1 + (delta / LOAD_FREQ);
2327

2328 2329
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
2330

2331 2332 2333
	avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
	avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
	avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2334

2335
	calc_load_update += n * LOAD_FREQ;
2336
}
2337
#else
2338
void calc_load_account_idle(struct rq *this_rq)
2339 2340 2341 2342 2343 2344 2345
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
2346

2347
static void calc_global_nohz(void)
2348 2349
{
}
2350 2351
#endif

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2365 2366 2367
}

/*
2368 2369
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2370
 */
2371
void calc_global_load(unsigned long ticks)
2372
{
2373
	long active;
L
Linus Torvalds 已提交
2374

2375
	if (time_before(jiffies, calc_load_update + 10))
2376
		return;
L
Linus Torvalds 已提交
2377

2378 2379
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2380

2381 2382 2383
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2384

2385
	calc_load_update += LOAD_FREQ;
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395

	/*
	 * Account one period with whatever state we found before
	 * folding in the nohz state and ageing the entire idle period.
	 *
	 * This avoids loosing a sample when we go idle between 
	 * calc_load_account_active() (10 ticks ago) and now and thus
	 * under-accounting.
	 */
	calc_global_nohz();
2396
}
L
Linus Torvalds 已提交
2397

2398
/*
2399 2400
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2401 2402 2403
 */
static void calc_load_account_active(struct rq *this_rq)
{
2404
	long delta;
2405

2406 2407
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2408

2409 2410 2411
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
2412
		atomic_long_add(delta, &calc_load_tasks);
2413 2414

	this_rq->calc_load_update += LOAD_FREQ;
2415 2416
}

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2484
/*
I
Ingo Molnar 已提交
2485
 * Update rq->cpu_load[] statistics. This function is usually called every
2486 2487
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2488
 */
2489 2490
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2491
{
I
Ingo Molnar 已提交
2492
	int i, scale;
2493

I
Ingo Molnar 已提交
2494
	this_rq->nr_load_updates++;
2495

I
Ingo Molnar 已提交
2496
	/* Update our load: */
2497 2498
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2499
		unsigned long old_load, new_load;
2500

I
Ingo Molnar 已提交
2501
		/* scale is effectively 1 << i now, and >> i divides by scale */
2502

I
Ingo Molnar 已提交
2503
		old_load = this_rq->cpu_load[i];
2504
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2505
		new_load = this_load;
I
Ingo Molnar 已提交
2506 2507 2508 2509 2510 2511
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2512 2513 2514
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2515
	}
2516 2517

	sched_avg_update(this_rq);
2518 2519
}

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
#ifdef CONFIG_NO_HZ
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2534 2535 2536 2537 2538 2539
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2540
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2541 2542 2543 2544
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2545
	 * bail if there's load or we're actually up-to-date.
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

2582 2583 2584
/*
 * Called from scheduler_tick()
 */
2585 2586
static void update_cpu_load_active(struct rq *this_rq)
{
2587
	/*
2588
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2589 2590 2591
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2592

2593
	calc_load_account_active(this_rq);
2594 2595
}

I
Ingo Molnar 已提交
2596
#ifdef CONFIG_SMP
2597

2598
/*
P
Peter Zijlstra 已提交
2599 2600
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2601
 */
P
Peter Zijlstra 已提交
2602
void sched_exec(void)
2603
{
P
Peter Zijlstra 已提交
2604
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2605
	unsigned long flags;
2606
	int dest_cpu;
2607

2608
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2609
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2610 2611
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2612

2613
	if (likely(cpu_active(dest_cpu))) {
2614
		struct migration_arg arg = { p, dest_cpu };
2615

2616 2617
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2618 2619
		return;
	}
2620
unlock:
2621
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2622
}
I
Ingo Molnar 已提交
2623

L
Linus Torvalds 已提交
2624 2625 2626
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2627
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2628 2629

EXPORT_PER_CPU_SYMBOL(kstat);
2630
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2631 2632

/*
2633
 * Return any ns on the sched_clock that have not yet been accounted in
2634
 * @p in case that task is currently running.
2635 2636
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2637
 */
2638 2639 2640 2641 2642 2643
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2644
		ns = rq->clock_task - p->se.exec_start;
2645 2646 2647 2648 2649 2650 2651
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2652
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2653 2654
{
	unsigned long flags;
2655
	struct rq *rq;
2656
	u64 ns = 0;
2657

2658
	rq = task_rq_lock(p, &flags);
2659
	ns = do_task_delta_exec(p, rq);
2660
	task_rq_unlock(rq, p, &flags);
2661

2662 2663
	return ns;
}
2664

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2678
	task_rq_unlock(rq, p, &flags);
2679 2680 2681

	return ns;
}
2682

2683 2684 2685 2686 2687
#ifdef CONFIG_CGROUP_CPUACCT
struct cgroup_subsys cpuacct_subsys;
struct cpuacct root_cpuacct;
#endif

2688 2689
static inline void task_group_account_field(struct task_struct *p, int index,
					    u64 tmp)
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
{
#ifdef CONFIG_CGROUP_CPUACCT
	struct kernel_cpustat *kcpustat;
	struct cpuacct *ca;
#endif
	/*
	 * Since all updates are sure to touch the root cgroup, we
	 * get ourselves ahead and touch it first. If the root cgroup
	 * is the only cgroup, then nothing else should be necessary.
	 *
	 */
	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;

#ifdef CONFIG_CGROUP_CPUACCT
	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(p);
	while (ca && (ca != &root_cpuacct)) {
		kcpustat = this_cpu_ptr(ca->cpustat);
		kcpustat->cpustat[index] += tmp;
		ca = parent_ca(ca);
	}
	rcu_read_unlock();
#endif
}


L
Linus Torvalds 已提交
2719 2720 2721 2722
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
2723
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2724
 */
2725 2726
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2727
{
2728
	int index;
L
Linus Torvalds 已提交
2729

2730
	/* Add user time to process. */
2731 2732
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
2733
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
2734

2735
	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2736

L
Linus Torvalds 已提交
2737
	/* Add user time to cpustat. */
2738
	task_group_account_field(p, index, (__force u64) cputime);
2739

2740 2741
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
2742 2743
}

2744 2745 2746 2747
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
2748
 * @cputime_scaled: cputime scaled by cpu frequency
2749
 */
2750 2751
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
2752
{
2753
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2754

2755
	/* Add guest time to process. */
2756 2757
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
2758
	account_group_user_time(p, cputime);
2759
	p->gtime += cputime;
2760

2761
	/* Add guest time to cpustat. */
2762
	if (TASK_NICE(p) > 0) {
2763 2764
		cpustat[CPUTIME_NICE] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2765
	} else {
2766 2767
		cpustat[CPUTIME_USER] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2768
	}
2769 2770
}

2771 2772 2773 2774 2775 2776 2777 2778 2779
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
2780
			cputime_t cputime_scaled, int index)
2781 2782
{
	/* Add system time to process. */
2783 2784
	p->stime += cputime;
	p->stimescaled += cputime_scaled;
2785 2786 2787
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
2788
	task_group_account_field(p, index, (__force u64) cputime);
2789 2790 2791 2792 2793

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
2794 2795 2796 2797 2798
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
2799
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2800 2801
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
2802
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2803
{
2804
	int index;
L
Linus Torvalds 已提交
2805

2806
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2807
		account_guest_time(p, cputime, cputime_scaled);
2808 2809
		return;
	}
2810

L
Linus Torvalds 已提交
2811
	if (hardirq_count() - hardirq_offset)
2812
		index = CPUTIME_IRQ;
2813
	else if (in_serving_softirq())
2814
		index = CPUTIME_SOFTIRQ;
L
Linus Torvalds 已提交
2815
	else
2816
		index = CPUTIME_SYSTEM;
2817

2818
	__account_system_time(p, cputime, cputime_scaled, index);
L
Linus Torvalds 已提交
2819 2820
}

2821
/*
L
Linus Torvalds 已提交
2822
 * Account for involuntary wait time.
2823
 * @cputime: the cpu time spent in involuntary wait
2824
 */
2825
void account_steal_time(cputime_t cputime)
2826
{
2827
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2828

2829
	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2830 2831
}

L
Linus Torvalds 已提交
2832
/*
2833 2834
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
2835
 */
2836
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
2837
{
2838
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2839
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2840

2841
	if (atomic_read(&rq->nr_iowait) > 0)
2842
		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2843
	else
2844
		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
L
Linus Torvalds 已提交
2845 2846
}

G
Glauber Costa 已提交
2847 2848 2849
static __always_inline bool steal_account_process_tick(void)
{
#ifdef CONFIG_PARAVIRT
2850
	if (static_key_false(&paravirt_steal_enabled)) {
G
Glauber Costa 已提交
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
		u64 steal, st = 0;

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;

		st = steal_ticks(steal);
		this_rq()->prev_steal_time += st * TICK_NSEC;

		account_steal_time(st);
		return st;
	}
#endif
	return false;
}

2866 2867
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2894
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2895

G
Glauber Costa 已提交
2896 2897 2898
	if (steal_account_process_tick())
		return;

2899
	if (irqtime_account_hi_update()) {
2900
		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2901
	} else if (irqtime_account_si_update()) {
2902
		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2903 2904 2905 2906 2907 2908 2909
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2910
					CPUTIME_SOFTIRQ);
2911 2912 2913 2914 2915 2916 2917 2918
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2919
					CPUTIME_SYSTEM);
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
2931
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2932 2933 2934
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
2935
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2936 2937 2938 2939 2940 2941 2942 2943

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
2944
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2945 2946
	struct rq *rq = this_rq();

2947 2948 2949 2950 2951
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

G
Glauber Costa 已提交
2952 2953 2954
	if (steal_account_process_tick())
		return;

2955
	if (user_tick)
2956
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2957
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2958
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2959 2960
				    one_jiffy_scaled);
	else
2961
		account_idle_time(cputime_one_jiffy);
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
2980 2981 2982 2983 2984 2985

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

2986
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
2987 2988
}

2989 2990
#endif

2991 2992 2993 2994
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
2995
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2996
{
2997 2998
	*ut = p->utime;
	*st = p->stime;
2999 3000
}

3001
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3002
{
3003 3004 3005 3006 3007 3008
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3009 3010
}
#else
3011 3012

#ifndef nsecs_to_cputime
3013
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3014 3015
#endif

3016
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3017
{
3018
	cputime_t rtime, utime = p->utime, total = utime + p->stime;
3019 3020 3021 3022

	/*
	 * Use CFS's precise accounting:
	 */
3023
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3024 3025

	if (total) {
3026
		u64 temp = (__force u64) rtime;
3027

3028 3029 3030
		temp *= (__force u64) utime;
		do_div(temp, (__force u32) total);
		utime = (__force cputime_t) temp;
3031 3032
	} else
		utime = rtime;
3033

3034 3035 3036
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3037
	p->prev_utime = max(p->prev_utime, utime);
3038
	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
3039

3040 3041
	*ut = p->prev_utime;
	*st = p->prev_stime;
3042 3043
}

3044 3045 3046 3047
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3048
{
3049 3050 3051
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3052

3053
	thread_group_cputime(p, &cputime);
3054

3055
	total = cputime.utime + cputime.stime;
3056
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3057

3058
	if (total) {
3059
		u64 temp = (__force u64) rtime;
3060

3061 3062 3063
		temp *= (__force u64) cputime.utime;
		do_div(temp, (__force u32) total);
		utime = (__force cputime_t) temp;
3064 3065 3066 3067
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
3068
	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3069 3070 3071

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3072 3073 3074
}
#endif

3075 3076 3077 3078 3079 3080 3081 3082
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3083
	struct task_struct *curr = rq->curr;
3084 3085

	sched_clock_tick();
I
Ingo Molnar 已提交
3086

3087
	raw_spin_lock(&rq->lock);
3088
	update_rq_clock(rq);
3089
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3090
	curr->sched_class->task_tick(rq, curr, 0);
3091
	raw_spin_unlock(&rq->lock);
3092

3093
	perf_event_task_tick();
3094

3095
#ifdef CONFIG_SMP
3096
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
3097
	trigger_load_balance(rq, cpu);
3098
#endif
L
Linus Torvalds 已提交
3099 3100
}

3101
notrace unsigned long get_parent_ip(unsigned long addr)
3102 3103 3104 3105 3106 3107 3108 3109
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3110

3111 3112 3113
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3114
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3115
{
3116
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3117 3118 3119
	/*
	 * Underflow?
	 */
3120 3121
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3122
#endif
L
Linus Torvalds 已提交
3123
	preempt_count() += val;
3124
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3125 3126 3127
	/*
	 * Spinlock count overflowing soon?
	 */
3128 3129
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3130 3131 3132
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3133 3134 3135
}
EXPORT_SYMBOL(add_preempt_count);

3136
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3137
{
3138
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3139 3140 3141
	/*
	 * Underflow?
	 */
3142
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3143
		return;
L
Linus Torvalds 已提交
3144 3145 3146
	/*
	 * Is the spinlock portion underflowing?
	 */
3147 3148 3149
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3150
#endif
3151

3152 3153
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3154 3155 3156 3157 3158 3159 3160
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3161
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3162
 */
I
Ingo Molnar 已提交
3163
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3164
{
3165 3166 3167
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3168 3169
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3170

I
Ingo Molnar 已提交
3171
	debug_show_held_locks(prev);
3172
	print_modules();
I
Ingo Molnar 已提交
3173 3174
	if (irqs_disabled())
		print_irqtrace_events(prev);
3175
	dump_stack();
3176
	add_taint(TAINT_WARN);
I
Ingo Molnar 已提交
3177
}
L
Linus Torvalds 已提交
3178

I
Ingo Molnar 已提交
3179 3180 3181 3182 3183
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3184
	/*
I
Ingo Molnar 已提交
3185
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3186 3187 3188
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3189
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3190
		__schedule_bug(prev);
3191
	rcu_sleep_check();
I
Ingo Molnar 已提交
3192

L
Linus Torvalds 已提交
3193 3194
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3195
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3196 3197
}

P
Peter Zijlstra 已提交
3198
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3199
{
3200
	if (prev->on_rq || rq->skip_clock_update < 0)
3201
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
3202
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3203 3204
}

I
Ingo Molnar 已提交
3205 3206 3207 3208
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3209
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3210
{
3211
	const struct sched_class *class;
I
Ingo Molnar 已提交
3212
	struct task_struct *p;
L
Linus Torvalds 已提交
3213 3214

	/*
I
Ingo Molnar 已提交
3215 3216
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3217
	 */
3218
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3219
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3220 3221
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3222 3223
	}

3224
	for_each_class(class) {
3225
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3226 3227 3228
		if (p)
			return p;
	}
3229 3230

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3231
}
L
Linus Torvalds 已提交
3232

I
Ingo Molnar 已提交
3233
/*
3234
 * __schedule() is the main scheduler function.
I
Ingo Molnar 已提交
3235
 */
3236
static void __sched __schedule(void)
I
Ingo Molnar 已提交
3237 3238
{
	struct task_struct *prev, *next;
3239
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3240
	struct rq *rq;
3241
	int cpu;
I
Ingo Molnar 已提交
3242

3243 3244
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3245 3246
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3247
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3248 3249 3250
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3251

3252
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3253
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3254

3255
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
3256

3257
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3258
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3259
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3260
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3261
		} else {
3262 3263 3264
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3265
			/*
3266 3267 3268
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3269 3270 3271 3272 3273 3274 3275 3276 3277
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
3278
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3279 3280
	}

3281
	pre_schedule(rq, prev);
3282

I
Ingo Molnar 已提交
3283
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3284 3285
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3286
	put_prev_task(rq, prev);
3287
	next = pick_next_task(rq);
3288 3289
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
3290 3291 3292 3293 3294 3295

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3296
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3297
		/*
3298 3299 3300 3301
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
3302 3303 3304
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3305
	} else
3306
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3307

3308
	post_schedule(rq);
L
Linus Torvalds 已提交
3309

3310
	sched_preempt_enable_no_resched();
3311
	if (need_resched())
L
Linus Torvalds 已提交
3312 3313
		goto need_resched;
}
3314

3315 3316
static inline void sched_submit_work(struct task_struct *tsk)
{
3317
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3318 3319 3320 3321 3322 3323 3324 3325 3326
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
3327
asmlinkage void __sched schedule(void)
3328
{
3329 3330 3331
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3332 3333
	__schedule();
}
L
Linus Torvalds 已提交
3334 3335
EXPORT_SYMBOL(schedule);

3336 3337 3338 3339 3340 3341 3342
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3343
	sched_preempt_enable_no_resched();
3344 3345 3346 3347
	schedule();
	preempt_disable();
}

3348
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3349

3350 3351 3352
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
3353
		return false;
3354 3355

	/*
3356 3357 3358 3359
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
3360
	 */
3361
	barrier();
3362

3363
	return owner->on_cpu;
3364
}
3365

3366 3367 3368 3369 3370 3371 3372 3373
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
3374

3375
	rcu_read_lock();
3376 3377
	while (owner_running(lock, owner)) {
		if (need_resched())
3378
			break;
3379

3380
		arch_mutex_cpu_relax();
3381
	}
3382
	rcu_read_unlock();
3383

3384
	/*
3385 3386 3387
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3388
	 */
3389
	return lock->owner == NULL;
3390 3391 3392
}
#endif

L
Linus Torvalds 已提交
3393 3394
#ifdef CONFIG_PREEMPT
/*
3395
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3396
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3397 3398
 * occur there and call schedule directly.
 */
3399
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3400 3401
{
	struct thread_info *ti = current_thread_info();
3402

L
Linus Torvalds 已提交
3403 3404
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3405
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3406
	 */
N
Nick Piggin 已提交
3407
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3408 3409
		return;

3410
	do {
3411
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3412
		__schedule();
3413
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3414

3415 3416 3417 3418 3419
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3420
	} while (need_resched());
L
Linus Torvalds 已提交
3421 3422 3423 3424
}
EXPORT_SYMBOL(preempt_schedule);

/*
3425
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3426 3427 3428 3429 3430 3431 3432
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3433

3434
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3435 3436
	BUG_ON(ti->preempt_count || !irqs_disabled());

3437 3438 3439
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3440
		__schedule();
3441 3442
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3443

3444 3445 3446 3447 3448
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3449
	} while (need_resched());
L
Linus Torvalds 已提交
3450 3451 3452 3453
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3454
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3455
			  void *key)
L
Linus Torvalds 已提交
3456
{
P
Peter Zijlstra 已提交
3457
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3458 3459 3460 3461
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3462 3463
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3464 3465 3466
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3467
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3468 3469
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3470
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3471
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3472
{
3473
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3474

3475
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3476 3477
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3478
		if (curr->func(curr, mode, wake_flags, key) &&
3479
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3480 3481 3482 3483 3484 3485 3486 3487 3488
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3489
 * @key: is directly passed to the wakeup function
3490 3491 3492
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3493
 */
3494
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3495
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3508
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3509
{
3510
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3511
}
3512
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3513

3514 3515 3516 3517
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3518
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3519

L
Linus Torvalds 已提交
3520
/**
3521
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3522 3523 3524
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3525
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3526 3527 3528 3529 3530 3531 3532
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3533 3534 3535
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3536
 */
3537 3538
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3539 3540
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3541
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3542 3543 3544 3545 3546

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3547
		wake_flags = 0;
L
Linus Torvalds 已提交
3548 3549

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3550
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3551 3552
	spin_unlock_irqrestore(&q->lock, flags);
}
3553 3554 3555 3556 3557 3558 3559 3560 3561
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3562 3563
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3564 3565 3566 3567 3568 3569 3570 3571
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3572 3573 3574
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3575
 */
3576
void complete(struct completion *x)
L
Linus Torvalds 已提交
3577 3578 3579 3580 3581
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3582
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3583 3584 3585 3586
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3587 3588 3589 3590 3591
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3592 3593 3594
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3595
 */
3596
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3597 3598 3599 3600 3601
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3602
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3603 3604 3605 3606
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3607 3608
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3609 3610 3611 3612
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3613
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3614
		do {
3615
			if (signal_pending_state(state, current)) {
3616 3617
				timeout = -ERESTARTSYS;
				break;
3618 3619
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3620 3621 3622
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3623
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3624
		__remove_wait_queue(&x->wait, &wait);
3625 3626
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3627 3628
	}
	x->done--;
3629
	return timeout ?: 1;
L
Linus Torvalds 已提交
3630 3631
}

3632 3633
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3634 3635 3636 3637
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3638
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3639
	spin_unlock_irq(&x->wait.lock);
3640 3641
	return timeout;
}
L
Linus Torvalds 已提交
3642

3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3653
void __sched wait_for_completion(struct completion *x)
3654 3655
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3656
}
3657
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3658

3659 3660 3661 3662 3663 3664 3665 3666
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3667 3668 3669
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3670
 */
3671
unsigned long __sched
3672
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3673
{
3674
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3675
}
3676
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3677

3678 3679 3680 3681 3682 3683
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3684 3685
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3686
 */
3687
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3688
{
3689 3690 3691 3692
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3693
}
3694
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3695

3696 3697 3698 3699 3700 3701 3702
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3703 3704 3705
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3706
 */
3707
long __sched
3708 3709
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3710
{
3711
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3712
}
3713
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3714

3715 3716 3717 3718 3719 3720
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3721 3722
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3723
 */
M
Matthew Wilcox 已提交
3724 3725 3726 3727 3728 3729 3730 3731 3732
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3733 3734 3735 3736 3737 3738 3739 3740
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3741 3742 3743
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3744
 */
3745
long __sched
3746 3747 3748 3749 3750 3751 3752
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3767
	unsigned long flags;
3768 3769
	int ret = 1;

3770
	spin_lock_irqsave(&x->wait.lock, flags);
3771 3772 3773 3774
	if (!x->done)
		ret = 0;
	else
		x->done--;
3775
	spin_unlock_irqrestore(&x->wait.lock, flags);
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3790
	unsigned long flags;
3791 3792
	int ret = 1;

3793
	spin_lock_irqsave(&x->wait.lock, flags);
3794 3795
	if (!x->done)
		ret = 0;
3796
	spin_unlock_irqrestore(&x->wait.lock, flags);
3797 3798 3799 3800
	return ret;
}
EXPORT_SYMBOL(completion_done);

3801 3802
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3803
{
I
Ingo Molnar 已提交
3804 3805 3806 3807
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3808

3809
	__set_current_state(state);
L
Linus Torvalds 已提交
3810

3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3825 3826 3827
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3828
long __sched
I
Ingo Molnar 已提交
3829
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3830
{
3831
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3832 3833 3834
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3835
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3836
{
3837
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3838 3839 3840
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3841
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3842
{
3843
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3844 3845 3846
}
EXPORT_SYMBOL(sleep_on_timeout);

3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3859
void rt_mutex_setprio(struct task_struct *p, int prio)
3860
{
3861
	int oldprio, on_rq, running;
3862
	struct rq *rq;
3863
	const struct sched_class *prev_class;
3864 3865 3866

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3867
	rq = __task_rq_lock(p);
3868

3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3887
	trace_sched_pi_setprio(p, prio);
3888
	oldprio = p->prio;
3889
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3890
	on_rq = p->on_rq;
3891
	running = task_current(rq, p);
3892
	if (on_rq)
3893
		dequeue_task(rq, p, 0);
3894 3895
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3896 3897 3898 3899 3900 3901

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3902 3903
	p->prio = prio;

3904 3905
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3906
	if (on_rq)
3907
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3908

P
Peter Zijlstra 已提交
3909
	check_class_changed(rq, p, prev_class, oldprio);
3910
out_unlock:
3911
	__task_rq_unlock(rq);
3912 3913
}
#endif
3914
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3915
{
I
Ingo Molnar 已提交
3916
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3917
	unsigned long flags;
3918
	struct rq *rq;
L
Linus Torvalds 已提交
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3931
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3932
	 */
3933
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3934 3935 3936
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3937
	on_rq = p->on_rq;
3938
	if (on_rq)
3939
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3940 3941

	p->static_prio = NICE_TO_PRIO(nice);
3942
	set_load_weight(p);
3943 3944 3945
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3946

I
Ingo Molnar 已提交
3947
	if (on_rq) {
3948
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3949
		/*
3950 3951
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3952
		 */
3953
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3954 3955 3956
			resched_task(rq->curr);
	}
out_unlock:
3957
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3958 3959 3960
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3961 3962 3963 3964 3965
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3966
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3967
{
3968 3969
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3970

3971
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3972 3973 3974
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3975 3976 3977 3978 3979 3980 3981 3982 3983
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3984
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3985
{
3986
	long nice, retval;
L
Linus Torvalds 已提交
3987 3988 3989 3990 3991 3992

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3993 3994
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3995 3996 3997
	if (increment > 40)
		increment = 40;

3998
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3999 4000 4001 4002 4003
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4004 4005 4006
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4025
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4026 4027 4028 4029 4030 4031 4032 4033
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4034
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4035 4036 4037
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4038
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4039 4040 4041 4042 4043 4044 4045

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
4060 4061 4062 4063 4064 4065
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4066
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4067 4068 4069 4070 4071 4072 4073 4074
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4075
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4076
{
4077
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4078 4079 4080
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4081 4082
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4083 4084 4085
{
	p->policy = policy;
	p->rt_priority = prio;
4086 4087 4088
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4089 4090 4091 4092
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4093
	set_load_weight(p);
L
Linus Torvalds 已提交
4094 4095
}

4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4106 4107
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
4108 4109 4110 4111
	rcu_read_unlock();
	return match;
}

4112
static int __sched_setscheduler(struct task_struct *p, int policy,
4113
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4114
{
4115
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4116
	unsigned long flags;
4117
	const struct sched_class *prev_class;
4118
	struct rq *rq;
4119
	int reset_on_fork;
L
Linus Torvalds 已提交
4120

4121 4122
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4123 4124
recheck:
	/* double check policy once rq lock held */
4125 4126
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4127
		policy = oldpolicy = p->policy;
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4138 4139
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4140 4141
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4142 4143
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4144
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4145
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4146
		return -EINVAL;
4147
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4148 4149
		return -EINVAL;

4150 4151 4152
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4153
	if (user && !capable(CAP_SYS_NICE)) {
4154
		if (rt_policy(policy)) {
4155 4156
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4167

I
Ingo Molnar 已提交
4168
		/*
4169 4170
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4171
		 */
4172 4173 4174 4175
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
4176

4177
		/* can't change other user's priorities */
4178
		if (!check_same_owner(p))
4179
			return -EPERM;
4180 4181 4182 4183

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4184
	}
L
Linus Torvalds 已提交
4185

4186
	if (user) {
4187
		retval = security_task_setscheduler(p);
4188 4189 4190 4191
		if (retval)
			return retval;
	}

4192 4193 4194
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
4195
	 *
L
Lucas De Marchi 已提交
4196
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4197 4198
	 * runqueue lock must be held.
	 */
4199
	rq = task_rq_lock(p, &flags);
4200

4201 4202 4203 4204
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
4205
		task_rq_unlock(rq, p, &flags);
4206 4207 4208
		return -EINVAL;
	}

4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {

		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return 0;
	}

4220 4221 4222 4223 4224 4225 4226
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4227 4228
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4229
			task_rq_unlock(rq, p, &flags);
4230 4231 4232 4233 4234
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
4235 4236 4237
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4238
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
4239 4240
		goto recheck;
	}
P
Peter Zijlstra 已提交
4241
	on_rq = p->on_rq;
4242
	running = task_current(rq, p);
4243
	if (on_rq)
4244
		dequeue_task(rq, p, 0);
4245 4246
	if (running)
		p->sched_class->put_prev_task(rq, p);
4247

4248 4249
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4250
	oldprio = p->prio;
4251
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4252
	__setscheduler(rq, p, policy, param->sched_priority);
4253

4254 4255
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4256
	if (on_rq)
4257
		enqueue_task(rq, p, 0);
4258

P
Peter Zijlstra 已提交
4259
	check_class_changed(rq, p, prev_class, oldprio);
4260
	task_rq_unlock(rq, p, &flags);
4261

4262 4263
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4264 4265
	return 0;
}
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4276
		       const struct sched_param *param)
4277 4278 4279
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4280 4281
EXPORT_SYMBOL_GPL(sched_setscheduler);

4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4294
			       const struct sched_param *param)
4295 4296 4297 4298
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4299 4300
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4301 4302 4303
{
	struct sched_param lparam;
	struct task_struct *p;
4304
	int retval;
L
Linus Torvalds 已提交
4305 4306 4307 4308 4309

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4310 4311 4312

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4313
	p = find_process_by_pid(pid);
4314 4315 4316
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4317

L
Linus Torvalds 已提交
4318 4319 4320 4321 4322 4323 4324 4325 4326
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4327 4328
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4329
{
4330 4331 4332 4333
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4334 4335 4336 4337 4338 4339 4340 4341
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4342
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4343 4344 4345 4346 4347 4348 4349 4350
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4351
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4352
{
4353
	struct task_struct *p;
4354
	int retval;
L
Linus Torvalds 已提交
4355 4356

	if (pid < 0)
4357
		return -EINVAL;
L
Linus Torvalds 已提交
4358 4359

	retval = -ESRCH;
4360
	rcu_read_lock();
L
Linus Torvalds 已提交
4361 4362 4363 4364
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4365 4366
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4367
	}
4368
	rcu_read_unlock();
L
Linus Torvalds 已提交
4369 4370 4371 4372
	return retval;
}

/**
4373
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4374 4375 4376
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4377
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4378 4379
{
	struct sched_param lp;
4380
	struct task_struct *p;
4381
	int retval;
L
Linus Torvalds 已提交
4382 4383

	if (!param || pid < 0)
4384
		return -EINVAL;
L
Linus Torvalds 已提交
4385

4386
	rcu_read_lock();
L
Linus Torvalds 已提交
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4397
	rcu_read_unlock();
L
Linus Torvalds 已提交
4398 4399 4400 4401 4402 4403 4404 4405 4406

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4407
	rcu_read_unlock();
L
Linus Torvalds 已提交
4408 4409 4410
	return retval;
}

4411
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4412
{
4413
	cpumask_var_t cpus_allowed, new_mask;
4414 4415
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4416

4417
	get_online_cpus();
4418
	rcu_read_lock();
L
Linus Torvalds 已提交
4419 4420 4421

	p = find_process_by_pid(pid);
	if (!p) {
4422
		rcu_read_unlock();
4423
		put_online_cpus();
L
Linus Torvalds 已提交
4424 4425 4426
		return -ESRCH;
	}

4427
	/* Prevent p going away */
L
Linus Torvalds 已提交
4428
	get_task_struct(p);
4429
	rcu_read_unlock();
L
Linus Torvalds 已提交
4430

4431 4432 4433 4434 4435 4436 4437 4438
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4439
	retval = -EPERM;
4440
	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
L
Linus Torvalds 已提交
4441 4442
		goto out_unlock;

4443
	retval = security_task_setscheduler(p);
4444 4445 4446
	if (retval)
		goto out_unlock;

4447 4448
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4449
again:
4450
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4451

P
Paul Menage 已提交
4452
	if (!retval) {
4453 4454
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4455 4456 4457 4458 4459
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4460
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4461 4462 4463
			goto again;
		}
	}
L
Linus Torvalds 已提交
4464
out_unlock:
4465 4466 4467 4468
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4469
	put_task_struct(p);
4470
	put_online_cpus();
L
Linus Torvalds 已提交
4471 4472 4473 4474
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4475
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4476
{
4477 4478 4479 4480 4481
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4482 4483 4484 4485 4486 4487 4488 4489 4490
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4491 4492
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4493
{
4494
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4495 4496
	int retval;

4497 4498
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4499

4500 4501 4502 4503 4504
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4505 4506
}

4507
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4508
{
4509
	struct task_struct *p;
4510
	unsigned long flags;
L
Linus Torvalds 已提交
4511 4512
	int retval;

4513
	get_online_cpus();
4514
	rcu_read_lock();
L
Linus Torvalds 已提交
4515 4516 4517 4518 4519 4520

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4521 4522 4523 4524
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4525
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4526
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4527
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4528 4529

out_unlock:
4530
	rcu_read_unlock();
4531
	put_online_cpus();
L
Linus Torvalds 已提交
4532

4533
	return retval;
L
Linus Torvalds 已提交
4534 4535 4536 4537 4538 4539 4540 4541
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4542 4543
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4544 4545
{
	int ret;
4546
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4547

A
Anton Blanchard 已提交
4548
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4549 4550
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4551 4552
		return -EINVAL;

4553 4554
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4555

4556 4557
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4558
		size_t retlen = min_t(size_t, len, cpumask_size());
4559 4560

		if (copy_to_user(user_mask_ptr, mask, retlen))
4561 4562
			ret = -EFAULT;
		else
4563
			ret = retlen;
4564 4565
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4566

4567
	return ret;
L
Linus Torvalds 已提交
4568 4569 4570 4571 4572
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4573 4574
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4575
 */
4576
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4577
{
4578
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4579

4580
	schedstat_inc(rq, yld_count);
4581
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4582 4583 4584 4585 4586 4587

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4588
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4589
	do_raw_spin_unlock(&rq->lock);
4590
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4591 4592 4593 4594 4595 4596

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4597 4598 4599 4600 4601
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4602
static void __cond_resched(void)
L
Linus Torvalds 已提交
4603
{
4604
	add_preempt_count(PREEMPT_ACTIVE);
4605
	__schedule();
4606
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4607 4608
}

4609
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4610
{
P
Peter Zijlstra 已提交
4611
	if (should_resched()) {
L
Linus Torvalds 已提交
4612 4613 4614 4615 4616
		__cond_resched();
		return 1;
	}
	return 0;
}
4617
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4618 4619

/*
4620
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4621 4622
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4623
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4624 4625 4626
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4627
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4628
{
P
Peter Zijlstra 已提交
4629
	int resched = should_resched();
J
Jan Kara 已提交
4630 4631
	int ret = 0;

4632 4633
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4634
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4635
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4636
		if (resched)
N
Nick Piggin 已提交
4637 4638 4639
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4640
		ret = 1;
L
Linus Torvalds 已提交
4641 4642
		spin_lock(lock);
	}
J
Jan Kara 已提交
4643
	return ret;
L
Linus Torvalds 已提交
4644
}
4645
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4646

4647
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4648 4649 4650
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4651
	if (should_resched()) {
4652
		local_bh_enable();
L
Linus Torvalds 已提交
4653 4654 4655 4656 4657 4658
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4659
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4660 4661 4662 4663

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4682 4683 4684 4685 4686 4687 4688 4689
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4690 4691 4692 4693
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4694 4695
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4730
	if (yielded) {
4731
		schedstat_inc(rq, yld_count);
4732 4733 4734 4735 4736 4737
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
4738 4739 4740 4741 4742 4743 4744
	} else {
		/*
		 * We might have set it in task_yield_fair(), but are
		 * not going to schedule(), so don't want to skip
		 * the next update.
		 */
		rq->skip_clock_update = 0;
4745
	}
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4758
/*
I
Ingo Molnar 已提交
4759
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4760 4761 4762 4763
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4764
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4765

4766
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4767
	atomic_inc(&rq->nr_iowait);
4768
	blk_flush_plug(current);
4769
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4770
	schedule();
4771
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4772
	atomic_dec(&rq->nr_iowait);
4773
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4774 4775 4776 4777 4778
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4779
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4780 4781
	long ret;

4782
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4783
	atomic_inc(&rq->nr_iowait);
4784
	blk_flush_plug(current);
4785
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4786
	ret = schedule_timeout(timeout);
4787
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4788
	atomic_dec(&rq->nr_iowait);
4789
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4800
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4801 4802 4803 4804 4805 4806 4807 4808 4809
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4810
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4811
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4825
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4826 4827 4828 4829 4830 4831 4832 4833 4834
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4835
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4836
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4850
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4851
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4852
{
4853
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4854
	unsigned int time_slice;
4855 4856
	unsigned long flags;
	struct rq *rq;
4857
	int retval;
L
Linus Torvalds 已提交
4858 4859 4860
	struct timespec t;

	if (pid < 0)
4861
		return -EINVAL;
L
Linus Torvalds 已提交
4862 4863

	retval = -ESRCH;
4864
	rcu_read_lock();
L
Linus Torvalds 已提交
4865 4866 4867 4868 4869 4870 4871 4872
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4873 4874
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4875
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4876

4877
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4878
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4879 4880
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4881

L
Linus Torvalds 已提交
4882
out_unlock:
4883
	rcu_read_unlock();
L
Linus Torvalds 已提交
4884 4885 4886
	return retval;
}

4887
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4888

4889
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4890 4891
{
	unsigned long free = 0;
4892
	unsigned state;
L
Linus Torvalds 已提交
4893 4894

	state = p->state ? __ffs(p->state) + 1 : 0;
4895
	printk(KERN_INFO "%-15.15s %c", p->comm,
4896
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4897
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4898
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4899
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4900
	else
P
Peter Zijlstra 已提交
4901
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4902 4903
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4904
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4905
	else
P
Peter Zijlstra 已提交
4906
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4907 4908
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4909
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4910
#endif
P
Peter Zijlstra 已提交
4911
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4912
		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4913
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4914

4915
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4916 4917
}

I
Ingo Molnar 已提交
4918
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4919
{
4920
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4921

4922
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4923 4924
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4925
#else
P
Peter Zijlstra 已提交
4926 4927
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4928
#endif
4929
	rcu_read_lock();
L
Linus Torvalds 已提交
4930 4931 4932
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4933
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4934 4935
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4936
		if (!state_filter || (p->state & state_filter))
4937
			sched_show_task(p);
L
Linus Torvalds 已提交
4938 4939
	} while_each_thread(g, p);

4940 4941
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4942 4943 4944
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4945
	rcu_read_unlock();
I
Ingo Molnar 已提交
4946 4947 4948
	/*
	 * Only show locks if all tasks are dumped:
	 */
4949
	if (!state_filter)
I
Ingo Molnar 已提交
4950
		debug_show_all_locks();
L
Linus Torvalds 已提交
4951 4952
}

I
Ingo Molnar 已提交
4953 4954
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4955
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4956 4957
}

4958 4959 4960 4961 4962 4963 4964 4965
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4966
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4967
{
4968
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4969 4970
	unsigned long flags;

4971
	raw_spin_lock_irqsave(&rq->lock, flags);
4972

I
Ingo Molnar 已提交
4973
	__sched_fork(idle);
4974
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4975 4976
	idle->se.exec_start = sched_clock();

4977
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4989
	__set_task_cpu(idle, cpu);
4990
	rcu_read_unlock();
L
Linus Torvalds 已提交
4991 4992

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4993 4994
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4995
#endif
4996
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4997 4998

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4999
	task_thread_info(idle)->preempt_count = 0;
5000

I
Ingo Molnar 已提交
5001 5002 5003 5004
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5005
	ftrace_graph_init_idle_task(idle, cpu);
5006 5007 5008
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5009 5010
}

L
Linus Torvalds 已提交
5011
#ifdef CONFIG_SMP
5012 5013 5014 5015
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
5016 5017 5018

	cpumask_copy(&p->cpus_allowed, new_mask);
	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5019 5020
}

L
Linus Torvalds 已提交
5021 5022 5023
/*
 * This is how migration works:
 *
5024 5025 5026 5027 5028 5029
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5030
 *    it and puts it into the right queue.
5031 5032
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5033 5034 5035 5036 5037 5038 5039 5040
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5041
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5042 5043
 * call is not atomic; no spinlocks may be held.
 */
5044
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5045 5046
{
	unsigned long flags;
5047
	struct rq *rq;
5048
	unsigned int dest_cpu;
5049
	int ret = 0;
L
Linus Torvalds 已提交
5050 5051

	rq = task_rq_lock(p, &flags);
5052

5053 5054 5055
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

5056
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5057 5058 5059 5060
		ret = -EINVAL;
		goto out;
	}

5061
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5062 5063 5064 5065
		ret = -EINVAL;
		goto out;
	}

5066
	do_set_cpus_allowed(p, new_mask);
5067

L
Linus Torvalds 已提交
5068
	/* Can the task run on the task's current CPU? If so, we're done */
5069
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5070 5071
		goto out;

5072
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5073
	if (p->on_rq) {
5074
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5075
		/* Need help from migration thread: drop lock and wait. */
5076
		task_rq_unlock(rq, p, &flags);
5077
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5078 5079 5080 5081
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
5082
	task_rq_unlock(rq, p, &flags);
5083

L
Linus Torvalds 已提交
5084 5085
	return ret;
}
5086
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5087 5088

/*
I
Ingo Molnar 已提交
5089
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5090 5091 5092 5093 5094 5095
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5096 5097
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5098
 */
5099
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5100
{
5101
	struct rq *rq_dest, *rq_src;
5102
	int ret = 0;
L
Linus Torvalds 已提交
5103

5104
	if (unlikely(!cpu_active(dest_cpu)))
5105
		return ret;
L
Linus Torvalds 已提交
5106 5107 5108 5109

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

5110
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
5111 5112 5113
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5114
		goto done;
L
Linus Torvalds 已提交
5115
	/* Affinity changed (again). */
5116
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
5117
		goto fail;
L
Linus Torvalds 已提交
5118

5119 5120 5121 5122
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
5123
	if (p->on_rq) {
5124
		dequeue_task(rq_src, p, 0);
5125
		set_task_cpu(p, dest_cpu);
5126
		enqueue_task(rq_dest, p, 0);
5127
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5128
	}
L
Linus Torvalds 已提交
5129
done:
5130
	ret = 1;
L
Linus Torvalds 已提交
5131
fail:
L
Linus Torvalds 已提交
5132
	double_rq_unlock(rq_src, rq_dest);
5133
	raw_spin_unlock(&p->pi_lock);
5134
	return ret;
L
Linus Torvalds 已提交
5135 5136 5137
}

/*
5138 5139 5140
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5141
 */
5142
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5143
{
5144
	struct migration_arg *arg = data;
5145

5146 5147 5148 5149
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5150
	local_irq_disable();
5151
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5152
	local_irq_enable();
L
Linus Torvalds 已提交
5153
	return 0;
5154 5155
}

L
Linus Torvalds 已提交
5156
#ifdef CONFIG_HOTPLUG_CPU
5157

5158
/*
5159 5160
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5161
 */
5162
void idle_task_exit(void)
L
Linus Torvalds 已提交
5163
{
5164
	struct mm_struct *mm = current->active_mm;
5165

5166
	BUG_ON(cpu_online(smp_processor_id()));
5167

5168 5169 5170
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
5171 5172 5173 5174 5175 5176 5177 5178 5179
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5180
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5181
{
5182
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5183 5184 5185 5186 5187

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
5188
/*
5189
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
5190
 */
5191
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
5192
{
5193 5194
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
5195 5196
}

5197
/*
5198 5199 5200 5201 5202 5203
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5204
 */
5205
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
5206
{
5207
	struct rq *rq = cpu_rq(dead_cpu);
5208 5209
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5210 5211

	/*
5212 5213 5214 5215 5216 5217 5218
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5219
	 */
5220
	rq->stop = NULL;
5221

5222 5223 5224
	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);

I
Ingo Molnar 已提交
5225
	for ( ; ; ) {
5226 5227 5228 5229 5230
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5231
			break;
5232

5233
		next = pick_next_task(rq);
5234
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5235
		next->sched_class->put_prev_task(rq, next);
5236

5237 5238 5239 5240 5241 5242 5243
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5244
	}
5245

5246
	rq->stop = stop;
5247
}
5248

L
Linus Torvalds 已提交
5249 5250
#endif /* CONFIG_HOTPLUG_CPU */

5251 5252 5253
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5254 5255
	{
		.procname	= "sched_domain",
5256
		.mode		= 0555,
5257
	},
5258
	{}
5259 5260 5261
};

static struct ctl_table sd_ctl_root[] = {
5262 5263
	{
		.procname	= "kernel",
5264
		.mode		= 0555,
5265 5266
		.child		= sd_ctl_dir,
	},
5267
	{}
5268 5269 5270 5271 5272
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5273
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5274 5275 5276 5277

	return entry;
}

5278 5279
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5280
	struct ctl_table *entry;
5281

5282 5283 5284
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5285
	 * will always be set. In the lowest directory the names are
5286 5287 5288
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5289 5290
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5291 5292 5293
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5294 5295 5296 5297 5298

	kfree(*tablep);
	*tablep = NULL;
}

5299
static void
5300
set_table_entry(struct ctl_table *entry,
5301
		const char *procname, void *data, int maxlen,
5302
		umode_t mode, proc_handler *proc_handler)
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5314
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5315

5316 5317 5318
	if (table == NULL)
		return NULL;

5319
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5320
		sizeof(long), 0644, proc_doulongvec_minmax);
5321
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5322
		sizeof(long), 0644, proc_doulongvec_minmax);
5323
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5324
		sizeof(int), 0644, proc_dointvec_minmax);
5325
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5326
		sizeof(int), 0644, proc_dointvec_minmax);
5327
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5328
		sizeof(int), 0644, proc_dointvec_minmax);
5329
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5330
		sizeof(int), 0644, proc_dointvec_minmax);
5331
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5332
		sizeof(int), 0644, proc_dointvec_minmax);
5333
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5334
		sizeof(int), 0644, proc_dointvec_minmax);
5335
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5336
		sizeof(int), 0644, proc_dointvec_minmax);
5337
	set_table_entry(&table[9], "cache_nice_tries",
5338 5339
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5340
	set_table_entry(&table[10], "flags", &sd->flags,
5341
		sizeof(int), 0644, proc_dointvec_minmax);
5342 5343 5344
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5345 5346 5347 5348

	return table;
}

5349
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5350 5351 5352 5353 5354 5355 5356 5357 5358
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5359 5360
	if (table == NULL)
		return NULL;
5361 5362 5363 5364 5365

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5366
		entry->mode = 0555;
5367 5368 5369 5370 5371 5372 5373 5374
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5375
static void register_sched_domain_sysctl(void)
5376
{
5377
	int i, cpu_num = num_possible_cpus();
5378 5379 5380
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5381 5382 5383
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5384 5385 5386
	if (entry == NULL)
		return;

5387
	for_each_possible_cpu(i) {
5388 5389
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5390
		entry->mode = 0555;
5391
		entry->child = sd_alloc_ctl_cpu_table(i);
5392
		entry++;
5393
	}
5394 5395

	WARN_ON(sd_sysctl_header);
5396 5397
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5398

5399
/* may be called multiple times per register */
5400 5401
static void unregister_sched_domain_sysctl(void)
{
5402 5403
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5404
	sd_sysctl_header = NULL;
5405 5406
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5407
}
5408
#else
5409 5410 5411 5412
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5413 5414 5415 5416
{
}
#endif

5417 5418 5419 5420 5421
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5422
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5442
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5443 5444 5445 5446
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5447 5448 5449 5450
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5451 5452
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5453
{
5454
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5455
	unsigned long flags;
5456
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5457

5458
	switch (action & ~CPU_TASKS_FROZEN) {
5459

L
Linus Torvalds 已提交
5460
	case CPU_UP_PREPARE:
5461
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5462
		break;
5463

L
Linus Torvalds 已提交
5464
	case CPU_ONLINE:
5465
		/* Update our root-domain */
5466
		raw_spin_lock_irqsave(&rq->lock, flags);
5467
		if (rq->rd) {
5468
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5469 5470

			set_rq_online(rq);
5471
		}
5472
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5473
		break;
5474

L
Linus Torvalds 已提交
5475
#ifdef CONFIG_HOTPLUG_CPU
5476
	case CPU_DYING:
5477
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5478
		/* Update our root-domain */
5479
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5480
		if (rq->rd) {
5481
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5482
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5483
		}
5484 5485
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5486
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5487 5488 5489

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
5490
		break;
L
Linus Torvalds 已提交
5491 5492
#endif
	}
5493 5494 5495

	update_max_interval();

L
Linus Torvalds 已提交
5496 5497 5498
	return NOTIFY_OK;
}

5499 5500 5501
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5502
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5503
 */
5504
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5505
	.notifier_call = migration_call,
5506
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5507 5508
};

5509 5510 5511 5512
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5513
	case CPU_STARTING:
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5534
static int __init migration_init(void)
L
Linus Torvalds 已提交
5535 5536
{
	void *cpu = (void *)(long)smp_processor_id();
5537
	int err;
5538

5539
	/* Initialize migration for the boot CPU */
5540 5541
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5542 5543
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5544

5545 5546 5547 5548
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5549
	return 0;
L
Linus Torvalds 已提交
5550
}
5551
early_initcall(migration_init);
L
Linus Torvalds 已提交
5552 5553 5554
#endif

#ifdef CONFIG_SMP
5555

5556 5557
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5558
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5559

5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5570
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5571
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5572
{
I
Ingo Molnar 已提交
5573
	struct sched_group *group = sd->groups;
5574
	char str[256];
L
Linus Torvalds 已提交
5575

R
Rusty Russell 已提交
5576
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5577
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5578 5579 5580 5581

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5582
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5583
		if (sd->parent)
P
Peter Zijlstra 已提交
5584 5585
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5586
		return -1;
N
Nick Piggin 已提交
5587 5588
	}

P
Peter Zijlstra 已提交
5589
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5590

5591
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5592 5593
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5594
	}
5595
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5596 5597
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5598
	}
L
Linus Torvalds 已提交
5599

I
Ingo Molnar 已提交
5600
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5601
	do {
I
Ingo Molnar 已提交
5602
		if (!group) {
P
Peter Zijlstra 已提交
5603 5604
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5605 5606 5607
			break;
		}

5608
		if (!group->sgp->power) {
P
Peter Zijlstra 已提交
5609 5610 5611
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5612 5613
			break;
		}
L
Linus Torvalds 已提交
5614

5615
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5616 5617
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5618 5619
			break;
		}
L
Linus Torvalds 已提交
5620

5621 5622
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5623 5624
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5625 5626
			break;
		}
L
Linus Torvalds 已提交
5627

5628
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5629

R
Rusty Russell 已提交
5630
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5631

P
Peter Zijlstra 已提交
5632
		printk(KERN_CONT " %s", str);
5633
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5634
			printk(KERN_CONT " (cpu_power = %d)",
5635
				group->sgp->power);
5636
		}
L
Linus Torvalds 已提交
5637

I
Ingo Molnar 已提交
5638 5639
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5640
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5641

5642
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5643
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5644

5645 5646
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5647 5648
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5649 5650
	return 0;
}
L
Linus Torvalds 已提交
5651

I
Ingo Molnar 已提交
5652 5653 5654
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5655

5656 5657 5658
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
5659 5660 5661 5662
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5663

I
Ingo Molnar 已提交
5664 5665 5666
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5667
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5668
			break;
L
Linus Torvalds 已提交
5669 5670
		level++;
		sd = sd->parent;
5671
		if (!sd)
I
Ingo Molnar 已提交
5672 5673
			break;
	}
L
Linus Torvalds 已提交
5674
}
5675
#else /* !CONFIG_SCHED_DEBUG */
5676
# define sched_domain_debug(sd, cpu) do { } while (0)
5677
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5678

5679
static int sd_degenerate(struct sched_domain *sd)
5680
{
5681
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5682 5683 5684 5685 5686 5687
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5688 5689 5690
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5691 5692 5693 5694 5695
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5696
	if (sd->flags & (SD_WAKE_AFFINE))
5697 5698 5699 5700 5701
		return 0;

	return 1;
}

5702 5703
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5704 5705 5706 5707 5708 5709
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5710
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5711 5712 5713 5714 5715 5716 5717
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5718 5719 5720
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5721 5722
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5723 5724 5725 5726 5727 5728 5729
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5730
static void free_rootdomain(struct rcu_head *rcu)
5731
{
5732
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5733

5734
	cpupri_cleanup(&rd->cpupri);
5735 5736 5737 5738 5739 5740
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5741 5742
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5743
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5744 5745
	unsigned long flags;

5746
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5747 5748

	if (rq->rd) {
I
Ingo Molnar 已提交
5749
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5750

5751
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5752
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5753

5754
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5755

I
Ingo Molnar 已提交
5756 5757 5758 5759 5760 5761 5762
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5763 5764 5765 5766 5767
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5768
	cpumask_set_cpu(rq->cpu, rd->span);
5769
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5770
		set_rq_online(rq);
G
Gregory Haskins 已提交
5771

5772
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5773 5774

	if (old_rd)
5775
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5776 5777
}

5778
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5779 5780 5781
{
	memset(rd, 0, sizeof(*rd));

5782
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5783
		goto out;
5784
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5785
		goto free_span;
5786
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5787
		goto free_online;
5788

5789
	if (cpupri_init(&rd->cpupri) != 0)
5790
		goto free_rto_mask;
5791
	return 0;
5792

5793 5794
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5795 5796 5797 5798
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5799
out:
5800
	return -ENOMEM;
G
Gregory Haskins 已提交
5801 5802
}

5803 5804 5805 5806 5807 5808
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5809 5810
static void init_defrootdomain(void)
{
5811
	init_rootdomain(&def_root_domain);
5812

G
Gregory Haskins 已提交
5813 5814 5815
	atomic_set(&def_root_domain.refcount, 1);
}

5816
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5817 5818 5819 5820 5821 5822 5823
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5824
	if (init_rootdomain(rd) != 0) {
5825 5826 5827
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5828 5829 5830 5831

	return rd;
}

5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5851 5852 5853
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5854 5855 5856 5857 5858 5859 5860 5861

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5862
		kfree(sd->groups->sgp);
5863
		kfree(sd->groups);
5864
	}
5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5879 5880 5881 5882 5883 5884 5885
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5886
 * two cpus are in the same cache domain, see cpus_share_cache().
5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
	if (sd)
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5904
/*
I
Ingo Molnar 已提交
5905
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5906 5907
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5908 5909
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5910
{
5911
	struct rq *rq = cpu_rq(cpu);
5912 5913 5914
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5915
	for (tmp = sd; tmp; ) {
5916 5917 5918
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5919

5920
		if (sd_parent_degenerate(tmp, parent)) {
5921
			tmp->parent = parent->parent;
5922 5923
			if (parent->parent)
				parent->parent->child = tmp;
5924
			destroy_sched_domain(parent, cpu);
5925 5926
		} else
			tmp = tmp->parent;
5927 5928
	}

5929
	if (sd && sd_degenerate(sd)) {
5930
		tmp = sd;
5931
		sd = sd->parent;
5932
		destroy_sched_domain(tmp, cpu);
5933 5934 5935
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5936

5937
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5938

G
Gregory Haskins 已提交
5939
	rq_attach_root(rq, rd);
5940
	tmp = rq->sd;
N
Nick Piggin 已提交
5941
	rcu_assign_pointer(rq->sd, sd);
5942
	destroy_sched_domains(tmp, cpu);
5943 5944

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5945 5946 5947
}

/* cpus with isolated domains */
5948
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5949 5950 5951 5952

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5953
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5954
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5955 5956 5957
	return 1;
}

I
Ingo Molnar 已提交
5958
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5959

5960 5961 5962 5963 5964
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5965 5966 5967
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5968
	struct sched_group_power **__percpu sgp;
5969 5970
};

5971
struct s_data {
5972
	struct sched_domain ** __percpu sd;
5973 5974 5975
	struct root_domain	*rd;
};

5976 5977
enum s_alloc {
	sa_rootdomain,
5978
	sa_sd,
5979
	sa_sd_storage,
5980 5981 5982
	sa_none,
};

5983 5984 5985
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5986 5987
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5988 5989
#define SDTL_OVERLAP	0x01

5990
struct sched_domain_topology_level {
5991 5992
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5993
	int		    flags;
5994
	int		    numa_level;
5995
	struct sd_data      data;
5996 5997
};

5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6017
				GFP_KERNEL, cpu_to_node(cpu));
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);

		child = *per_cpu_ptr(sdd->sd, i);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
		atomic_inc(&sg->sgp->ref);

		if (cpumask_test_cpu(cpu, sg_span))
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6056
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6057
{
6058 6059
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6060

6061 6062
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6063

6064
	if (sg) {
6065
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6066
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6067
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6068
	}
6069 6070

	return cpu;
6071 6072
}

6073
/*
6074 6075 6076
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
6077 6078
 *
 * Assumes the sched_domain tree is fully constructed
6079
 */
6080 6081
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6082
{
6083 6084 6085
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6086
	struct cpumask *covered;
6087
	int i;
6088

6089 6090 6091 6092 6093 6094
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

6095 6096 6097
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6098
	cpumask_clear(covered);
6099

6100 6101 6102 6103
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
6104

6105 6106
		if (cpumask_test_cpu(i, covered))
			continue;
6107

6108
		cpumask_clear(sched_group_cpus(sg));
6109
		sg->sgp->power = 0;
6110

6111 6112 6113
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6114

6115 6116 6117
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6118

6119 6120 6121 6122 6123 6124 6125
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6126 6127

	return 0;
6128
}
6129

6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
6142
	struct sched_group *sg = sd->groups;
6143

6144 6145 6146 6147 6148 6149
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6150

6151 6152
	if (cpu != group_first_cpu(sg))
		return;
6153

6154
	update_group_power(sd, cpu);
6155
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6156 6157
}

6158 6159 6160
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
6161 6162
}

6163 6164 6165 6166 6167
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6168 6169 6170 6171 6172 6173
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6174 6175 6176 6177 6178 6179 6180 6181 6182
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
6183 6184 6185 6186 6187 6188 6189 6190 6191
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
6192 6193 6194
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
6195

6196
static int default_relax_domain_level = -1;
6197
int sched_domain_level_max;
6198 6199 6200

static int __init setup_relax_domain_level(char *str)
{
6201 6202 6203
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
6204
	if (val < sched_domain_level_max)
6205 6206
		default_relax_domain_level = val;

6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6225
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6226 6227
	} else {
		/* turn on idle balance on this domain */
6228
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6229 6230 6231
	}
}

6232 6233 6234
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6235 6236 6237 6238 6239
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6240 6241
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6242 6243
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6244
	case sa_sd_storage:
6245
		__sdt_free(cpu_map); /* fall through */
6246 6247 6248 6249
	case sa_none:
		break;
	}
}
6250

6251 6252 6253
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6254 6255
	memset(d, 0, sizeof(*d));

6256 6257
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6258 6259 6260
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6261
	d->rd = alloc_rootdomain();
6262
	if (!d->rd)
6263
		return sa_sd;
6264 6265
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6266

6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6279
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6280
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6281 6282

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6283
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6284 6285
}

6286 6287
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6288
{
6289
	return topology_thread_cpumask(cpu);
6290
}
6291
#endif
6292

6293 6294 6295
/*
 * Topology list, bottom-up.
 */
6296
static struct sched_domain_topology_level default_topology[] = {
6297 6298
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6299
#endif
6300
#ifdef CONFIG_SCHED_MC
6301
	{ sd_init_MC, cpu_coregroup_mask, },
6302
#endif
6303 6304 6305 6306
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
6307 6308 6309 6310 6311
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int sched_domains_numa_scale;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
	if (sched_domains_numa_distance[level] > REMOTE_DISTANCE)
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6340
		.imbalance_pct		= 125,
6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_PREFER_LOCAL
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_scale = curr_distance;
	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 *
	 * XXX: could be optimized to O(n log n) by using sort()
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			int distance = node_distance(0, j);
			if (distance > curr_distance &&
					(distance < next_distance ||
					 next_distance == curr_distance))
				next_distance = distance;
		}
		if (next_distance != curr_distance) {
			sched_domains_numa_distance[level++] = next_distance;
			sched_domains_numa_levels = level;
			curr_distance = next_distance;
		} else break;
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6439
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6440 6441 6442 6443 6444 6445
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6446
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
}
#else
static inline void sched_init_numa(void)
{
}
#endif /* CONFIG_NUMA */

6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6501 6502 6503 6504
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6505 6506 6507
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6508
			struct sched_group_power *sgp;
6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6522 6523
			sg->next = sg;

6524
			*per_cpu_ptr(sdd->sg, j) = sg;
6525 6526 6527 6528 6529 6530 6531

			sgp = kzalloc_node(sizeof(struct sched_group_power),
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6560 6561
		}
		free_percpu(sdd->sd);
6562
		sdd->sd = NULL;
6563
		free_percpu(sdd->sg);
6564
		sdd->sg = NULL;
6565
		free_percpu(sdd->sgp);
6566
		sdd->sgp = NULL;
6567 6568 6569
	}
}

6570 6571
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6572
		struct sched_domain_attr *attr, struct sched_domain *child,
6573 6574
		int cpu)
{
6575
	struct sched_domain *sd = tl->init(tl, cpu);
6576
	if (!sd)
6577
		return child;
6578 6579 6580

	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6581 6582 6583
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6584
		child->parent = sd;
6585
	}
6586
	sd->child = child;
6587 6588 6589 6590

	return sd;
}

6591 6592 6593 6594
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6595 6596
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6597 6598
{
	enum s_alloc alloc_state = sa_none;
6599
	struct sched_domain *sd;
6600
	struct s_data d;
6601
	int i, ret = -ENOMEM;
6602

6603 6604 6605
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6606

6607
	/* Set up domains for cpus specified by the cpu_map. */
6608
	for_each_cpu(i, cpu_map) {
6609 6610
		struct sched_domain_topology_level *tl;

6611
		sd = NULL;
6612
		for (tl = sched_domain_topology; tl->init; tl++) {
6613
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6614 6615
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6616 6617
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6618
		}
6619

6620 6621 6622
		while (sd->child)
			sd = sd->child;

6623
		*per_cpu_ptr(d.sd, i) = sd;
6624 6625 6626 6627 6628 6629
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6630 6631 6632 6633 6634 6635 6636
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6637
		}
6638
	}
6639

L
Linus Torvalds 已提交
6640
	/* Calculate CPU power for physical packages and nodes */
6641 6642 6643
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6644

6645 6646
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6647
			init_sched_groups_power(i, sd);
6648
		}
6649
	}
6650

L
Linus Torvalds 已提交
6651
	/* Attach the domains */
6652
	rcu_read_lock();
6653
	for_each_cpu(i, cpu_map) {
6654
		sd = *per_cpu_ptr(d.sd, i);
6655
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6656
	}
6657
	rcu_read_unlock();
6658

6659
	ret = 0;
6660
error:
6661
	__free_domain_allocs(&d, alloc_state, cpu_map);
6662
	return ret;
L
Linus Torvalds 已提交
6663
}
P
Paul Jackson 已提交
6664

6665
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6666
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6667 6668
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6669 6670 6671

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6672 6673
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6674
 */
6675
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6676

6677 6678 6679 6680 6681 6682
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6683
{
6684
	return 0;
6685 6686
}

6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6712
/*
I
Ingo Molnar 已提交
6713
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6714 6715
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6716
 */
6717
static int init_sched_domains(const struct cpumask *cpu_map)
6718
{
6719 6720
	int err;

6721
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6722
	ndoms_cur = 1;
6723
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6724
	if (!doms_cur)
6725 6726
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6727
	dattr_cur = NULL;
6728
	err = build_sched_domains(doms_cur[0], NULL);
6729
	register_sched_domain_sysctl();
6730 6731

	return err;
6732 6733 6734 6735 6736 6737
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6738
static void detach_destroy_domains(const struct cpumask *cpu_map)
6739 6740 6741
{
	int i;

6742
	rcu_read_lock();
6743
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6744
		cpu_attach_domain(NULL, &def_root_domain, i);
6745
	rcu_read_unlock();
6746 6747
}

6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6764 6765
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6766
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6767 6768 6769
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6770
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6771 6772 6773
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6774 6775 6776
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6777 6778 6779 6780 6781 6782
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6783
 *
6784
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6785 6786
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6787
 *
P
Paul Jackson 已提交
6788 6789
 * Call with hotplug lock held
 */
6790
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6791
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6792
{
6793
	int i, j, n;
6794
	int new_topology;
P
Paul Jackson 已提交
6795

6796
	mutex_lock(&sched_domains_mutex);
6797

6798 6799 6800
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6801 6802 6803
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6804
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6805 6806 6807

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6808
		for (j = 0; j < n && !new_topology; j++) {
6809
			if (cpumask_equal(doms_cur[i], doms_new[j])
6810
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6811 6812 6813
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6814
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6815 6816 6817 6818
match1:
		;
	}

6819 6820
	if (doms_new == NULL) {
		ndoms_cur = 0;
6821
		doms_new = &fallback_doms;
6822
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6823
		WARN_ON_ONCE(dattr_new);
6824 6825
	}

P
Paul Jackson 已提交
6826 6827
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6828
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6829
			if (cpumask_equal(doms_new[i], doms_cur[j])
6830
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6831 6832 6833
				goto match2;
		}
		/* no match - add a new doms_new */
6834
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6835 6836 6837 6838 6839
match2:
		;
	}

	/* Remember the new sched domains */
6840 6841
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6842
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6843
	doms_cur = doms_new;
6844
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6845
	ndoms_cur = ndoms_new;
6846 6847

	register_sched_domain_sysctl();
6848

6849
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6850 6851
}

L
Linus Torvalds 已提交
6852
/*
6853 6854 6855
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
6856
 */
6857 6858
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6859
{
6860
	switch (action & ~CPU_TASKS_FROZEN) {
6861
	case CPU_ONLINE:
6862
	case CPU_DOWN_FAILED:
6863
		cpuset_update_active_cpus();
6864
		return NOTIFY_OK;
6865 6866 6867 6868
	default:
		return NOTIFY_DONE;
	}
}
6869

6870 6871
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6872 6873 6874 6875 6876
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
6877 6878 6879 6880 6881
	default:
		return NOTIFY_DONE;
	}
}

L
Linus Torvalds 已提交
6882 6883
void __init sched_init_smp(void)
{
6884 6885 6886
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6887
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6888

6889 6890
	sched_init_numa();

6891
	get_online_cpus();
6892
	mutex_lock(&sched_domains_mutex);
6893
	init_sched_domains(cpu_active_mask);
6894 6895 6896
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6897
	mutex_unlock(&sched_domains_mutex);
6898
	put_online_cpus();
6899

6900 6901
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6902 6903 6904 6905

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6906
	init_hrtick();
6907 6908

	/* Move init over to a non-isolated CPU */
6909
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6910
		BUG();
I
Ingo Molnar 已提交
6911
	sched_init_granularity();
6912
	free_cpumask_var(non_isolated_cpus);
6913

6914
	init_sched_rt_class();
L
Linus Torvalds 已提交
6915 6916 6917 6918
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6919
	sched_init_granularity();
L
Linus Torvalds 已提交
6920 6921 6922
}
#endif /* CONFIG_SMP */

6923 6924
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6925 6926 6927 6928 6929 6930 6931
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6932 6933
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6934
#endif
P
Peter Zijlstra 已提交
6935

6936
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6937

L
Linus Torvalds 已提交
6938 6939
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6940
	int i, j;
6941 6942 6943 6944 6945 6946 6947
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6948
#endif
6949
#ifdef CONFIG_CPUMASK_OFFSTACK
6950
	alloc_size += num_possible_cpus() * cpumask_size();
6951 6952
#endif
	if (alloc_size) {
6953
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6954 6955

#ifdef CONFIG_FAIR_GROUP_SCHED
6956
		root_task_group.se = (struct sched_entity **)ptr;
6957 6958
		ptr += nr_cpu_ids * sizeof(void **);

6959
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6960
		ptr += nr_cpu_ids * sizeof(void **);
6961

6962
#endif /* CONFIG_FAIR_GROUP_SCHED */
6963
#ifdef CONFIG_RT_GROUP_SCHED
6964
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6965 6966
		ptr += nr_cpu_ids * sizeof(void **);

6967
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6968 6969
		ptr += nr_cpu_ids * sizeof(void **);

6970
#endif /* CONFIG_RT_GROUP_SCHED */
6971 6972 6973 6974 6975 6976
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6977
	}
I
Ingo Molnar 已提交
6978

G
Gregory Haskins 已提交
6979 6980 6981 6982
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6983 6984 6985 6986
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6987
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6988
			global_rt_period(), global_rt_runtime());
6989
#endif /* CONFIG_RT_GROUP_SCHED */
6990

D
Dhaval Giani 已提交
6991
#ifdef CONFIG_CGROUP_SCHED
6992 6993
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6994
	INIT_LIST_HEAD(&root_task_group.siblings);
6995
	autogroup_init(&init_task);
6996

D
Dhaval Giani 已提交
6997
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6998

6999 7000 7001 7002 7003 7004
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
7005
	for_each_possible_cpu(i) {
7006
		struct rq *rq;
L
Linus Torvalds 已提交
7007 7008

		rq = cpu_rq(i);
7009
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7010
		rq->nr_running = 0;
7011 7012
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7013
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
7014
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7015
#ifdef CONFIG_FAIR_GROUP_SCHED
7016
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7017
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7018
		/*
7019
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7020 7021 7022 7023
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7024
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7025 7026 7027
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7028
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7029 7030 7031
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7032
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7033
		 *
7034 7035
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7036
		 */
7037
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7038
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7039 7040 7041
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7042
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7043
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7044
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7045
#endif
L
Linus Torvalds 已提交
7046

I
Ingo Molnar 已提交
7047 7048
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7049 7050 7051

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7052
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7053
		rq->sd = NULL;
G
Gregory Haskins 已提交
7054
		rq->rd = NULL;
7055
		rq->cpu_power = SCHED_POWER_SCALE;
7056
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7057
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7058
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7059
		rq->push_cpu = 0;
7060
		rq->cpu = i;
7061
		rq->online = 0;
7062 7063
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7064 7065 7066

		INIT_LIST_HEAD(&rq->cfs_tasks);

7067
		rq_attach_root(rq, &def_root_domain);
7068
#ifdef CONFIG_NO_HZ
7069
		rq->nohz_flags = 0;
7070
#endif
L
Linus Torvalds 已提交
7071
#endif
P
Peter Zijlstra 已提交
7072
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7073 7074 7075
		atomic_set(&rq->nr_iowait, 0);
	}

7076
	set_load_weight(&init_task);
7077

7078 7079 7080 7081
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7082
#ifdef CONFIG_RT_MUTEXES
7083
	plist_head_init(&init_task.pi_waiters);
7084 7085
#endif

L
Linus Torvalds 已提交
7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7099 7100 7101

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7102 7103 7104 7105
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7106

7107
#ifdef CONFIG_SMP
7108
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7109 7110 7111
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7112
	idle_thread_set_boot_cpu();
7113 7114
#endif
	init_sched_fair_class();
7115

7116
	scheduler_running = 1;
L
Linus Torvalds 已提交
7117 7118
}

7119
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7120 7121
static inline int preempt_count_equals(int preempt_offset)
{
7122
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7123

A
Arnd Bergmann 已提交
7124
	return (nested == preempt_offset);
7125 7126
}

7127
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7128 7129 7130
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7131
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7132 7133
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7134 7135 7136 7137 7138
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7139 7140 7141 7142 7143 7144 7145
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7146 7147 7148 7149 7150

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7151 7152 7153 7154 7155
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7156 7157
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7158 7159
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7160
	int on_rq;
7161

P
Peter Zijlstra 已提交
7162
	on_rq = p->on_rq;
7163
	if (on_rq)
7164
		dequeue_task(rq, p, 0);
7165 7166
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
7167
		enqueue_task(rq, p, 0);
7168 7169
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7170 7171

	check_class_changed(rq, p, prev_class, old_prio);
7172 7173
}

L
Linus Torvalds 已提交
7174 7175
void normalize_rt_tasks(void)
{
7176
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7177
	unsigned long flags;
7178
	struct rq *rq;
L
Linus Torvalds 已提交
7179

7180
	read_lock_irqsave(&tasklist_lock, flags);
7181
	do_each_thread(g, p) {
7182 7183 7184 7185 7186 7187
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7188 7189
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7190 7191 7192
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7193
#endif
I
Ingo Molnar 已提交
7194 7195 7196 7197 7198 7199 7200 7201

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7202
			continue;
I
Ingo Molnar 已提交
7203
		}
L
Linus Torvalds 已提交
7204

7205
		raw_spin_lock(&p->pi_lock);
7206
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7207

7208
		normalize_task(rq, p);
7209

7210
		__task_rq_unlock(rq);
7211
		raw_spin_unlock(&p->pi_lock);
7212 7213
	} while_each_thread(g, p);

7214
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7215 7216 7217
}

#endif /* CONFIG_MAGIC_SYSRQ */
7218

7219
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7220
/*
7221
 * These functions are only useful for the IA64 MCA handling, or kdb.
7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7236
struct task_struct *curr_task(int cpu)
7237 7238 7239 7240
{
	return cpu_curr(cpu);
}

7241 7242 7243
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7244 7245 7246 7247 7248 7249
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7250 7251
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7252 7253 7254 7255 7256 7257 7258
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7259
void set_curr_task(int cpu, struct task_struct *p)
7260 7261 7262 7263 7264
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7265

D
Dhaval Giani 已提交
7266
#ifdef CONFIG_CGROUP_SCHED
7267 7268 7269
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7270 7271 7272 7273
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7274
	autogroup_free(tg);
7275 7276 7277 7278
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7279
struct task_group *sched_create_group(struct task_group *parent)
7280 7281 7282 7283 7284 7285 7286 7287
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7288
	if (!alloc_fair_sched_group(tg, parent))
7289 7290
		goto err;

7291
	if (!alloc_rt_sched_group(tg, parent))
7292 7293
		goto err;

7294
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7295
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7296 7297 7298 7299 7300

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7301
	list_add_rcu(&tg->siblings, &parent->children);
7302
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7303

7304
	return tg;
S
Srivatsa Vaddagiri 已提交
7305 7306

err:
P
Peter Zijlstra 已提交
7307
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7308 7309 7310
	return ERR_PTR(-ENOMEM);
}

7311
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7312
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7313 7314
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7315
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7316 7317
}

7318
/* Destroy runqueue etc associated with a task group */
7319
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7320
{
7321
	unsigned long flags;
7322
	int i;
S
Srivatsa Vaddagiri 已提交
7323

7324 7325
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7326
		unregister_fair_sched_group(tg, i);
7327 7328

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7329
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7330
	list_del_rcu(&tg->siblings);
7331
	spin_unlock_irqrestore(&task_group_lock, flags);
7332 7333

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7334
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7335 7336
}

7337
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7338 7339 7340
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7341 7342
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7343 7344 7345 7346 7347 7348 7349
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7350
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7351
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7352

7353
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7354
		dequeue_task(rq, tsk, 0);
7355 7356
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7357

P
Peter Zijlstra 已提交
7358
#ifdef CONFIG_FAIR_GROUP_SCHED
7359 7360 7361
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7362
#endif
7363
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7364

7365 7366 7367
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7368
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7369

7370
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7371
}
D
Dhaval Giani 已提交
7372
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7373

7374
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7375 7376 7377
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7378
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7379

P
Peter Zijlstra 已提交
7380
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7381
}
7382 7383 7384 7385 7386 7387 7388
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7389

P
Peter Zijlstra 已提交
7390 7391
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7392
{
P
Peter Zijlstra 已提交
7393
	struct task_struct *g, *p;
7394

P
Peter Zijlstra 已提交
7395
	do_each_thread(g, p) {
7396
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7397 7398
			return 1;
	} while_each_thread(g, p);
7399

P
Peter Zijlstra 已提交
7400 7401
	return 0;
}
7402

P
Peter Zijlstra 已提交
7403 7404 7405 7406 7407
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7408

7409
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7410 7411 7412 7413 7414
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7415

P
Peter Zijlstra 已提交
7416 7417
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7418

P
Peter Zijlstra 已提交
7419 7420 7421
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7422 7423
	}

7424 7425 7426 7427 7428
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7429

7430 7431 7432
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7433 7434
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7435

P
Peter Zijlstra 已提交
7436
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7437

7438 7439 7440 7441 7442
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7443

7444 7445 7446
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7447 7448 7449
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7450

P
Peter Zijlstra 已提交
7451 7452 7453 7454
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7455

P
Peter Zijlstra 已提交
7456
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7457
	}
P
Peter Zijlstra 已提交
7458

P
Peter Zijlstra 已提交
7459 7460 7461 7462
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7463 7464
}

P
Peter Zijlstra 已提交
7465
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7466
{
7467 7468
	int ret;

P
Peter Zijlstra 已提交
7469 7470 7471 7472 7473 7474
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7475 7476 7477 7478 7479
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7480 7481
}

7482
static int tg_set_rt_bandwidth(struct task_group *tg,
7483
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7484
{
P
Peter Zijlstra 已提交
7485
	int i, err = 0;
P
Peter Zijlstra 已提交
7486 7487

	mutex_lock(&rt_constraints_mutex);
7488
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7489 7490
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7491
		goto unlock;
P
Peter Zijlstra 已提交
7492

7493
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7494 7495
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7496 7497 7498 7499

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7500
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7501
		rt_rq->rt_runtime = rt_runtime;
7502
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7503
	}
7504
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7505
unlock:
7506
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7507 7508 7509
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7510 7511
}

7512 7513 7514 7515 7516 7517 7518 7519 7520
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7521
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7522 7523
}

P
Peter Zijlstra 已提交
7524 7525 7526 7527
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7528
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7529 7530
		return -1;

7531
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7532 7533 7534
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7535 7536 7537 7538 7539 7540 7541 7542

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7543 7544 7545
	if (rt_period == 0)
		return -EINVAL;

7546
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7560
	u64 runtime, period;
7561 7562
	int ret = 0;

7563 7564 7565
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7566 7567 7568 7569 7570 7571 7572 7573
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7574

7575
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7576
	read_lock(&tasklist_lock);
7577
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7578
	read_unlock(&tasklist_lock);
7579 7580 7581 7582
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7583 7584 7585 7586 7587 7588 7589 7590 7591 7592

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7593
#else /* !CONFIG_RT_GROUP_SCHED */
7594 7595
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7596 7597 7598
	unsigned long flags;
	int i;

7599 7600 7601
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7602 7603 7604 7605 7606 7607 7608
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7609
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7610 7611 7612
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7613
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7614
		rt_rq->rt_runtime = global_rt_runtime();
7615
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7616
	}
7617
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7618

7619 7620
	return 0;
}
7621
#endif /* CONFIG_RT_GROUP_SCHED */
7622 7623

int sched_rt_handler(struct ctl_table *table, int write,
7624
		void __user *buffer, size_t *lenp,
7625 7626 7627 7628 7629 7630 7631 7632 7633 7634
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7635
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7652

7653
#ifdef CONFIG_CGROUP_SCHED
7654 7655

/* return corresponding task_group object of a cgroup */
7656
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7657
{
7658 7659
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7660 7661
}

7662
static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7663
{
7664
	struct task_group *tg, *parent;
7665

7666
	if (!cgrp->parent) {
7667
		/* This is early initialization for the top cgroup */
7668
		return &root_task_group.css;
7669 7670
	}

7671 7672
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7673 7674 7675 7676 7677 7678
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7679
static void cpu_cgroup_destroy(struct cgroup *cgrp)
7680
{
7681
	struct task_group *tg = cgroup_tg(cgrp);
7682 7683 7684 7685

	sched_destroy_group(tg);
}

7686
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7687
				 struct cgroup_taskset *tset)
7688
{
7689 7690 7691
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7692
#ifdef CONFIG_RT_GROUP_SCHED
7693 7694
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7695
#else
7696 7697 7698
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7699
#endif
7700
	}
7701 7702
	return 0;
}
7703

7704
static void cpu_cgroup_attach(struct cgroup *cgrp,
7705
			      struct cgroup_taskset *tset)
7706
{
7707 7708 7709 7710
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7711 7712
}

7713
static void
7714 7715
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7728
#ifdef CONFIG_FAIR_GROUP_SCHED
7729
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7730
				u64 shareval)
7731
{
7732
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7733 7734
}

7735
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7736
{
7737
	struct task_group *tg = cgroup_tg(cgrp);
7738

7739
	return (u64) scale_load_down(tg->shares);
7740
}
7741 7742

#ifdef CONFIG_CFS_BANDWIDTH
7743 7744
static DEFINE_MUTEX(cfs_constraints_mutex);

7745 7746 7747
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7748 7749
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7750 7751
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7752
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7753
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7774 7775 7776 7777 7778
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7779
	runtime_enabled = quota != RUNTIME_INF;
7780 7781
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7782 7783 7784
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7785

P
Paul Turner 已提交
7786
	__refill_cfs_bandwidth_runtime(cfs_b);
7787 7788 7789 7790 7791 7792
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7793 7794 7795 7796
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7797
		struct rq *rq = cfs_rq->rq;
7798 7799

		raw_spin_lock_irq(&rq->lock);
7800
		cfs_rq->runtime_enabled = runtime_enabled;
7801
		cfs_rq->runtime_remaining = 0;
7802

7803
		if (cfs_rq->throttled)
7804
			unthrottle_cfs_rq(cfs_rq);
7805 7806
		raw_spin_unlock_irq(&rq->lock);
	}
7807 7808
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7809

7810
	return ret;
7811 7812 7813 7814 7815 7816
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7817
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7830
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7831 7832
		return -1;

7833
	quota_us = tg->cfs_bandwidth.quota;
7834 7835 7836 7837 7838 7839 7840 7841 7842 7843
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7844
	quota = tg->cfs_bandwidth.quota;
7845 7846 7847 7848 7849 7850 7851 7852

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7853
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7913
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7914 7915 7916 7917 7918
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7919
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7940
	int ret;
7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7952 7953 7954 7955 7956
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7957
}
7958 7959 7960 7961 7962

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7963
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7964 7965 7966 7967 7968 7969 7970

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7971
#endif /* CONFIG_CFS_BANDWIDTH */
7972
#endif /* CONFIG_FAIR_GROUP_SCHED */
7973

7974
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7975
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7976
				s64 val)
P
Peter Zijlstra 已提交
7977
{
7978
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7979 7980
}

7981
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7982
{
7983
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7984
}
7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7996
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7997

7998
static struct cftype cpu_files[] = {
7999
#ifdef CONFIG_FAIR_GROUP_SCHED
8000 8001
	{
		.name = "shares",
8002 8003
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8004
	},
8005
#endif
8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8017 8018 8019 8020
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
8021
#endif
8022
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8023
	{
P
Peter Zijlstra 已提交
8024
		.name = "rt_runtime_us",
8025 8026
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8027
	},
8028 8029
	{
		.name = "rt_period_us",
8030 8031
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8032
	},
8033
#endif
8034
	{ }	/* terminate */
8035 8036 8037
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8038 8039 8040
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
8041 8042
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8043
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
8044
	.subsys_id	= cpu_cgroup_subsys_id,
8045
	.base_cftypes	= cpu_files,
8046 8047 8048
	.early_init	= 1,
};

8049
#endif	/* CONFIG_CGROUP_SCHED */
8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* create a new cpu accounting group */
8061
static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8062
{
8063
	struct cpuacct *ca;
8064

8065 8066 8067 8068
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8069
	if (!ca)
8070
		goto out;
8071 8072

	ca->cpuusage = alloc_percpu(u64);
8073 8074 8075
	if (!ca->cpuusage)
		goto out_free_ca;

8076 8077 8078
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
8079

8080
	return &ca->css;
8081

8082
out_free_cpuusage:
8083 8084 8085 8086 8087
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8088 8089 8090
}

/* destroy an existing cpu accounting group */
8091
static void cpuacct_destroy(struct cgroup *cgrp)
8092
{
8093
	struct cpuacct *ca = cgroup_ca(cgrp);
8094

8095
	free_percpu(ca->cpustat);
8096 8097 8098 8099
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8100 8101
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8102
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8103 8104 8105 8106 8107 8108
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8109
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8110
	data = *cpuusage;
8111
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8112 8113 8114 8115 8116 8117 8118 8119 8120
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8121
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8122 8123 8124 8125 8126

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8127
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8128
	*cpuusage = val;
8129
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8130 8131 8132 8133 8134
#else
	*cpuusage = val;
#endif
}

8135
/* return total cpu usage (in nanoseconds) of a group */
8136
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8137
{
8138
	struct cpuacct *ca = cgroup_ca(cgrp);
8139 8140 8141
	u64 totalcpuusage = 0;
	int i;

8142 8143
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8144 8145 8146 8147

	return totalcpuusage;
}

8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8160 8161
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8162 8163 8164 8165 8166

out:
	return err;
}

8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8182 8183 8184 8185 8186 8187
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8188
			      struct cgroup_map_cb *cb)
8189 8190
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8191 8192
	int cpu;
	s64 val = 0;
8193

8194 8195 8196 8197
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8198
	}
8199 8200
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8201

8202 8203 8204 8205 8206 8207
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8208
	}
8209 8210 8211 8212

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8213 8214 8215
	return 0;
}

8216 8217 8218
static struct cftype files[] = {
	{
		.name = "usage",
8219 8220
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8221
	},
8222 8223 8224 8225
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8226 8227 8228 8229
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8230
	{ }	/* terminate */
8231 8232 8233 8234 8235 8236 8237
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8238
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8239 8240
{
	struct cpuacct *ca;
8241
	int cpu;
8242

L
Li Zefan 已提交
8243
	if (unlikely(!cpuacct_subsys.active))
8244 8245
		return;

8246
	cpu = task_cpu(tsk);
8247 8248 8249

	rcu_read_lock();

8250 8251
	ca = task_ca(tsk);

8252
	for (; ca; ca = parent_ca(ca)) {
8253
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8254 8255
		*cpuusage += cputime;
	}
8256 8257

	rcu_read_unlock();
8258 8259 8260 8261 8262 8263 8264
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.subsys_id = cpuacct_subsys_id,
8265
	.base_cftypes = files,
8266 8267
};
#endif	/* CONFIG_CGROUP_CPUACCT */