nvec.c 24.4 KB
Newer Older
1 2 3 4 5 6 7 8
/*
 * NVEC: NVIDIA compliant embedded controller interface
 *
 * Copyright (C) 2011 The AC100 Kernel Team <ac100@lists.lauchpad.net>
 *
 * Authors:  Pierre-Hugues Husson <phhusson@free.fr>
 *           Ilya Petrov <ilya.muromec@gmail.com>
 *           Marc Dietrich <marvin24@gmx.de>
9
 *           Julian Andres Klode <jak@jak-linux.org>
10 11 12 13 14 15 16 17
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 */

/* #define DEBUG */
18

19
#include <linux/kernel.h>
20
#include <linux/module.h>
21
#include <linux/atomic.h>
22
#include <linux/clk.h>
23
#include <linux/completion.h>
24 25 26
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/gpio.h>
27
#include <linux/interrupt.h>
28
#include <linux/io.h>
29
#include <linux/irq.h>
30 31
#include <linux/of.h>
#include <linux/of_gpio.h>
32
#include <linux/list.h>
33 34
#include <linux/mfd/core.h>
#include <linux/mutex.h>
35 36
#include <linux/notifier.h>
#include <linux/platform_device.h>
37 38 39
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
40 41

#include <mach/clk.h>
42
#include <mach/iomap.h>
43

44 45
#include "nvec.h"

46 47 48 49 50 51
#define I2C_CNFG			0x00
#define I2C_CNFG_PACKET_MODE_EN		(1<<10)
#define I2C_CNFG_NEW_MASTER_SFM		(1<<11)
#define I2C_CNFG_DEBOUNCE_CNT_SHIFT	12

#define I2C_SL_CNFG		0x20
52
#define I2C_SL_NEWSL		(1<<2)
53 54 55 56 57 58 59 60 61 62 63 64 65
#define I2C_SL_NACK		(1<<1)
#define I2C_SL_RESP		(1<<0)
#define I2C_SL_IRQ		(1<<3)
#define END_TRANS		(1<<4)
#define RCVD			(1<<2)
#define RNW			(1<<1)

#define I2C_SL_RCVD		0x24
#define I2C_SL_STATUS		0x28
#define I2C_SL_ADDR1		0x2c
#define I2C_SL_ADDR2		0x30
#define I2C_SL_DELAY_COUNT	0x3c

66 67 68 69 70 71 72 73 74 75
/**
 * enum nvec_msg_category - Message categories for nvec_msg_alloc()
 * @NVEC_MSG_RX: The message is an incoming message (from EC)
 * @NVEC_MSG_TX: The message is an outgoing message (to EC)
 */
enum nvec_msg_category  {
	NVEC_MSG_RX,
	NVEC_MSG_TX,
};

76 77 78
static const unsigned char EC_DISABLE_EVENT_REPORTING[3] = "\x04\x00\x00";
static const unsigned char EC_ENABLE_EVENT_REPORTING[3]  = "\x04\x00\x01";
static const unsigned char EC_GET_FIRMWARE_VERSION[2]    = "\x07\x15";
79 80 81

static struct nvec_chip *nvec_power_handle;

82 83
static struct mfd_cell nvec_devices[] = {
	{
84 85
		.name = "nvec-kbd",
		.id = 1,
86 87
	},
	{
88 89
		.name = "nvec-mouse",
		.id = 1,
90 91
	},
	{
92 93
		.name = "nvec-power",
		.id = 1,
94 95
	},
	{
96 97
		.name = "nvec-power",
		.id = 2,
98
	},
I
Ilya Petrov 已提交
99
	{
100
		.name = "nvec-paz00",
I
Ilya Petrov 已提交
101 102
		.id = 1,
	},
103 104
};

105 106 107 108 109 110 111 112 113
/**
 * nvec_register_notifier - Register a notifier with nvec
 * @nvec: A &struct nvec_chip
 * @nb: The notifier block to register
 *
 * Registers a notifier with @nvec. The notifier will be added to an atomic
 * notifier chain that is called for all received messages except those that
 * correspond to a request initiated by nvec_write_sync().
 */
114
int nvec_register_notifier(struct nvec_chip *nvec, struct notifier_block *nb,
115
			   unsigned int events)
116 117 118 119 120
{
	return atomic_notifier_chain_register(&nvec->notifier_list, nb);
}
EXPORT_SYMBOL_GPL(nvec_register_notifier);

121 122 123 124 125 126
/**
 * nvec_status_notifier - The final notifier
 *
 * Prints a message about control events not handled in the notifier
 * chain.
 */
127 128
static int nvec_status_notifier(struct notifier_block *nb,
				unsigned long event_type, void *data)
129
{
130 131
	struct nvec_chip *nvec = container_of(nb, struct nvec_chip,
						nvec_status_notifier);
132 133
	unsigned char *msg = (unsigned char *)data;

134
	if (event_type != NVEC_CNTL)
135 136
		return NOTIFY_DONE;

137
	dev_warn(nvec->dev, "unhandled msg type %ld\n", event_type);
138 139
	print_hex_dump(KERN_WARNING, "payload: ", DUMP_PREFIX_NONE, 16, 1,
		msg, msg[1] + 2, true);
140 141 142 143

	return NOTIFY_OK;
}

144 145 146
/**
 * nvec_msg_alloc:
 * @nvec: A &struct nvec_chip
147
 * @category: Pool category, see &enum nvec_msg_category
148 149 150 151
 *
 * Allocate a single &struct nvec_msg object from the message pool of
 * @nvec. The result shall be passed to nvec_msg_free() if no longer
 * used.
152 153 154 155 156
 *
 * Outgoing messages are placed in the upper 75% of the pool, keeping the
 * lower 25% available for RX buffers only. The reason is to prevent a
 * situation where all buffers are full and a message is thus endlessly
 * retried because the response could never be processed.
157
 */
158 159
static struct nvec_msg *nvec_msg_alloc(struct nvec_chip *nvec,
				       enum nvec_msg_category category)
160
{
161
	int i = (category == NVEC_MSG_TX) ? (NVEC_POOL_SIZE / 4) : 0;
162

163
	for (; i < NVEC_POOL_SIZE; i++) {
164 165 166 167 168 169
		if (atomic_xchg(&nvec->msg_pool[i].used, 1) == 0) {
			dev_vdbg(nvec->dev, "INFO: Allocate %i\n", i);
			return &nvec->msg_pool[i];
		}
	}

170 171
	dev_err(nvec->dev, "could not allocate %s buffer\n",
		(category == NVEC_MSG_TX) ? "TX" : "RX");
172 173 174 175

	return NULL;
}

176 177 178 179 180 181 182
/**
 * nvec_msg_free:
 * @nvec: A &struct nvec_chip
 * @msg:  A message (must be allocated by nvec_msg_alloc() and belong to @nvec)
 *
 * Free the given message
 */
183
inline void nvec_msg_free(struct nvec_chip *nvec, struct nvec_msg *msg)
184
{
185 186
	if (msg != &nvec->tx_scratch)
		dev_vdbg(nvec->dev, "INFO: Free %ti\n", msg - nvec->msg_pool);
187 188
	atomic_set(&msg->used, 0);
}
189
EXPORT_SYMBOL_GPL(nvec_msg_free);
190

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/**
 * nvec_msg_is_event - Return %true if @msg is an event
 * @msg: A message
 */
static bool nvec_msg_is_event(struct nvec_msg *msg)
{
	return msg->data[0] >> 7;
}

/**
 * nvec_msg_size - Get the size of a message
 * @msg: The message to get the size for
 *
 * This only works for received messages, not for outgoing messages.
 */
static size_t nvec_msg_size(struct nvec_msg *msg)
{
	bool is_event = nvec_msg_is_event(msg);
	int event_length = (msg->data[0] & 0x60) >> 5;

	/* for variable size, payload size in byte 1 + count (1) + cmd (1) */
	if (!is_event || event_length == NVEC_VAR_SIZE)
		return (msg->pos || msg->size) ? (msg->data[1] + 2) : 0;
	else if (event_length == NVEC_2BYTES)
		return 2;
	else if (event_length == NVEC_3BYTES)
		return 3;
	else
		return 0;
}

222 223 224 225 226 227 228
/**
 * nvec_gpio_set_value - Set the GPIO value
 * @nvec: A &struct nvec_chip
 * @value: The value to write (0 or 1)
 *
 * Like gpio_set_value(), but generating debugging information
 */
229 230 231 232 233 234 235
static void nvec_gpio_set_value(struct nvec_chip *nvec, int value)
{
	dev_dbg(nvec->dev, "GPIO changed from %u to %u\n",
		gpio_get_value(nvec->gpio), value);
	gpio_set_value(nvec->gpio, value);
}

236 237 238 239 240 241 242 243 244 245 246 247
/**
 * nvec_write_async - Asynchronously write a message to NVEC
 * @nvec: An nvec_chip instance
 * @data: The message data, starting with the request type
 * @size: The size of @data
 *
 * Queue a single message to be transferred to the embedded controller
 * and return immediately.
 *
 * Returns: 0 on success, a negative error code on failure. If a failure
 * occured, the nvec driver may print an error.
 */
248
int nvec_write_async(struct nvec_chip *nvec, const unsigned char *data,
249
			short size)
250
{
251 252
	struct nvec_msg *msg;
	unsigned long flags;
253

254 255
	msg = nvec_msg_alloc(nvec, NVEC_MSG_TX);

256 257 258
	if (msg == NULL)
		return -ENOMEM;

259 260 261 262
	msg->data[0] = size;
	memcpy(msg->data + 1, data, size);
	msg->size = size + 1;

263
	spin_lock_irqsave(&nvec->tx_lock, flags);
264
	list_add_tail(&msg->node, &nvec->tx_data);
265
	spin_unlock_irqrestore(&nvec->tx_lock, flags);
266

267
	queue_work(nvec->wq, &nvec->tx_work);
268 269

	return 0;
270 271 272
}
EXPORT_SYMBOL(nvec_write_async);

273 274 275 276 277 278 279 280 281 282 283 284
/**
 * nvec_write_sync - Write a message to nvec and read the response
 * @nvec: An &struct nvec_chip
 * @data: The data to write
 * @size: The size of @data
 *
 * This is similar to nvec_write_async(), but waits for the
 * request to be answered before returning. This function
 * uses a mutex and can thus not be called from e.g.
 * interrupt handlers.
 *
 * Returns: A pointer to the response message on success,
285 286
 * %NULL on failure. Free with nvec_msg_free() once no longer
 * used.
287
 */
288 289 290 291 292 293 294 295
struct nvec_msg *nvec_write_sync(struct nvec_chip *nvec,
		const unsigned char *data, short size)
{
	struct nvec_msg *msg;

	mutex_lock(&nvec->sync_write_mutex);

	nvec->sync_write_pending = (data[1] << 8) + data[0];
296 297 298

	if (nvec_write_async(nvec, data, size) < 0)
		return NULL;
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

	dev_dbg(nvec->dev, "nvec_sync_write: 0x%04x\n",
					nvec->sync_write_pending);
	if (!(wait_for_completion_timeout(&nvec->sync_write,
				msecs_to_jiffies(2000)))) {
		dev_warn(nvec->dev, "timeout waiting for sync write to complete\n");
		mutex_unlock(&nvec->sync_write_mutex);
		return NULL;
	}

	dev_dbg(nvec->dev, "nvec_sync_write: pong!\n");

	msg = nvec->last_sync_msg;

	mutex_unlock(&nvec->sync_write_mutex);

	return msg;
}
EXPORT_SYMBOL(nvec_write_sync);

319 320 321 322 323 324 325 326
/**
 * nvec_request_master - Process outgoing messages
 * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip)
 *
 * Processes all outgoing requests by sending the request and awaiting the
 * response, then continuing with the next request. Once a request has a
 * matching response, it will be freed and removed from the list.
 */
327 328 329
static void nvec_request_master(struct work_struct *work)
{
	struct nvec_chip *nvec = container_of(work, struct nvec_chip, tx_work);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
	unsigned long flags;
	long err;
	struct nvec_msg *msg;

	spin_lock_irqsave(&nvec->tx_lock, flags);
	while (!list_empty(&nvec->tx_data)) {
		msg = list_first_entry(&nvec->tx_data, struct nvec_msg, node);
		spin_unlock_irqrestore(&nvec->tx_lock, flags);
		nvec_gpio_set_value(nvec, 0);
		err = wait_for_completion_interruptible_timeout(
				&nvec->ec_transfer, msecs_to_jiffies(5000));

		if (err == 0) {
			dev_warn(nvec->dev, "timeout waiting for ec transfer\n");
			nvec_gpio_set_value(nvec, 1);
			msg->pos = 0;
		}
347

348 349 350 351 352 353 354 355
		spin_lock_irqsave(&nvec->tx_lock, flags);

		if (err > 0) {
			list_del_init(&msg->node);
			nvec_msg_free(nvec, msg);
		}
	}
	spin_unlock_irqrestore(&nvec->tx_lock, flags);
356 357
}

358 359 360 361 362 363 364 365
/**
 * parse_msg - Print some information and call the notifiers on an RX message
 * @nvec: A &struct nvec_chip
 * @msg: A message received by @nvec
 *
 * Paarse some pieces of the message and then call the chain of notifiers
 * registered via nvec_register_notifier.
 */
366 367
static int parse_msg(struct nvec_chip *nvec, struct nvec_msg *msg)
{
368
	if ((msg->data[0] & 1 << 7) == 0 && msg->data[3]) {
369
		dev_err(nvec->dev, "ec responded %*ph\n", 4, msg->data);
370 371 372
		return -EINVAL;
	}

373 374 375 376
	if ((msg->data[0] >> 7) == 1 && (msg->data[0] & 0x0f) == 5)
		print_hex_dump(KERN_WARNING, "ec system event ",
				DUMP_PREFIX_NONE, 16, 1, msg->data,
				msg->data[1] + 2, true);
377

378 379
	atomic_notifier_call_chain(&nvec->notifier_list, msg->data[0] & 0x8f,
				   msg->data);
380 381 382 383

	return 0;
}

384 385 386 387 388 389 390
/**
 * nvec_dispatch - Process messages received from the EC
 * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip)
 *
 * Process messages previously received from the EC and put into the RX
 * queue of the &struct nvec_chip instance associated with @work.
 */
391 392 393
static void nvec_dispatch(struct work_struct *work)
{
	struct nvec_chip *nvec = container_of(work, struct nvec_chip, rx_work);
394
	unsigned long flags;
395 396
	struct nvec_msg *msg;

397
	spin_lock_irqsave(&nvec->rx_lock, flags);
398
	while (!list_empty(&nvec->rx_data)) {
399 400
		msg = list_first_entry(&nvec->rx_data, struct nvec_msg, node);
		list_del_init(&msg->node);
401
		spin_unlock_irqrestore(&nvec->rx_lock, flags);
402

403
		if (nvec->sync_write_pending ==
404
		      (msg->data[2] << 8) + msg->data[0]) {
405 406 407 408 409 410
			dev_dbg(nvec->dev, "sync write completed!\n");
			nvec->sync_write_pending = 0;
			nvec->last_sync_msg = msg;
			complete(&nvec->sync_write);
		} else {
			parse_msg(nvec, msg);
411
			nvec_msg_free(nvec, msg);
412
		}
413
		spin_lock_irqsave(&nvec->rx_lock, flags);
414
	}
415
	spin_unlock_irqrestore(&nvec->rx_lock, flags);
416 417
}

418 419 420 421 422 423
/**
 * nvec_tx_completed - Complete the current transfer
 * @nvec: A &struct nvec_chip
 *
 * This is called when we have received an END_TRANS on a TX transfer.
 */
424 425 426 427 428 429 430 431 432 433 434 435
static void nvec_tx_completed(struct nvec_chip *nvec)
{
	/* We got an END_TRANS, let's skip this, maybe there's an event */
	if (nvec->tx->pos != nvec->tx->size) {
		dev_err(nvec->dev, "premature END_TRANS, resending\n");
		nvec->tx->pos = 0;
		nvec_gpio_set_value(nvec, 0);
	} else {
		nvec->state = 0;
	}
}

436 437 438 439 440 441
/**
 * nvec_rx_completed - Complete the current transfer
 * @nvec: A &struct nvec_chip
 *
 * This is called when we have received an END_TRANS on a RX transfer.
 */
442 443
static void nvec_rx_completed(struct nvec_chip *nvec)
{
444
	if (nvec->rx->pos != nvec_msg_size(nvec->rx)) {
445 446 447 448
		dev_err(nvec->dev, "RX incomplete: Expected %u bytes, got %u\n",
			   (uint) nvec_msg_size(nvec->rx),
			   (uint) nvec->rx->pos);

449 450
		nvec_msg_free(nvec, nvec->rx);
		nvec->state = 0;
451 452 453 454 455

		/* Battery quirk - Often incomplete, and likes to crash */
		if (nvec->rx->data[0] == NVEC_BAT)
			complete(&nvec->ec_transfer);

456 457 458
		return;
	}

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	spin_lock(&nvec->rx_lock);

	/* add the received data to the work list
	   and move the ring buffer pointer to the next entry */
	list_add_tail(&nvec->rx->node, &nvec->rx_data);

	spin_unlock(&nvec->rx_lock);

	nvec->state = 0;

	if (!nvec_msg_is_event(nvec->rx))
		complete(&nvec->ec_transfer);

	queue_work(nvec->wq, &nvec->rx_work);
}

/**
 * nvec_invalid_flags - Send an error message about invalid flags and jump
 * @nvec: The nvec device
 * @status: The status flags
 * @reset: Whether we shall jump to state 0.
 */
static void nvec_invalid_flags(struct nvec_chip *nvec, unsigned int status,
			       bool reset)
{
	dev_err(nvec->dev, "unexpected status flags 0x%02x during state %i\n",
		status, nvec->state);
	if (reset)
		nvec->state = 0;
}

/**
 * nvec_tx_set - Set the message to transfer (nvec->tx)
492 493 494 495 496
 * @nvec: A &struct nvec_chip
 *
 * Gets the first entry from the tx_data list of @nvec and sets the
 * tx member to it. If the tx_data list is empty, this uses the
 * tx_scratch message to send a no operation message.
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
 */
static void nvec_tx_set(struct nvec_chip *nvec)
{
	spin_lock(&nvec->tx_lock);
	if (list_empty(&nvec->tx_data)) {
		dev_err(nvec->dev, "empty tx - sending no-op\n");
		memcpy(nvec->tx_scratch.data, "\x02\x07\x02", 3);
		nvec->tx_scratch.size = 3;
		nvec->tx_scratch.pos = 0;
		nvec->tx = &nvec->tx_scratch;
		list_add_tail(&nvec->tx->node, &nvec->tx_data);
	} else {
		nvec->tx = list_first_entry(&nvec->tx_data, struct nvec_msg,
					    node);
		nvec->tx->pos = 0;
	}
	spin_unlock(&nvec->tx_lock);

	dev_dbg(nvec->dev, "Sending message of length %u, command 0x%x\n",
		(uint)nvec->tx->size, nvec->tx->data[1]);
}

/**
 * nvec_interrupt - Interrupt handler
 * @irq: The IRQ
 * @dev: The nvec device
523 524 525 526
 *
 * Interrupt handler that fills our RX buffers and empties our TX
 * buffers. This uses a finite state machine with ridiculous amounts
 * of error checking, in order to be fairly reliable.
527
 */
528
static irqreturn_t nvec_interrupt(int irq, void *dev)
529 530
{
	unsigned long status;
531 532 533 534 535
	unsigned int received = 0;
	unsigned char to_send = 0xff;
	const unsigned long irq_mask = I2C_SL_IRQ | END_TRANS | RCVD | RNW;
	struct nvec_chip *nvec = dev;
	unsigned int state = nvec->state;
536

537
	status = readl(nvec->base + I2C_SL_STATUS);
538

539 540 541 542
	/* Filter out some errors */
	if ((status & irq_mask) == 0 && (status & ~irq_mask) != 0) {
		dev_err(nvec->dev, "unexpected irq mask %lx\n", status);
		return IRQ_HANDLED;
543
	}
544 545
	if ((status & I2C_SL_IRQ) == 0) {
		dev_err(nvec->dev, "Spurious IRQ\n");
546
		return IRQ_HANDLED;
547
	}
548

549 550 551
	/* The EC did not request a read, so it send us something, read it */
	if ((status & RNW) == 0) {
		received = readl(nvec->base + I2C_SL_RCVD);
552
		if (status & RCVD)
553 554
			writel(0, nvec->base + I2C_SL_RCVD);
	}
555

556 557 558 559 560 561 562 563 564 565 566
	if (status == (I2C_SL_IRQ | RCVD))
		nvec->state = 0;

	switch (nvec->state) {
	case 0:		/* Verify that its a transfer start, the rest later */
		if (status != (I2C_SL_IRQ | RCVD))
			nvec_invalid_flags(nvec, status, false);
		break;
	case 1:		/* command byte */
		if (status != I2C_SL_IRQ) {
			nvec_invalid_flags(nvec, status, true);
567
		} else {
568
			nvec->rx = nvec_msg_alloc(nvec, NVEC_MSG_RX);
569 570 571 572 573
			/* Should not happen in a normal world */
			if (unlikely(nvec->rx == NULL)) {
				nvec->state = 0;
				break;
			}
574 575 576 577 578 579 580 581 582 583 584 585 586
			nvec->rx->data[0] = received;
			nvec->rx->pos = 1;
			nvec->state = 2;
		}
		break;
	case 2:		/* first byte after command */
		if (status == (I2C_SL_IRQ | RNW | RCVD)) {
			udelay(33);
			if (nvec->rx->data[0] != 0x01) {
				dev_err(nvec->dev,
					"Read without prior read command\n");
				nvec->state = 0;
				break;
587
			}
588 589 590 591 592 593 594 595 596 597 598 599 600
			nvec_msg_free(nvec, nvec->rx);
			nvec->state = 3;
			nvec_tx_set(nvec);
			BUG_ON(nvec->tx->size < 1);
			to_send = nvec->tx->data[0];
			nvec->tx->pos = 1;
		} else if (status == (I2C_SL_IRQ)) {
			BUG_ON(nvec->rx == NULL);
			nvec->rx->data[1] = received;
			nvec->rx->pos = 2;
			nvec->state = 4;
		} else {
			nvec_invalid_flags(nvec, status, true);
601
		}
602 603 604 605 606 607 608 609 610 611 612 613 614 615
		break;
	case 3:		/* EC does a block read, we transmit data */
		if (status & END_TRANS) {
			nvec_tx_completed(nvec);
		} else if ((status & RNW) == 0 || (status & RCVD)) {
			nvec_invalid_flags(nvec, status, true);
		} else if (nvec->tx && nvec->tx->pos < nvec->tx->size) {
			to_send = nvec->tx->data[nvec->tx->pos++];
		} else {
			dev_err(nvec->dev, "tx buffer underflow on %p (%u > %u)\n",
				nvec->tx,
				(uint) (nvec->tx ? nvec->tx->pos : 0),
				(uint) (nvec->tx ? nvec->tx->size : 0));
			nvec->state = 0;
616
		}
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
		break;
	case 4:		/* EC does some write, we read the data */
		if ((status & (END_TRANS | RNW)) == END_TRANS)
			nvec_rx_completed(nvec);
		else if (status & (RNW | RCVD))
			nvec_invalid_flags(nvec, status, true);
		else if (nvec->rx && nvec->rx->pos < NVEC_MSG_SIZE)
			nvec->rx->data[nvec->rx->pos++] = received;
		else
			dev_err(nvec->dev,
				"RX buffer overflow on %p: "
				"Trying to write byte %u of %u\n",
				nvec->rx, nvec->rx->pos, NVEC_MSG_SIZE);
		break;
	default:
		nvec->state = 0;
	}
634

635 636 637 638 639 640 641
	/* If we are told that a new transfer starts, verify it */
	if ((status & (RCVD | RNW)) == RCVD) {
		if (received != nvec->i2c_addr)
			dev_err(nvec->dev,
			"received address 0x%02x, expected 0x%02x\n",
			received, nvec->i2c_addr);
		nvec->state = 1;
642
	}
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

	/* Send data if requested, but not on end of transmission */
	if ((status & (RNW | END_TRANS)) == RNW)
		writel(to_send, nvec->base + I2C_SL_RCVD);

	/* If we have send the first byte */
	if (status == (I2C_SL_IRQ | RNW | RCVD))
		nvec_gpio_set_value(nvec, 1);

	dev_dbg(nvec->dev,
		"Handled: %s 0x%02x, %s 0x%02x in state %u [%s%s%s]\n",
		(status & RNW) == 0 ? "received" : "R=",
		received,
		(status & (RNW | END_TRANS)) ? "sent" : "S=",
		to_send,
		state,
		status & END_TRANS ? " END_TRANS" : "",
		status & RCVD ? " RCVD" : "",
		status & RNW ? " RNW" : "");

663 664 665 666 667 668 669 670 671

	/*
	 * TODO: A correct fix needs to be found for this.
	 *
	 * We experience less incomplete messages with this delay than without
	 * it, but we don't know why. Help is appreciated.
	 */
	udelay(100);

672 673 674
	return IRQ_HANDLED;
}

675
static void tegra_init_i2c_slave(struct nvec_chip *nvec)
676 677 678
{
	u32 val;

679
	clk_prepare_enable(nvec->i2c_clk);
680 681

	tegra_periph_reset_assert(nvec->i2c_clk);
682
	udelay(2);
683
	tegra_periph_reset_deassert(nvec->i2c_clk);
684 685

	val = I2C_CNFG_NEW_MASTER_SFM | I2C_CNFG_PACKET_MODE_EN |
686
	    (0x2 << I2C_CNFG_DEBOUNCE_CNT_SHIFT);
687
	writel(val, nvec->base + I2C_CNFG);
688 689 690

	clk_set_rate(nvec->i2c_clk, 8 * 80000);

691
	writel(I2C_SL_NEWSL, nvec->base + I2C_SL_CNFG);
692 693 694 695
	writel(0x1E, nvec->base + I2C_SL_DELAY_COUNT);

	writel(nvec->i2c_addr>>1, nvec->base + I2C_SL_ADDR1);
	writel(0, nvec->base + I2C_SL_ADDR2);
696

697 698
	enable_irq(nvec->irq);

699
	clk_disable_unprepare(nvec->i2c_clk);
700 701
}

702
#ifdef CONFIG_PM_SLEEP
703 704 705
static void nvec_disable_i2c_slave(struct nvec_chip *nvec)
{
	disable_irq(nvec->irq);
706
	writel(I2C_SL_NEWSL | I2C_SL_NACK, nvec->base + I2C_SL_CNFG);
707
	clk_disable_unprepare(nvec->i2c_clk);
708
}
709
#endif
710 711 712 713 714 715 716 717 718

static void nvec_power_off(void)
{
	nvec_write_async(nvec_power_handle, EC_DISABLE_EVENT_REPORTING, 3);
	nvec_write_async(nvec_power_handle, "\x04\x01", 2);
}

static int __devinit tegra_nvec_probe(struct platform_device *pdev)
{
719
	int err, ret;
720 721 722 723
	struct clk *i2c_clk;
	struct nvec_platform_data *pdata = pdev->dev.platform_data;
	struct nvec_chip *nvec;
	struct nvec_msg *msg;
724 725
	struct resource *res;
	void __iomem *base;
726

727
	nvec = devm_kzalloc(&pdev->dev, sizeof(struct nvec_chip), GFP_KERNEL);
728
	if (nvec == NULL) {
729 730 731 732 733
		dev_err(&pdev->dev, "failed to reserve memory\n");
		return -ENOMEM;
	}
	platform_set_drvdata(pdev, nvec);
	nvec->dev = &pdev->dev;
734 735 736 737 738

	if (pdata) {
		nvec->gpio = pdata->gpio;
		nvec->i2c_addr = pdata->i2c_addr;
	} else if (nvec->dev->of_node) {
739 740
		nvec->gpio = of_get_named_gpio(nvec->dev->of_node,
					"request-gpios", 0);
741 742
		if (nvec->gpio < 0) {
			dev_err(&pdev->dev, "no gpio specified");
743
			return -ENODEV;
744
		}
745 746
		if (of_property_read_u32(nvec->dev->of_node,
					"slave-addr", &nvec->i2c_addr)) {
747
			dev_err(&pdev->dev, "no i2c address specified");
748
			return -ENODEV;
749 750 751
		}
	} else {
		dev_err(&pdev->dev, "no platform data\n");
752
		return -ENODEV;
753
	}
754 755 756 757 758

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(&pdev->dev, "no mem resource?\n");
		return -ENODEV;
759 760
	}

761
	base = devm_request_and_ioremap(&pdev->dev, res);
762 763 764
	if (!base) {
		dev_err(&pdev->dev, "Can't ioremap I2C region\n");
		return -ENOMEM;
765 766
	}

767 768 769
	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
	if (!res) {
		dev_err(&pdev->dev, "no irq resource?\n");
770
		return -ENODEV;
771
	}
772

M
Marc Dietrich 已提交
773
	i2c_clk = clk_get_sys("tegra-i2c.2", "div-clk");
774 775
	if (IS_ERR(i2c_clk)) {
		dev_err(nvec->dev, "failed to get controller clock\n");
776
		return -ENODEV;
777 778
	}

779 780 781
	nvec->base = base;
	nvec->irq = res->start;
	nvec->i2c_clk = i2c_clk;
782
	nvec->rx = &nvec->msg_pool[0];
783

784 785 786
	ATOMIC_INIT_NOTIFIER_HEAD(&nvec->notifier_list);

	init_completion(&nvec->sync_write);
787 788 789 790
	init_completion(&nvec->ec_transfer);
	mutex_init(&nvec->sync_write_mutex);
	spin_lock_init(&nvec->tx_lock);
	spin_lock_init(&nvec->rx_lock);
791
	INIT_LIST_HEAD(&nvec->rx_data);
792
	INIT_LIST_HEAD(&nvec->tx_data);
793 794
	INIT_WORK(&nvec->rx_work, nvec_dispatch);
	INIT_WORK(&nvec->tx_work, nvec_request_master);
795
	nvec->wq = alloc_workqueue("nvec", WQ_NON_REENTRANT, 2);
796

797 798
	err = devm_gpio_request_one(&pdev->dev, nvec->gpio, GPIOF_OUT_INIT_HIGH,
					"nvec gpio");
799 800
	if (err < 0) {
		dev_err(nvec->dev, "couldn't request gpio\n");
801 802
		destroy_workqueue(nvec->wq);
		return -ENODEV;
803 804
	}

805 806
	err = devm_request_irq(&pdev->dev, nvec->irq, nvec_interrupt, 0,
				"nvec", nvec);
807 808
	if (err) {
		dev_err(nvec->dev, "couldn't request irq\n");
809 810
		destroy_workqueue(nvec->wq);
		return -ENODEV;
811
	}
812
	disable_irq(nvec->irq);
813 814 815

	tegra_init_i2c_slave(nvec);

816
	clk_prepare_enable(i2c_clk);
817

818

819 820
	/* enable event reporting */
	nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING,
821
			 sizeof(EC_ENABLE_EVENT_REPORTING));
822 823 824 825 826 827 828 829 830

	nvec->nvec_status_notifier.notifier_call = nvec_status_notifier;
	nvec_register_notifier(nvec, &nvec->nvec_status_notifier, 0);

	nvec_power_handle = nvec;
	pm_power_off = nvec_power_off;

	/* Get Firmware Version */
	msg = nvec_write_sync(nvec, EC_GET_FIRMWARE_VERSION,
831
		sizeof(EC_GET_FIRMWARE_VERSION));
832

833 834 835
	if (msg) {
		dev_warn(nvec->dev, "ec firmware version %02x.%02x.%02x / %02x\n",
			msg->data[4], msg->data[5], msg->data[6], msg->data[7]);
836

837 838
		nvec_msg_free(nvec, msg);
	}
839

840
	ret = mfd_add_devices(nvec->dev, -1, nvec_devices,
841 842
			      ARRAY_SIZE(nvec_devices), base, 0);
	if (ret)
843 844
		dev_err(nvec->dev, "error adding subdevices\n");

845
	/* unmute speakers? */
846
	nvec_write_async(nvec, "\x0d\x10\x59\x95", 4);
847 848 849 850 851 852 853 854 855 856 857 858

	/* enable lid switch event */
	nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x02\x00", 7);

	/* enable power button event */
	nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x80\x00", 7);

	return 0;
}

static int __devexit tegra_nvec_remove(struct platform_device *pdev)
{
859 860 861 862
	struct nvec_chip *nvec = platform_get_drvdata(pdev);

	nvec_write_async(nvec, EC_DISABLE_EVENT_REPORTING, 3);
	mfd_remove_devices(nvec->dev);
863
	destroy_workqueue(nvec->wq);
864

865 866 867
	return 0;
}

868 869
#ifdef CONFIG_PM_SLEEP
static int nvec_suspend(struct device *dev)
870
{
871
	struct platform_device *pdev = to_platform_device(dev);
872
	struct nvec_chip *nvec = platform_get_drvdata(pdev);
873
	struct nvec_msg *msg;
874 875

	dev_dbg(nvec->dev, "suspending\n");
876 877 878 879 880 881 882

	/* keep these sync or you'll break suspend */
	msg = nvec_write_sync(nvec, EC_DISABLE_EVENT_REPORTING, 3);
	nvec_msg_free(nvec, msg);
	msg = nvec_write_sync(nvec, "\x04\x02", 2);
	nvec_msg_free(nvec, msg);

883
	nvec_disable_i2c_slave(nvec);
884 885 886 887

	return 0;
}

888
static int nvec_resume(struct device *dev)
889
{
890
	struct platform_device *pdev = to_platform_device(dev);
891 892 893
	struct nvec_chip *nvec = platform_get_drvdata(pdev);

	dev_dbg(nvec->dev, "resuming\n");
894
	tegra_init_i2c_slave(nvec);
895 896 897 898 899 900
	nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING, 3);

	return 0;
}
#endif

901 902
static const SIMPLE_DEV_PM_OPS(nvec_pm_ops, nvec_suspend, nvec_resume);

903 904 905 906 907 908 909
/* Match table for of_platform binding */
static const struct of_device_id nvidia_nvec_of_match[] __devinitconst = {
	{ .compatible = "nvidia,nvec", },
	{},
};
MODULE_DEVICE_TABLE(of, nvidia_nvec_of_match);

910 911 912 913
static struct platform_driver nvec_device_driver = {
	.probe   = tegra_nvec_probe,
	.remove  = __devexit_p(tegra_nvec_remove),
	.driver  = {
914 915
		.name = "nvec",
		.owner = THIS_MODULE,
916
		.pm = &nvec_pm_ops,
917
		.of_match_table = nvidia_nvec_of_match,
918 919 920
	}
};

921
module_platform_driver(nvec_device_driver);
922

923
MODULE_ALIAS("platform:nvec");
924 925 926
MODULE_DESCRIPTION("NVIDIA compliant embedded controller interface");
MODULE_AUTHOR("Marc Dietrich <marvin24@gmx.de>");
MODULE_LICENSE("GPL");