nvec.c 24.4 KB
Newer Older
1 2 3 4 5 6 7 8
/*
 * NVEC: NVIDIA compliant embedded controller interface
 *
 * Copyright (C) 2011 The AC100 Kernel Team <ac100@lists.lauchpad.net>
 *
 * Authors:  Pierre-Hugues Husson <phhusson@free.fr>
 *           Ilya Petrov <ilya.muromec@gmail.com>
 *           Marc Dietrich <marvin24@gmx.de>
9
 *           Julian Andres Klode <jak@jak-linux.org>
10 11 12 13 14 15 16 17
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 */

/* #define DEBUG */
18

19
#include <linux/kernel.h>
20
#include <linux/module.h>
21
#include <linux/atomic.h>
22
#include <linux/clk.h>
23
#include <linux/completion.h>
24 25 26
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/gpio.h>
27
#include <linux/interrupt.h>
28
#include <linux/io.h>
29
#include <linux/irq.h>
30 31
#include <linux/of.h>
#include <linux/of_gpio.h>
32
#include <linux/list.h>
33 34
#include <linux/mfd/core.h>
#include <linux/mutex.h>
35 36
#include <linux/notifier.h>
#include <linux/platform_device.h>
37 38 39
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
40 41

#include <mach/clk.h>
42
#include <mach/iomap.h>
43

44 45
#include "nvec.h"

46 47 48 49 50 51
#define I2C_CNFG			0x00
#define I2C_CNFG_PACKET_MODE_EN		(1<<10)
#define I2C_CNFG_NEW_MASTER_SFM		(1<<11)
#define I2C_CNFG_DEBOUNCE_CNT_SHIFT	12

#define I2C_SL_CNFG		0x20
52
#define I2C_SL_NEWSL		(1<<2)
53 54 55 56 57 58 59 60 61 62 63 64 65
#define I2C_SL_NACK		(1<<1)
#define I2C_SL_RESP		(1<<0)
#define I2C_SL_IRQ		(1<<3)
#define END_TRANS		(1<<4)
#define RCVD			(1<<2)
#define RNW			(1<<1)

#define I2C_SL_RCVD		0x24
#define I2C_SL_STATUS		0x28
#define I2C_SL_ADDR1		0x2c
#define I2C_SL_ADDR2		0x30
#define I2C_SL_DELAY_COUNT	0x3c

66 67 68 69 70 71 72 73 74 75
/**
 * enum nvec_msg_category - Message categories for nvec_msg_alloc()
 * @NVEC_MSG_RX: The message is an incoming message (from EC)
 * @NVEC_MSG_TX: The message is an outgoing message (to EC)
 */
enum nvec_msg_category  {
	NVEC_MSG_RX,
	NVEC_MSG_TX,
};

76 77 78
static const unsigned char EC_DISABLE_EVENT_REPORTING[3] = "\x04\x00\x00";
static const unsigned char EC_ENABLE_EVENT_REPORTING[3]  = "\x04\x00\x01";
static const unsigned char EC_GET_FIRMWARE_VERSION[2]    = "\x07\x15";
79 80 81

static struct nvec_chip *nvec_power_handle;

82 83
static struct mfd_cell nvec_devices[] = {
	{
84 85
		.name = "nvec-kbd",
		.id = 1,
86 87
	},
	{
88 89
		.name = "nvec-mouse",
		.id = 1,
90 91
	},
	{
92 93
		.name = "nvec-power",
		.id = 1,
94 95
	},
	{
96 97
		.name = "nvec-power",
		.id = 2,
98
	},
I
Ilya Petrov 已提交
99 100 101 102
	{
		.name = "nvec-leds",
		.id = 1,
	},
103 104
};

105 106 107 108 109 110 111 112 113
/**
 * nvec_register_notifier - Register a notifier with nvec
 * @nvec: A &struct nvec_chip
 * @nb: The notifier block to register
 *
 * Registers a notifier with @nvec. The notifier will be added to an atomic
 * notifier chain that is called for all received messages except those that
 * correspond to a request initiated by nvec_write_sync().
 */
114
int nvec_register_notifier(struct nvec_chip *nvec, struct notifier_block *nb,
115
			   unsigned int events)
116 117 118 119 120
{
	return atomic_notifier_chain_register(&nvec->notifier_list, nb);
}
EXPORT_SYMBOL_GPL(nvec_register_notifier);

121 122 123 124 125 126
/**
 * nvec_status_notifier - The final notifier
 *
 * Prints a message about control events not handled in the notifier
 * chain.
 */
127 128
static int nvec_status_notifier(struct notifier_block *nb,
				unsigned long event_type, void *data)
129
{
130 131
	struct nvec_chip *nvec = container_of(nb, struct nvec_chip,
						nvec_status_notifier);
132 133
	unsigned char *msg = (unsigned char *)data;

134
	if (event_type != NVEC_CNTL)
135 136
		return NOTIFY_DONE;

137
	dev_warn(nvec->dev, "unhandled msg type %ld\n", event_type);
138 139
	print_hex_dump(KERN_WARNING, "payload: ", DUMP_PREFIX_NONE, 16, 1,
		msg, msg[1] + 2, true);
140 141 142 143

	return NOTIFY_OK;
}

144 145 146
/**
 * nvec_msg_alloc:
 * @nvec: A &struct nvec_chip
147
 * @category: Pool category, see &enum nvec_msg_category
148 149 150 151
 *
 * Allocate a single &struct nvec_msg object from the message pool of
 * @nvec. The result shall be passed to nvec_msg_free() if no longer
 * used.
152 153 154 155 156
 *
 * Outgoing messages are placed in the upper 75% of the pool, keeping the
 * lower 25% available for RX buffers only. The reason is to prevent a
 * situation where all buffers are full and a message is thus endlessly
 * retried because the response could never be processed.
157
 */
158 159
static struct nvec_msg *nvec_msg_alloc(struct nvec_chip *nvec,
				       enum nvec_msg_category category)
160
{
161
	int i = (category == NVEC_MSG_TX) ? (NVEC_POOL_SIZE / 4) : 0;
162

163
	for (; i < NVEC_POOL_SIZE; i++) {
164 165 166 167 168 169
		if (atomic_xchg(&nvec->msg_pool[i].used, 1) == 0) {
			dev_vdbg(nvec->dev, "INFO: Allocate %i\n", i);
			return &nvec->msg_pool[i];
		}
	}

170 171
	dev_err(nvec->dev, "could not allocate %s buffer\n",
		(category == NVEC_MSG_TX) ? "TX" : "RX");
172 173 174 175

	return NULL;
}

176 177 178 179 180 181 182
/**
 * nvec_msg_free:
 * @nvec: A &struct nvec_chip
 * @msg:  A message (must be allocated by nvec_msg_alloc() and belong to @nvec)
 *
 * Free the given message
 */
183
inline void nvec_msg_free(struct nvec_chip *nvec, struct nvec_msg *msg)
184
{
185 186
	if (msg != &nvec->tx_scratch)
		dev_vdbg(nvec->dev, "INFO: Free %ti\n", msg - nvec->msg_pool);
187 188
	atomic_set(&msg->used, 0);
}
189
EXPORT_SYMBOL_GPL(nvec_msg_free);
190

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/**
 * nvec_msg_is_event - Return %true if @msg is an event
 * @msg: A message
 */
static bool nvec_msg_is_event(struct nvec_msg *msg)
{
	return msg->data[0] >> 7;
}

/**
 * nvec_msg_size - Get the size of a message
 * @msg: The message to get the size for
 *
 * This only works for received messages, not for outgoing messages.
 */
static size_t nvec_msg_size(struct nvec_msg *msg)
{
	bool is_event = nvec_msg_is_event(msg);
	int event_length = (msg->data[0] & 0x60) >> 5;

	/* for variable size, payload size in byte 1 + count (1) + cmd (1) */
	if (!is_event || event_length == NVEC_VAR_SIZE)
		return (msg->pos || msg->size) ? (msg->data[1] + 2) : 0;
	else if (event_length == NVEC_2BYTES)
		return 2;
	else if (event_length == NVEC_3BYTES)
		return 3;
	else
		return 0;
}

222 223 224 225 226 227 228
/**
 * nvec_gpio_set_value - Set the GPIO value
 * @nvec: A &struct nvec_chip
 * @value: The value to write (0 or 1)
 *
 * Like gpio_set_value(), but generating debugging information
 */
229 230 231 232 233 234 235
static void nvec_gpio_set_value(struct nvec_chip *nvec, int value)
{
	dev_dbg(nvec->dev, "GPIO changed from %u to %u\n",
		gpio_get_value(nvec->gpio), value);
	gpio_set_value(nvec->gpio, value);
}

236 237 238 239 240 241 242 243 244 245 246 247
/**
 * nvec_write_async - Asynchronously write a message to NVEC
 * @nvec: An nvec_chip instance
 * @data: The message data, starting with the request type
 * @size: The size of @data
 *
 * Queue a single message to be transferred to the embedded controller
 * and return immediately.
 *
 * Returns: 0 on success, a negative error code on failure. If a failure
 * occured, the nvec driver may print an error.
 */
248
int nvec_write_async(struct nvec_chip *nvec, const unsigned char *data,
249
			short size)
250
{
251 252
	struct nvec_msg *msg;
	unsigned long flags;
253

254 255
	msg = nvec_msg_alloc(nvec, NVEC_MSG_TX);

256 257 258
	if (msg == NULL)
		return -ENOMEM;

259 260 261 262
	msg->data[0] = size;
	memcpy(msg->data + 1, data, size);
	msg->size = size + 1;

263
	spin_lock_irqsave(&nvec->tx_lock, flags);
264
	list_add_tail(&msg->node, &nvec->tx_data);
265
	spin_unlock_irqrestore(&nvec->tx_lock, flags);
266

267
	queue_work(nvec->wq, &nvec->tx_work);
268 269

	return 0;
270 271 272
}
EXPORT_SYMBOL(nvec_write_async);

273 274 275 276 277 278 279 280 281 282 283 284
/**
 * nvec_write_sync - Write a message to nvec and read the response
 * @nvec: An &struct nvec_chip
 * @data: The data to write
 * @size: The size of @data
 *
 * This is similar to nvec_write_async(), but waits for the
 * request to be answered before returning. This function
 * uses a mutex and can thus not be called from e.g.
 * interrupt handlers.
 *
 * Returns: A pointer to the response message on success,
285 286
 * %NULL on failure. Free with nvec_msg_free() once no longer
 * used.
287
 */
288 289 290 291 292 293 294 295
struct nvec_msg *nvec_write_sync(struct nvec_chip *nvec,
		const unsigned char *data, short size)
{
	struct nvec_msg *msg;

	mutex_lock(&nvec->sync_write_mutex);

	nvec->sync_write_pending = (data[1] << 8) + data[0];
296 297 298

	if (nvec_write_async(nvec, data, size) < 0)
		return NULL;
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

	dev_dbg(nvec->dev, "nvec_sync_write: 0x%04x\n",
					nvec->sync_write_pending);
	if (!(wait_for_completion_timeout(&nvec->sync_write,
				msecs_to_jiffies(2000)))) {
		dev_warn(nvec->dev, "timeout waiting for sync write to complete\n");
		mutex_unlock(&nvec->sync_write_mutex);
		return NULL;
	}

	dev_dbg(nvec->dev, "nvec_sync_write: pong!\n");

	msg = nvec->last_sync_msg;

	mutex_unlock(&nvec->sync_write_mutex);

	return msg;
}
EXPORT_SYMBOL(nvec_write_sync);

319 320 321 322 323 324 325 326
/**
 * nvec_request_master - Process outgoing messages
 * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip)
 *
 * Processes all outgoing requests by sending the request and awaiting the
 * response, then continuing with the next request. Once a request has a
 * matching response, it will be freed and removed from the list.
 */
327 328 329
static void nvec_request_master(struct work_struct *work)
{
	struct nvec_chip *nvec = container_of(work, struct nvec_chip, tx_work);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
	unsigned long flags;
	long err;
	struct nvec_msg *msg;

	spin_lock_irqsave(&nvec->tx_lock, flags);
	while (!list_empty(&nvec->tx_data)) {
		msg = list_first_entry(&nvec->tx_data, struct nvec_msg, node);
		spin_unlock_irqrestore(&nvec->tx_lock, flags);
		nvec_gpio_set_value(nvec, 0);
		err = wait_for_completion_interruptible_timeout(
				&nvec->ec_transfer, msecs_to_jiffies(5000));

		if (err == 0) {
			dev_warn(nvec->dev, "timeout waiting for ec transfer\n");
			nvec_gpio_set_value(nvec, 1);
			msg->pos = 0;
		}
347

348 349 350 351 352 353 354 355
		spin_lock_irqsave(&nvec->tx_lock, flags);

		if (err > 0) {
			list_del_init(&msg->node);
			nvec_msg_free(nvec, msg);
		}
	}
	spin_unlock_irqrestore(&nvec->tx_lock, flags);
356 357
}

358 359 360 361 362 363 364 365
/**
 * parse_msg - Print some information and call the notifiers on an RX message
 * @nvec: A &struct nvec_chip
 * @msg: A message received by @nvec
 *
 * Paarse some pieces of the message and then call the chain of notifiers
 * registered via nvec_register_notifier.
 */
366 367
static int parse_msg(struct nvec_chip *nvec, struct nvec_msg *msg)
{
368 369 370
	if ((msg->data[0] & 1 << 7) == 0 && msg->data[3]) {
		dev_err(nvec->dev, "ec responded %02x %02x %02x %02x\n",
			msg->data[0], msg->data[1], msg->data[2], msg->data[3]);
371 372 373
		return -EINVAL;
	}

374 375 376 377
	if ((msg->data[0] >> 7) == 1 && (msg->data[0] & 0x0f) == 5)
		print_hex_dump(KERN_WARNING, "ec system event ",
				DUMP_PREFIX_NONE, 16, 1, msg->data,
				msg->data[1] + 2, true);
378

379 380
	atomic_notifier_call_chain(&nvec->notifier_list, msg->data[0] & 0x8f,
				   msg->data);
381 382 383 384

	return 0;
}

385 386 387 388 389 390 391
/**
 * nvec_dispatch - Process messages received from the EC
 * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip)
 *
 * Process messages previously received from the EC and put into the RX
 * queue of the &struct nvec_chip instance associated with @work.
 */
392 393 394
static void nvec_dispatch(struct work_struct *work)
{
	struct nvec_chip *nvec = container_of(work, struct nvec_chip, rx_work);
395
	unsigned long flags;
396 397
	struct nvec_msg *msg;

398
	spin_lock_irqsave(&nvec->rx_lock, flags);
399
	while (!list_empty(&nvec->rx_data)) {
400 401
		msg = list_first_entry(&nvec->rx_data, struct nvec_msg, node);
		list_del_init(&msg->node);
402
		spin_unlock_irqrestore(&nvec->rx_lock, flags);
403

404
		if (nvec->sync_write_pending ==
405
		      (msg->data[2] << 8) + msg->data[0]) {
406 407 408 409 410 411
			dev_dbg(nvec->dev, "sync write completed!\n");
			nvec->sync_write_pending = 0;
			nvec->last_sync_msg = msg;
			complete(&nvec->sync_write);
		} else {
			parse_msg(nvec, msg);
412
			nvec_msg_free(nvec, msg);
413
		}
414
		spin_lock_irqsave(&nvec->rx_lock, flags);
415
	}
416
	spin_unlock_irqrestore(&nvec->rx_lock, flags);
417 418
}

419 420 421 422 423 424
/**
 * nvec_tx_completed - Complete the current transfer
 * @nvec: A &struct nvec_chip
 *
 * This is called when we have received an END_TRANS on a TX transfer.
 */
425 426 427 428 429 430 431 432 433 434 435 436
static void nvec_tx_completed(struct nvec_chip *nvec)
{
	/* We got an END_TRANS, let's skip this, maybe there's an event */
	if (nvec->tx->pos != nvec->tx->size) {
		dev_err(nvec->dev, "premature END_TRANS, resending\n");
		nvec->tx->pos = 0;
		nvec_gpio_set_value(nvec, 0);
	} else {
		nvec->state = 0;
	}
}

437 438 439 440 441 442
/**
 * nvec_rx_completed - Complete the current transfer
 * @nvec: A &struct nvec_chip
 *
 * This is called when we have received an END_TRANS on a RX transfer.
 */
443 444
static void nvec_rx_completed(struct nvec_chip *nvec)
{
445
	if (nvec->rx->pos != nvec_msg_size(nvec->rx)) {
446 447 448 449
		dev_err(nvec->dev, "RX incomplete: Expected %u bytes, got %u\n",
			   (uint) nvec_msg_size(nvec->rx),
			   (uint) nvec->rx->pos);

450 451
		nvec_msg_free(nvec, nvec->rx);
		nvec->state = 0;
452 453 454 455 456

		/* Battery quirk - Often incomplete, and likes to crash */
		if (nvec->rx->data[0] == NVEC_BAT)
			complete(&nvec->ec_transfer);

457 458 459
		return;
	}

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
	spin_lock(&nvec->rx_lock);

	/* add the received data to the work list
	   and move the ring buffer pointer to the next entry */
	list_add_tail(&nvec->rx->node, &nvec->rx_data);

	spin_unlock(&nvec->rx_lock);

	nvec->state = 0;

	if (!nvec_msg_is_event(nvec->rx))
		complete(&nvec->ec_transfer);

	queue_work(nvec->wq, &nvec->rx_work);
}

/**
 * nvec_invalid_flags - Send an error message about invalid flags and jump
 * @nvec: The nvec device
 * @status: The status flags
 * @reset: Whether we shall jump to state 0.
 */
static void nvec_invalid_flags(struct nvec_chip *nvec, unsigned int status,
			       bool reset)
{
	dev_err(nvec->dev, "unexpected status flags 0x%02x during state %i\n",
		status, nvec->state);
	if (reset)
		nvec->state = 0;
}

/**
 * nvec_tx_set - Set the message to transfer (nvec->tx)
493 494 495 496 497
 * @nvec: A &struct nvec_chip
 *
 * Gets the first entry from the tx_data list of @nvec and sets the
 * tx member to it. If the tx_data list is empty, this uses the
 * tx_scratch message to send a no operation message.
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
 */
static void nvec_tx_set(struct nvec_chip *nvec)
{
	spin_lock(&nvec->tx_lock);
	if (list_empty(&nvec->tx_data)) {
		dev_err(nvec->dev, "empty tx - sending no-op\n");
		memcpy(nvec->tx_scratch.data, "\x02\x07\x02", 3);
		nvec->tx_scratch.size = 3;
		nvec->tx_scratch.pos = 0;
		nvec->tx = &nvec->tx_scratch;
		list_add_tail(&nvec->tx->node, &nvec->tx_data);
	} else {
		nvec->tx = list_first_entry(&nvec->tx_data, struct nvec_msg,
					    node);
		nvec->tx->pos = 0;
	}
	spin_unlock(&nvec->tx_lock);

	dev_dbg(nvec->dev, "Sending message of length %u, command 0x%x\n",
		(uint)nvec->tx->size, nvec->tx->data[1]);
}

/**
 * nvec_interrupt - Interrupt handler
 * @irq: The IRQ
 * @dev: The nvec device
524 525 526 527
 *
 * Interrupt handler that fills our RX buffers and empties our TX
 * buffers. This uses a finite state machine with ridiculous amounts
 * of error checking, in order to be fairly reliable.
528
 */
529
static irqreturn_t nvec_interrupt(int irq, void *dev)
530 531
{
	unsigned long status;
532 533 534 535 536
	unsigned int received = 0;
	unsigned char to_send = 0xff;
	const unsigned long irq_mask = I2C_SL_IRQ | END_TRANS | RCVD | RNW;
	struct nvec_chip *nvec = dev;
	unsigned int state = nvec->state;
537

538
	status = readl(nvec->base + I2C_SL_STATUS);
539

540 541 542 543
	/* Filter out some errors */
	if ((status & irq_mask) == 0 && (status & ~irq_mask) != 0) {
		dev_err(nvec->dev, "unexpected irq mask %lx\n", status);
		return IRQ_HANDLED;
544
	}
545 546
	if ((status & I2C_SL_IRQ) == 0) {
		dev_err(nvec->dev, "Spurious IRQ\n");
547
		return IRQ_HANDLED;
548
	}
549

550 551 552
	/* The EC did not request a read, so it send us something, read it */
	if ((status & RNW) == 0) {
		received = readl(nvec->base + I2C_SL_RCVD);
553
		if (status & RCVD)
554 555
			writel(0, nvec->base + I2C_SL_RCVD);
	}
556

557 558 559 560 561 562 563 564 565 566 567
	if (status == (I2C_SL_IRQ | RCVD))
		nvec->state = 0;

	switch (nvec->state) {
	case 0:		/* Verify that its a transfer start, the rest later */
		if (status != (I2C_SL_IRQ | RCVD))
			nvec_invalid_flags(nvec, status, false);
		break;
	case 1:		/* command byte */
		if (status != I2C_SL_IRQ) {
			nvec_invalid_flags(nvec, status, true);
568
		} else {
569
			nvec->rx = nvec_msg_alloc(nvec, NVEC_MSG_RX);
570 571 572 573 574
			/* Should not happen in a normal world */
			if (unlikely(nvec->rx == NULL)) {
				nvec->state = 0;
				break;
			}
575 576 577 578 579 580 581 582 583 584 585 586 587
			nvec->rx->data[0] = received;
			nvec->rx->pos = 1;
			nvec->state = 2;
		}
		break;
	case 2:		/* first byte after command */
		if (status == (I2C_SL_IRQ | RNW | RCVD)) {
			udelay(33);
			if (nvec->rx->data[0] != 0x01) {
				dev_err(nvec->dev,
					"Read without prior read command\n");
				nvec->state = 0;
				break;
588
			}
589 590 591 592 593 594 595 596 597 598 599 600 601
			nvec_msg_free(nvec, nvec->rx);
			nvec->state = 3;
			nvec_tx_set(nvec);
			BUG_ON(nvec->tx->size < 1);
			to_send = nvec->tx->data[0];
			nvec->tx->pos = 1;
		} else if (status == (I2C_SL_IRQ)) {
			BUG_ON(nvec->rx == NULL);
			nvec->rx->data[1] = received;
			nvec->rx->pos = 2;
			nvec->state = 4;
		} else {
			nvec_invalid_flags(nvec, status, true);
602
		}
603 604 605 606 607 608 609 610 611 612 613 614 615 616
		break;
	case 3:		/* EC does a block read, we transmit data */
		if (status & END_TRANS) {
			nvec_tx_completed(nvec);
		} else if ((status & RNW) == 0 || (status & RCVD)) {
			nvec_invalid_flags(nvec, status, true);
		} else if (nvec->tx && nvec->tx->pos < nvec->tx->size) {
			to_send = nvec->tx->data[nvec->tx->pos++];
		} else {
			dev_err(nvec->dev, "tx buffer underflow on %p (%u > %u)\n",
				nvec->tx,
				(uint) (nvec->tx ? nvec->tx->pos : 0),
				(uint) (nvec->tx ? nvec->tx->size : 0));
			nvec->state = 0;
617
		}
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
		break;
	case 4:		/* EC does some write, we read the data */
		if ((status & (END_TRANS | RNW)) == END_TRANS)
			nvec_rx_completed(nvec);
		else if (status & (RNW | RCVD))
			nvec_invalid_flags(nvec, status, true);
		else if (nvec->rx && nvec->rx->pos < NVEC_MSG_SIZE)
			nvec->rx->data[nvec->rx->pos++] = received;
		else
			dev_err(nvec->dev,
				"RX buffer overflow on %p: "
				"Trying to write byte %u of %u\n",
				nvec->rx, nvec->rx->pos, NVEC_MSG_SIZE);
		break;
	default:
		nvec->state = 0;
	}
635

636 637 638 639 640 641 642
	/* If we are told that a new transfer starts, verify it */
	if ((status & (RCVD | RNW)) == RCVD) {
		if (received != nvec->i2c_addr)
			dev_err(nvec->dev,
			"received address 0x%02x, expected 0x%02x\n",
			received, nvec->i2c_addr);
		nvec->state = 1;
643
	}
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

	/* Send data if requested, but not on end of transmission */
	if ((status & (RNW | END_TRANS)) == RNW)
		writel(to_send, nvec->base + I2C_SL_RCVD);

	/* If we have send the first byte */
	if (status == (I2C_SL_IRQ | RNW | RCVD))
		nvec_gpio_set_value(nvec, 1);

	dev_dbg(nvec->dev,
		"Handled: %s 0x%02x, %s 0x%02x in state %u [%s%s%s]\n",
		(status & RNW) == 0 ? "received" : "R=",
		received,
		(status & (RNW | END_TRANS)) ? "sent" : "S=",
		to_send,
		state,
		status & END_TRANS ? " END_TRANS" : "",
		status & RCVD ? " RCVD" : "",
		status & RNW ? " RNW" : "");

664 665 666 667 668 669 670 671 672

	/*
	 * TODO: A correct fix needs to be found for this.
	 *
	 * We experience less incomplete messages with this delay than without
	 * it, but we don't know why. Help is appreciated.
	 */
	udelay(100);

673 674 675
	return IRQ_HANDLED;
}

676
static void tegra_init_i2c_slave(struct nvec_chip *nvec)
677 678 679
{
	u32 val;

680 681 682
	clk_enable(nvec->i2c_clk);

	tegra_periph_reset_assert(nvec->i2c_clk);
683
	udelay(2);
684
	tegra_periph_reset_deassert(nvec->i2c_clk);
685 686

	val = I2C_CNFG_NEW_MASTER_SFM | I2C_CNFG_PACKET_MODE_EN |
687
	    (0x2 << I2C_CNFG_DEBOUNCE_CNT_SHIFT);
688
	writel(val, nvec->base + I2C_CNFG);
689 690 691

	clk_set_rate(nvec->i2c_clk, 8 * 80000);

692
	writel(I2C_SL_NEWSL, nvec->base + I2C_SL_CNFG);
693 694 695 696
	writel(0x1E, nvec->base + I2C_SL_DELAY_COUNT);

	writel(nvec->i2c_addr>>1, nvec->base + I2C_SL_ADDR1);
	writel(0, nvec->base + I2C_SL_ADDR2);
697

698 699 700 701 702 703 704 705
	enable_irq(nvec->irq);

	clk_disable(nvec->i2c_clk);
}

static void nvec_disable_i2c_slave(struct nvec_chip *nvec)
{
	disable_irq(nvec->irq);
706
	writel(I2C_SL_NEWSL | I2C_SL_NACK, nvec->base + I2C_SL_CNFG);
707
	clk_disable(nvec->i2c_clk);
708 709 710 711 712 713 714 715 716 717
}

static void nvec_power_off(void)
{
	nvec_write_async(nvec_power_handle, EC_DISABLE_EVENT_REPORTING, 3);
	nvec_write_async(nvec_power_handle, "\x04\x01", 2);
}

static int __devinit tegra_nvec_probe(struct platform_device *pdev)
{
718
	int err, ret;
719 720 721 722
	struct clk *i2c_clk;
	struct nvec_platform_data *pdata = pdev->dev.platform_data;
	struct nvec_chip *nvec;
	struct nvec_msg *msg;
723 724
	struct resource *res;
	void __iomem *base;
725

726
	nvec = devm_kzalloc(&pdev->dev, sizeof(struct nvec_chip), GFP_KERNEL);
727
	if (nvec == NULL) {
728 729 730 731 732
		dev_err(&pdev->dev, "failed to reserve memory\n");
		return -ENOMEM;
	}
	platform_set_drvdata(pdev, nvec);
	nvec->dev = &pdev->dev;
733 734 735 736 737 738 739 740

	if (pdata) {
		nvec->gpio = pdata->gpio;
		nvec->i2c_addr = pdata->i2c_addr;
	} else if (nvec->dev->of_node) {
		nvec->gpio = of_get_named_gpio(nvec->dev->of_node, "request-gpios", 0);
		if (nvec->gpio < 0) {
			dev_err(&pdev->dev, "no gpio specified");
741
			return -ENODEV;
742 743 744
		}
		if (of_property_read_u32(nvec->dev->of_node, "slave-addr", &nvec->i2c_addr)) {
			dev_err(&pdev->dev, "no i2c address specified");
745
			return -ENODEV;
746 747 748
		}
	} else {
		dev_err(&pdev->dev, "no platform data\n");
749
		return -ENODEV;
750
	}
751 752 753 754 755

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(&pdev->dev, "no mem resource?\n");
		return -ENODEV;
756 757
	}

758
	base = devm_request_and_ioremap(&pdev->dev, res);
759 760 761
	if (!base) {
		dev_err(&pdev->dev, "Can't ioremap I2C region\n");
		return -ENOMEM;
762 763
	}

764 765 766
	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
	if (!res) {
		dev_err(&pdev->dev, "no irq resource?\n");
767
		return -ENODEV;
768
	}
769

770 771 772
	i2c_clk = clk_get_sys("tegra-i2c.2", NULL);
	if (IS_ERR(i2c_clk)) {
		dev_err(nvec->dev, "failed to get controller clock\n");
773
		return -ENODEV;
774 775
	}

776 777 778
	nvec->base = base;
	nvec->irq = res->start;
	nvec->i2c_clk = i2c_clk;
779
	nvec->rx = &nvec->msg_pool[0];
780

781 782 783
	ATOMIC_INIT_NOTIFIER_HEAD(&nvec->notifier_list);

	init_completion(&nvec->sync_write);
784 785 786 787
	init_completion(&nvec->ec_transfer);
	mutex_init(&nvec->sync_write_mutex);
	spin_lock_init(&nvec->tx_lock);
	spin_lock_init(&nvec->rx_lock);
788
	INIT_LIST_HEAD(&nvec->rx_data);
789
	INIT_LIST_HEAD(&nvec->tx_data);
790 791
	INIT_WORK(&nvec->rx_work, nvec_dispatch);
	INIT_WORK(&nvec->tx_work, nvec_request_master);
792
	nvec->wq = alloc_workqueue("nvec", WQ_NON_REENTRANT, 2);
793

794 795
	err = devm_gpio_request_one(&pdev->dev, nvec->gpio, GPIOF_OUT_INIT_HIGH,
					"nvec gpio");
796 797
	if (err < 0) {
		dev_err(nvec->dev, "couldn't request gpio\n");
798 799
		destroy_workqueue(nvec->wq);
		return -ENODEV;
800 801
	}

802 803
	err = devm_request_irq(&pdev->dev, nvec->irq, nvec_interrupt, 0,
				"nvec", nvec);
804 805
	if (err) {
		dev_err(nvec->dev, "couldn't request irq\n");
806 807
		destroy_workqueue(nvec->wq);
		return -ENODEV;
808
	}
809
	disable_irq(nvec->irq);
810 811 812

	tegra_init_i2c_slave(nvec);

813 814
	clk_enable(i2c_clk);

815

816 817
	/* enable event reporting */
	nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING,
818
			 sizeof(EC_ENABLE_EVENT_REPORTING));
819 820 821 822 823 824 825 826 827

	nvec->nvec_status_notifier.notifier_call = nvec_status_notifier;
	nvec_register_notifier(nvec, &nvec->nvec_status_notifier, 0);

	nvec_power_handle = nvec;
	pm_power_off = nvec_power_off;

	/* Get Firmware Version */
	msg = nvec_write_sync(nvec, EC_GET_FIRMWARE_VERSION,
828
		sizeof(EC_GET_FIRMWARE_VERSION));
829

830 831 832
	if (msg) {
		dev_warn(nvec->dev, "ec firmware version %02x.%02x.%02x / %02x\n",
			msg->data[4], msg->data[5], msg->data[6], msg->data[7]);
833

834 835
		nvec_msg_free(nvec, msg);
	}
836

837
	ret = mfd_add_devices(nvec->dev, -1, nvec_devices,
838 839
			      ARRAY_SIZE(nvec_devices), base, 0);
	if (ret)
840 841
		dev_err(nvec->dev, "error adding subdevices\n");

842
	/* unmute speakers? */
843
	nvec_write_async(nvec, "\x0d\x10\x59\x95", 4);
844 845 846 847 848 849 850 851 852 853 854 855

	/* enable lid switch event */
	nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x02\x00", 7);

	/* enable power button event */
	nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x80\x00", 7);

	return 0;
}

static int __devexit tegra_nvec_remove(struct platform_device *pdev)
{
856 857 858 859
	struct nvec_chip *nvec = platform_get_drvdata(pdev);

	nvec_write_async(nvec, EC_DISABLE_EVENT_REPORTING, 3);
	mfd_remove_devices(nvec->dev);
860
	destroy_workqueue(nvec->wq);
861

862 863 864 865 866 867 868 869
	return 0;
}

#ifdef CONFIG_PM

static int tegra_nvec_suspend(struct platform_device *pdev, pm_message_t state)
{
	struct nvec_chip *nvec = platform_get_drvdata(pdev);
870
	struct nvec_msg *msg;
871 872

	dev_dbg(nvec->dev, "suspending\n");
873 874 875 876 877 878 879

	/* keep these sync or you'll break suspend */
	msg = nvec_write_sync(nvec, EC_DISABLE_EVENT_REPORTING, 3);
	nvec_msg_free(nvec, msg);
	msg = nvec_write_sync(nvec, "\x04\x02", 2);
	nvec_msg_free(nvec, msg);

880
	nvec_disable_i2c_slave(nvec);
881 882 883 884

	return 0;
}

885 886
static int tegra_nvec_resume(struct platform_device *pdev)
{
887 888 889
	struct nvec_chip *nvec = platform_get_drvdata(pdev);

	dev_dbg(nvec->dev, "resuming\n");
890
	tegra_init_i2c_slave(nvec);
891 892 893 894 895 896 897 898 899 900
	nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING, 3);

	return 0;
}

#else
#define tegra_nvec_suspend NULL
#define tegra_nvec_resume NULL
#endif

901 902 903 904 905 906 907
/* Match table for of_platform binding */
static const struct of_device_id nvidia_nvec_of_match[] __devinitconst = {
	{ .compatible = "nvidia,nvec", },
	{},
};
MODULE_DEVICE_TABLE(of, nvidia_nvec_of_match);

908 909 910
static struct platform_driver nvec_device_driver = {
	.probe   = tegra_nvec_probe,
	.remove  = __devexit_p(tegra_nvec_remove),
911
	.suspend = tegra_nvec_suspend,
912 913
	.resume  = tegra_nvec_resume,
	.driver  = {
914 915
		.name = "nvec",
		.owner = THIS_MODULE,
916
		.of_match_table = nvidia_nvec_of_match,
917 918 919 920 921 922 923 924 925
	}
};

static int __init tegra_nvec_init(void)
{
	return platform_driver_register(&nvec_device_driver);
}

module_init(tegra_nvec_init);
926

927
MODULE_ALIAS("platform:nvec");
928 929 930
MODULE_DESCRIPTION("NVIDIA compliant embedded controller interface");
MODULE_AUTHOR("Marc Dietrich <marvin24@gmx.de>");
MODULE_LICENSE("GPL");