nvec.c 23.4 KB
Newer Older
1 2 3 4 5 6 7 8
/*
 * NVEC: NVIDIA compliant embedded controller interface
 *
 * Copyright (C) 2011 The AC100 Kernel Team <ac100@lists.lauchpad.net>
 *
 * Authors:  Pierre-Hugues Husson <phhusson@free.fr>
 *           Ilya Petrov <ilya.muromec@gmail.com>
 *           Marc Dietrich <marvin24@gmx.de>
9
 *           Julian Andres Klode <jak@jak-linux.org>
10 11 12 13 14 15 16 17
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 */

/* #define DEBUG */
18 19

#include <asm/irq.h>
20

21
#include <linux/atomic.h>
22 23
#include <linux/completion.h>
#include <linux/interrupt.h>
24
#include <linux/io.h>
25 26 27 28 29 30 31 32
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/gpio.h>
#include <linux/serio.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/workqueue.h>
#include <linux/clk.h>
33

34 35 36 37
#include <linux/semaphore.h>
#include <linux/list.h>
#include <linux/notifier.h>
#include <linux/platform_device.h>
38
#include <linux/mfd/core.h>
39 40 41 42

#include <mach/iomap.h>
#include <mach/clk.h>

43 44
#include "nvec.h"

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
#define I2C_CNFG			0x00
#define I2C_CNFG_PACKET_MODE_EN		(1<<10)
#define I2C_CNFG_NEW_MASTER_SFM		(1<<11)
#define I2C_CNFG_DEBOUNCE_CNT_SHIFT	12

#define I2C_SL_CNFG		0x20
#define I2C_SL_NEWL		(1<<2)
#define I2C_SL_NACK		(1<<1)
#define I2C_SL_RESP		(1<<0)
#define I2C_SL_IRQ		(1<<3)
#define END_TRANS		(1<<4)
#define RCVD			(1<<2)
#define RNW			(1<<1)

#define I2C_SL_RCVD		0x24
#define I2C_SL_STATUS		0x28
#define I2C_SL_ADDR1		0x2c
#define I2C_SL_ADDR2		0x30
#define I2C_SL_DELAY_COUNT	0x3c

65 66 67 68 69 70 71 72 73 74
/**
 * enum nvec_msg_category - Message categories for nvec_msg_alloc()
 * @NVEC_MSG_RX: The message is an incoming message (from EC)
 * @NVEC_MSG_TX: The message is an outgoing message (to EC)
 */
enum nvec_msg_category  {
	NVEC_MSG_RX,
	NVEC_MSG_TX,
};

75 76 77
static const unsigned char EC_DISABLE_EVENT_REPORTING[3] = "\x04\x00\x00";
static const unsigned char EC_ENABLE_EVENT_REPORTING[3]  = "\x04\x00\x01";
static const unsigned char EC_GET_FIRMWARE_VERSION[2]    = "\x07\x15";
78 79 80

static struct nvec_chip *nvec_power_handle;

81 82
static struct mfd_cell nvec_devices[] = {
	{
83 84
		.name = "nvec-kbd",
		.id = 1,
85 86
	},
	{
87 88
		.name = "nvec-mouse",
		.id = 1,
89 90
	},
	{
91 92
		.name = "nvec-power",
		.id = 1,
93 94
	},
	{
95 96
		.name = "nvec-power",
		.id = 2,
97
	},
I
Ilya Petrov 已提交
98 99 100 101
	{
		.name = "nvec-leds",
		.id = 1,
	},
102 103
};

104 105 106 107 108 109 110 111 112
/**
 * nvec_register_notifier - Register a notifier with nvec
 * @nvec: A &struct nvec_chip
 * @nb: The notifier block to register
 *
 * Registers a notifier with @nvec. The notifier will be added to an atomic
 * notifier chain that is called for all received messages except those that
 * correspond to a request initiated by nvec_write_sync().
 */
113
int nvec_register_notifier(struct nvec_chip *nvec, struct notifier_block *nb,
114
			   unsigned int events)
115 116 117 118 119
{
	return atomic_notifier_chain_register(&nvec->notifier_list, nb);
}
EXPORT_SYMBOL_GPL(nvec_register_notifier);

120 121 122 123 124 125
/**
 * nvec_status_notifier - The final notifier
 *
 * Prints a message about control events not handled in the notifier
 * chain.
 */
126 127
static int nvec_status_notifier(struct notifier_block *nb,
				unsigned long event_type, void *data)
128 129 130
{
	unsigned char *msg = (unsigned char *)data;

131
	if (event_type != NVEC_CNTL)
132 133
		return NOTIFY_DONE;

134 135 136
	printk(KERN_WARNING "unhandled msg type %ld\n", event_type);
	print_hex_dump(KERN_WARNING, "payload: ", DUMP_PREFIX_NONE, 16, 1,
		msg, msg[1] + 2, true);
137 138 139 140

	return NOTIFY_OK;
}

141 142 143
/**
 * nvec_msg_alloc:
 * @nvec: A &struct nvec_chip
144
 * @category: Pool category, see &enum nvec_msg_category
145 146 147 148
 *
 * Allocate a single &struct nvec_msg object from the message pool of
 * @nvec. The result shall be passed to nvec_msg_free() if no longer
 * used.
149 150 151 152 153
 *
 * Outgoing messages are placed in the upper 75% of the pool, keeping the
 * lower 25% available for RX buffers only. The reason is to prevent a
 * situation where all buffers are full and a message is thus endlessly
 * retried because the response could never be processed.
154
 */
155 156
static struct nvec_msg *nvec_msg_alloc(struct nvec_chip *nvec,
				       enum nvec_msg_category category)
157
{
158
	int i = (category == NVEC_MSG_TX) ? (NVEC_POOL_SIZE / 4) : 0;
159

160
	for (; i < NVEC_POOL_SIZE; i++) {
161 162 163 164 165 166
		if (atomic_xchg(&nvec->msg_pool[i].used, 1) == 0) {
			dev_vdbg(nvec->dev, "INFO: Allocate %i\n", i);
			return &nvec->msg_pool[i];
		}
	}

167 168
	dev_err(nvec->dev, "could not allocate %s buffer\n",
		(category == NVEC_MSG_TX) ? "TX" : "RX");
169 170 171 172

	return NULL;
}

173 174 175 176 177 178 179
/**
 * nvec_msg_free:
 * @nvec: A &struct nvec_chip
 * @msg:  A message (must be allocated by nvec_msg_alloc() and belong to @nvec)
 *
 * Free the given message
 */
180
inline void nvec_msg_free(struct nvec_chip *nvec, struct nvec_msg *msg)
181
{
182 183
	if (msg != &nvec->tx_scratch)
		dev_vdbg(nvec->dev, "INFO: Free %ti\n", msg - nvec->msg_pool);
184 185
	atomic_set(&msg->used, 0);
}
186
EXPORT_SYMBOL_GPL(nvec_msg_free);
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
/**
 * nvec_msg_is_event - Return %true if @msg is an event
 * @msg: A message
 */
static bool nvec_msg_is_event(struct nvec_msg *msg)
{
	return msg->data[0] >> 7;
}

/**
 * nvec_msg_size - Get the size of a message
 * @msg: The message to get the size for
 *
 * This only works for received messages, not for outgoing messages.
 */
static size_t nvec_msg_size(struct nvec_msg *msg)
{
	bool is_event = nvec_msg_is_event(msg);
	int event_length = (msg->data[0] & 0x60) >> 5;

	/* for variable size, payload size in byte 1 + count (1) + cmd (1) */
	if (!is_event || event_length == NVEC_VAR_SIZE)
		return (msg->pos || msg->size) ? (msg->data[1] + 2) : 0;
	else if (event_length == NVEC_2BYTES)
		return 2;
	else if (event_length == NVEC_3BYTES)
		return 3;
	else
		return 0;
}

219 220 221 222 223 224 225
/**
 * nvec_gpio_set_value - Set the GPIO value
 * @nvec: A &struct nvec_chip
 * @value: The value to write (0 or 1)
 *
 * Like gpio_set_value(), but generating debugging information
 */
226 227 228 229 230 231 232
static void nvec_gpio_set_value(struct nvec_chip *nvec, int value)
{
	dev_dbg(nvec->dev, "GPIO changed from %u to %u\n",
		gpio_get_value(nvec->gpio), value);
	gpio_set_value(nvec->gpio, value);
}

233 234 235 236 237 238 239 240 241 242 243 244
/**
 * nvec_write_async - Asynchronously write a message to NVEC
 * @nvec: An nvec_chip instance
 * @data: The message data, starting with the request type
 * @size: The size of @data
 *
 * Queue a single message to be transferred to the embedded controller
 * and return immediately.
 *
 * Returns: 0 on success, a negative error code on failure. If a failure
 * occured, the nvec driver may print an error.
 */
245
int nvec_write_async(struct nvec_chip *nvec, const unsigned char *data,
246
			short size)
247
{
248 249
	struct nvec_msg *msg;
	unsigned long flags;
250

251 252
	msg = nvec_msg_alloc(nvec, NVEC_MSG_TX);

253 254 255
	if (msg == NULL)
		return -ENOMEM;

256 257 258 259
	msg->data[0] = size;
	memcpy(msg->data + 1, data, size);
	msg->size = size + 1;

260
	spin_lock_irqsave(&nvec->tx_lock, flags);
261
	list_add_tail(&msg->node, &nvec->tx_data);
262
	spin_unlock_irqrestore(&nvec->tx_lock, flags);
263

264
	queue_work(nvec->wq, &nvec->tx_work);
265 266

	return 0;
267 268 269
}
EXPORT_SYMBOL(nvec_write_async);

270 271 272 273 274 275 276 277 278 279 280 281
/**
 * nvec_write_sync - Write a message to nvec and read the response
 * @nvec: An &struct nvec_chip
 * @data: The data to write
 * @size: The size of @data
 *
 * This is similar to nvec_write_async(), but waits for the
 * request to be answered before returning. This function
 * uses a mutex and can thus not be called from e.g.
 * interrupt handlers.
 *
 * Returns: A pointer to the response message on success,
282 283
 * %NULL on failure. Free with nvec_msg_free() once no longer
 * used.
284
 */
285 286 287 288 289 290 291 292
struct nvec_msg *nvec_write_sync(struct nvec_chip *nvec,
		const unsigned char *data, short size)
{
	struct nvec_msg *msg;

	mutex_lock(&nvec->sync_write_mutex);

	nvec->sync_write_pending = (data[1] << 8) + data[0];
293 294 295

	if (nvec_write_async(nvec, data, size) < 0)
		return NULL;
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

	dev_dbg(nvec->dev, "nvec_sync_write: 0x%04x\n",
					nvec->sync_write_pending);
	if (!(wait_for_completion_timeout(&nvec->sync_write,
				msecs_to_jiffies(2000)))) {
		dev_warn(nvec->dev, "timeout waiting for sync write to complete\n");
		mutex_unlock(&nvec->sync_write_mutex);
		return NULL;
	}

	dev_dbg(nvec->dev, "nvec_sync_write: pong!\n");

	msg = nvec->last_sync_msg;

	mutex_unlock(&nvec->sync_write_mutex);

	return msg;
}
EXPORT_SYMBOL(nvec_write_sync);

316 317 318 319 320 321 322 323
/**
 * nvec_request_master - Process outgoing messages
 * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip)
 *
 * Processes all outgoing requests by sending the request and awaiting the
 * response, then continuing with the next request. Once a request has a
 * matching response, it will be freed and removed from the list.
 */
324 325 326
static void nvec_request_master(struct work_struct *work)
{
	struct nvec_chip *nvec = container_of(work, struct nvec_chip, tx_work);
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	unsigned long flags;
	long err;
	struct nvec_msg *msg;

	spin_lock_irqsave(&nvec->tx_lock, flags);
	while (!list_empty(&nvec->tx_data)) {
		msg = list_first_entry(&nvec->tx_data, struct nvec_msg, node);
		spin_unlock_irqrestore(&nvec->tx_lock, flags);
		nvec_gpio_set_value(nvec, 0);
		err = wait_for_completion_interruptible_timeout(
				&nvec->ec_transfer, msecs_to_jiffies(5000));

		if (err == 0) {
			dev_warn(nvec->dev, "timeout waiting for ec transfer\n");
			nvec_gpio_set_value(nvec, 1);
			msg->pos = 0;
		}
344

345 346 347 348 349 350 351 352
		spin_lock_irqsave(&nvec->tx_lock, flags);

		if (err > 0) {
			list_del_init(&msg->node);
			nvec_msg_free(nvec, msg);
		}
	}
	spin_unlock_irqrestore(&nvec->tx_lock, flags);
353 354
}

355 356 357 358 359 360 361 362
/**
 * parse_msg - Print some information and call the notifiers on an RX message
 * @nvec: A &struct nvec_chip
 * @msg: A message received by @nvec
 *
 * Paarse some pieces of the message and then call the chain of notifiers
 * registered via nvec_register_notifier.
 */
363 364
static int parse_msg(struct nvec_chip *nvec, struct nvec_msg *msg)
{
365 366 367
	if ((msg->data[0] & 1 << 7) == 0 && msg->data[3]) {
		dev_err(nvec->dev, "ec responded %02x %02x %02x %02x\n",
			msg->data[0], msg->data[1], msg->data[2], msg->data[3]);
368 369 370
		return -EINVAL;
	}

371 372 373 374
	if ((msg->data[0] >> 7) == 1 && (msg->data[0] & 0x0f) == 5)
		print_hex_dump(KERN_WARNING, "ec system event ",
				DUMP_PREFIX_NONE, 16, 1, msg->data,
				msg->data[1] + 2, true);
375

376 377
	atomic_notifier_call_chain(&nvec->notifier_list, msg->data[0] & 0x8f,
				   msg->data);
378 379 380 381

	return 0;
}

382 383 384 385 386 387 388
/**
 * nvec_dispatch - Process messages received from the EC
 * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip)
 *
 * Process messages previously received from the EC and put into the RX
 * queue of the &struct nvec_chip instance associated with @work.
 */
389 390 391
static void nvec_dispatch(struct work_struct *work)
{
	struct nvec_chip *nvec = container_of(work, struct nvec_chip, rx_work);
392
	unsigned long flags;
393 394
	struct nvec_msg *msg;

395
	spin_lock_irqsave(&nvec->rx_lock, flags);
396
	while (!list_empty(&nvec->rx_data)) {
397 398
		msg = list_first_entry(&nvec->rx_data, struct nvec_msg, node);
		list_del_init(&msg->node);
399
		spin_unlock_irqrestore(&nvec->rx_lock, flags);
400

401
		if (nvec->sync_write_pending ==
402
		      (msg->data[2] << 8) + msg->data[0]) {
403 404 405 406 407 408
			dev_dbg(nvec->dev, "sync write completed!\n");
			nvec->sync_write_pending = 0;
			nvec->last_sync_msg = msg;
			complete(&nvec->sync_write);
		} else {
			parse_msg(nvec, msg);
409
			nvec_msg_free(nvec, msg);
410
		}
411
		spin_lock_irqsave(&nvec->rx_lock, flags);
412
	}
413
	spin_unlock_irqrestore(&nvec->rx_lock, flags);
414 415
}

416 417 418 419 420 421
/**
 * nvec_tx_completed - Complete the current transfer
 * @nvec: A &struct nvec_chip
 *
 * This is called when we have received an END_TRANS on a TX transfer.
 */
422 423 424 425 426 427 428 429 430 431 432 433
static void nvec_tx_completed(struct nvec_chip *nvec)
{
	/* We got an END_TRANS, let's skip this, maybe there's an event */
	if (nvec->tx->pos != nvec->tx->size) {
		dev_err(nvec->dev, "premature END_TRANS, resending\n");
		nvec->tx->pos = 0;
		nvec_gpio_set_value(nvec, 0);
	} else {
		nvec->state = 0;
	}
}

434 435 436 437 438 439
/**
 * nvec_rx_completed - Complete the current transfer
 * @nvec: A &struct nvec_chip
 *
 * This is called when we have received an END_TRANS on a RX transfer.
 */
440 441
static void nvec_rx_completed(struct nvec_chip *nvec)
{
442
	if (nvec->rx->pos != nvec_msg_size(nvec->rx)) {
443 444 445 446
		dev_err(nvec->dev, "RX incomplete: Expected %u bytes, got %u\n",
			   (uint) nvec_msg_size(nvec->rx),
			   (uint) nvec->rx->pos);

447 448 449 450 451
		nvec_msg_free(nvec, nvec->rx);
		nvec->state = 0;
		return;
	}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	spin_lock(&nvec->rx_lock);

	/* add the received data to the work list
	   and move the ring buffer pointer to the next entry */
	list_add_tail(&nvec->rx->node, &nvec->rx_data);

	spin_unlock(&nvec->rx_lock);

	nvec->state = 0;

	if (!nvec_msg_is_event(nvec->rx))
		complete(&nvec->ec_transfer);

	queue_work(nvec->wq, &nvec->rx_work);
}

/**
 * nvec_invalid_flags - Send an error message about invalid flags and jump
 * @nvec: The nvec device
 * @status: The status flags
 * @reset: Whether we shall jump to state 0.
 */
static void nvec_invalid_flags(struct nvec_chip *nvec, unsigned int status,
			       bool reset)
{
	dev_err(nvec->dev, "unexpected status flags 0x%02x during state %i\n",
		status, nvec->state);
	if (reset)
		nvec->state = 0;
}

/**
 * nvec_tx_set - Set the message to transfer (nvec->tx)
485 486 487 488 489
 * @nvec: A &struct nvec_chip
 *
 * Gets the first entry from the tx_data list of @nvec and sets the
 * tx member to it. If the tx_data list is empty, this uses the
 * tx_scratch message to send a no operation message.
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
 */
static void nvec_tx_set(struct nvec_chip *nvec)
{
	spin_lock(&nvec->tx_lock);
	if (list_empty(&nvec->tx_data)) {
		dev_err(nvec->dev, "empty tx - sending no-op\n");
		memcpy(nvec->tx_scratch.data, "\x02\x07\x02", 3);
		nvec->tx_scratch.size = 3;
		nvec->tx_scratch.pos = 0;
		nvec->tx = &nvec->tx_scratch;
		list_add_tail(&nvec->tx->node, &nvec->tx_data);
	} else {
		nvec->tx = list_first_entry(&nvec->tx_data, struct nvec_msg,
					    node);
		nvec->tx->pos = 0;
	}
	spin_unlock(&nvec->tx_lock);

	dev_dbg(nvec->dev, "Sending message of length %u, command 0x%x\n",
		(uint)nvec->tx->size, nvec->tx->data[1]);
}

/**
 * nvec_interrupt - Interrupt handler
 * @irq: The IRQ
 * @dev: The nvec device
516 517 518 519
 *
 * Interrupt handler that fills our RX buffers and empties our TX
 * buffers. This uses a finite state machine with ridiculous amounts
 * of error checking, in order to be fairly reliable.
520
 */
521
static irqreturn_t nvec_interrupt(int irq, void *dev)
522 523
{
	unsigned long status;
524 525 526 527 528
	unsigned int received = 0;
	unsigned char to_send = 0xff;
	const unsigned long irq_mask = I2C_SL_IRQ | END_TRANS | RCVD | RNW;
	struct nvec_chip *nvec = dev;
	unsigned int state = nvec->state;
529

530
	status = readl(nvec->base + I2C_SL_STATUS);
531

532 533 534 535
	/* Filter out some errors */
	if ((status & irq_mask) == 0 && (status & ~irq_mask) != 0) {
		dev_err(nvec->dev, "unexpected irq mask %lx\n", status);
		return IRQ_HANDLED;
536
	}
537 538
	if ((status & I2C_SL_IRQ) == 0) {
		dev_err(nvec->dev, "Spurious IRQ\n");
539
		return IRQ_HANDLED;
540
	}
541

542 543 544
	/* The EC did not request a read, so it send us something, read it */
	if ((status & RNW) == 0) {
		received = readl(nvec->base + I2C_SL_RCVD);
545
		if (status & RCVD)
546 547
			writel(0, nvec->base + I2C_SL_RCVD);
	}
548

549 550 551 552 553 554 555 556 557 558 559
	if (status == (I2C_SL_IRQ | RCVD))
		nvec->state = 0;

	switch (nvec->state) {
	case 0:		/* Verify that its a transfer start, the rest later */
		if (status != (I2C_SL_IRQ | RCVD))
			nvec_invalid_flags(nvec, status, false);
		break;
	case 1:		/* command byte */
		if (status != I2C_SL_IRQ) {
			nvec_invalid_flags(nvec, status, true);
560
		} else {
561
			nvec->rx = nvec_msg_alloc(nvec, NVEC_MSG_RX);
562 563 564 565 566
			/* Should not happen in a normal world */
			if (unlikely(nvec->rx == NULL)) {
				nvec->state = 0;
				break;
			}
567 568 569 570 571 572 573 574 575 576 577 578 579
			nvec->rx->data[0] = received;
			nvec->rx->pos = 1;
			nvec->state = 2;
		}
		break;
	case 2:		/* first byte after command */
		if (status == (I2C_SL_IRQ | RNW | RCVD)) {
			udelay(33);
			if (nvec->rx->data[0] != 0x01) {
				dev_err(nvec->dev,
					"Read without prior read command\n");
				nvec->state = 0;
				break;
580
			}
581 582 583 584 585 586 587 588 589 590 591 592 593
			nvec_msg_free(nvec, nvec->rx);
			nvec->state = 3;
			nvec_tx_set(nvec);
			BUG_ON(nvec->tx->size < 1);
			to_send = nvec->tx->data[0];
			nvec->tx->pos = 1;
		} else if (status == (I2C_SL_IRQ)) {
			BUG_ON(nvec->rx == NULL);
			nvec->rx->data[1] = received;
			nvec->rx->pos = 2;
			nvec->state = 4;
		} else {
			nvec_invalid_flags(nvec, status, true);
594
		}
595 596 597 598 599 600 601 602 603 604 605 606 607 608
		break;
	case 3:		/* EC does a block read, we transmit data */
		if (status & END_TRANS) {
			nvec_tx_completed(nvec);
		} else if ((status & RNW) == 0 || (status & RCVD)) {
			nvec_invalid_flags(nvec, status, true);
		} else if (nvec->tx && nvec->tx->pos < nvec->tx->size) {
			to_send = nvec->tx->data[nvec->tx->pos++];
		} else {
			dev_err(nvec->dev, "tx buffer underflow on %p (%u > %u)\n",
				nvec->tx,
				(uint) (nvec->tx ? nvec->tx->pos : 0),
				(uint) (nvec->tx ? nvec->tx->size : 0));
			nvec->state = 0;
609
		}
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
		break;
	case 4:		/* EC does some write, we read the data */
		if ((status & (END_TRANS | RNW)) == END_TRANS)
			nvec_rx_completed(nvec);
		else if (status & (RNW | RCVD))
			nvec_invalid_flags(nvec, status, true);
		else if (nvec->rx && nvec->rx->pos < NVEC_MSG_SIZE)
			nvec->rx->data[nvec->rx->pos++] = received;
		else
			dev_err(nvec->dev,
				"RX buffer overflow on %p: "
				"Trying to write byte %u of %u\n",
				nvec->rx, nvec->rx->pos, NVEC_MSG_SIZE);
		break;
	default:
		nvec->state = 0;
	}
627

628 629 630 631 632 633 634
	/* If we are told that a new transfer starts, verify it */
	if ((status & (RCVD | RNW)) == RCVD) {
		if (received != nvec->i2c_addr)
			dev_err(nvec->dev,
			"received address 0x%02x, expected 0x%02x\n",
			received, nvec->i2c_addr);
		nvec->state = 1;
635
	}
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655

	/* Send data if requested, but not on end of transmission */
	if ((status & (RNW | END_TRANS)) == RNW)
		writel(to_send, nvec->base + I2C_SL_RCVD);

	/* If we have send the first byte */
	if (status == (I2C_SL_IRQ | RNW | RCVD))
		nvec_gpio_set_value(nvec, 1);

	dev_dbg(nvec->dev,
		"Handled: %s 0x%02x, %s 0x%02x in state %u [%s%s%s]\n",
		(status & RNW) == 0 ? "received" : "R=",
		received,
		(status & (RNW | END_TRANS)) ? "sent" : "S=",
		to_send,
		state,
		status & END_TRANS ? " END_TRANS" : "",
		status & RCVD ? " RCVD" : "",
		status & RNW ? " RNW" : "");

656 657 658
	return IRQ_HANDLED;
}

659
static void tegra_init_i2c_slave(struct nvec_chip *nvec)
660 661 662
{
	u32 val;

663 664 665
	clk_enable(nvec->i2c_clk);

	tegra_periph_reset_assert(nvec->i2c_clk);
666
	udelay(2);
667
	tegra_periph_reset_deassert(nvec->i2c_clk);
668 669

	val = I2C_CNFG_NEW_MASTER_SFM | I2C_CNFG_PACKET_MODE_EN |
670
	    (0x2 << I2C_CNFG_DEBOUNCE_CNT_SHIFT);
671
	writel(val, nvec->base + I2C_CNFG);
672 673 674

	clk_set_rate(nvec->i2c_clk, 8 * 80000);

675
	writel(I2C_SL_NEWL, nvec->base + I2C_SL_CNFG);
676 677 678 679
	writel(0x1E, nvec->base + I2C_SL_DELAY_COUNT);

	writel(nvec->i2c_addr>>1, nvec->base + I2C_SL_ADDR1);
	writel(0, nvec->base + I2C_SL_ADDR2);
680

681 682 683 684 685 686 687 688 689
	enable_irq(nvec->irq);

	clk_disable(nvec->i2c_clk);
}

static void nvec_disable_i2c_slave(struct nvec_chip *nvec)
{
	disable_irq(nvec->irq);
	writel(I2C_SL_NEWL | I2C_SL_NACK, nvec->base + I2C_SL_CNFG);
690
	clk_disable(nvec->i2c_clk);
691 692 693 694 695 696 697 698 699 700
}

static void nvec_power_off(void)
{
	nvec_write_async(nvec_power_handle, EC_DISABLE_EVENT_REPORTING, 3);
	nvec_write_async(nvec_power_handle, "\x04\x01", 2);
}

static int __devinit tegra_nvec_probe(struct platform_device *pdev)
{
701
	int err, ret;
702 703 704 705
	struct clk *i2c_clk;
	struct nvec_platform_data *pdata = pdev->dev.platform_data;
	struct nvec_chip *nvec;
	struct nvec_msg *msg;
706 707 708
	struct resource *res;
	struct resource *iomem;
	void __iomem *base;
709 710

	nvec = kzalloc(sizeof(struct nvec_chip), GFP_KERNEL);
711
	if (nvec == NULL) {
712 713 714 715 716 717
		dev_err(&pdev->dev, "failed to reserve memory\n");
		return -ENOMEM;
	}
	platform_set_drvdata(pdev, nvec);
	nvec->dev = &pdev->dev;
	nvec->gpio = pdata->gpio;
718 719 720 721 722 723
	nvec->i2c_addr = pdata->i2c_addr;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(&pdev->dev, "no mem resource?\n");
		return -ENODEV;
724 725
	}

726 727 728 729 730
	iomem = request_mem_region(res->start, resource_size(res), pdev->name);
	if (!iomem) {
		dev_err(&pdev->dev, "I2C region already claimed\n");
		return -EBUSY;
	}
731

732 733 734 735
	base = ioremap(iomem->start, resource_size(iomem));
	if (!base) {
		dev_err(&pdev->dev, "Can't ioremap I2C region\n");
		return -ENOMEM;
736 737
	}

738 739 740 741 742 743
	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
	if (!res) {
		dev_err(&pdev->dev, "no irq resource?\n");
		ret = -ENODEV;
		goto err_iounmap;
	}
744

745 746 747 748
	i2c_clk = clk_get_sys("tegra-i2c.2", NULL);
	if (IS_ERR(i2c_clk)) {
		dev_err(nvec->dev, "failed to get controller clock\n");
		goto err_iounmap;
749 750
	}

751 752 753
	nvec->base = base;
	nvec->irq = res->start;
	nvec->i2c_clk = i2c_clk;
754
	nvec->rx = &nvec->msg_pool[0];
755

756 757
	/* Set the gpio to low when we've got something to say */
	err = gpio_request(nvec->gpio, "nvec gpio");
758
	if (err < 0)
759 760 761 762 763
		dev_err(nvec->dev, "couldn't request gpio\n");

	ATOMIC_INIT_NOTIFIER_HEAD(&nvec->notifier_list);

	init_completion(&nvec->sync_write);
764 765 766 767
	init_completion(&nvec->ec_transfer);
	mutex_init(&nvec->sync_write_mutex);
	spin_lock_init(&nvec->tx_lock);
	spin_lock_init(&nvec->rx_lock);
768
	INIT_LIST_HEAD(&nvec->rx_data);
769
	INIT_LIST_HEAD(&nvec->tx_data);
770 771
	INIT_WORK(&nvec->rx_work, nvec_dispatch);
	INIT_WORK(&nvec->tx_work, nvec_request_master);
772
	nvec->wq = alloc_workqueue("nvec", WQ_NON_REENTRANT, 2);
773

774 775 776 777 778
	err = request_irq(nvec->irq, nvec_interrupt, 0, "nvec", nvec);
	if (err) {
		dev_err(nvec->dev, "couldn't request irq\n");
		goto failed;
	}
779
	disable_irq(nvec->irq);
780 781 782

	tegra_init_i2c_slave(nvec);

783 784
	clk_enable(i2c_clk);

785 786 787
	gpio_direction_output(nvec->gpio, 1);
	gpio_set_value(nvec->gpio, 1);

788 789
	/* enable event reporting */
	nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING,
790
			 sizeof(EC_ENABLE_EVENT_REPORTING));
791 792 793 794 795 796 797 798 799

	nvec->nvec_status_notifier.notifier_call = nvec_status_notifier;
	nvec_register_notifier(nvec, &nvec->nvec_status_notifier, 0);

	nvec_power_handle = nvec;
	pm_power_off = nvec_power_off;

	/* Get Firmware Version */
	msg = nvec_write_sync(nvec, EC_GET_FIRMWARE_VERSION,
800
		sizeof(EC_GET_FIRMWARE_VERSION));
801

802 803 804
	if (msg) {
		dev_warn(nvec->dev, "ec firmware version %02x.%02x.%02x / %02x\n",
			msg->data[4], msg->data[5], msg->data[6], msg->data[7]);
805

806 807
		nvec_msg_free(nvec, msg);
	}
808

809
	ret = mfd_add_devices(nvec->dev, -1, nvec_devices,
810 811
			      ARRAY_SIZE(nvec_devices), base, 0);
	if (ret)
812 813
		dev_err(nvec->dev, "error adding subdevices\n");

814
	/* unmute speakers? */
815
	nvec_write_async(nvec, "\x0d\x10\x59\x95", 4);
816 817 818 819 820 821 822 823 824

	/* enable lid switch event */
	nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x02\x00", 7);

	/* enable power button event */
	nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x80\x00", 7);

	return 0;

825 826
err_iounmap:
	iounmap(base);
827 828 829 830 831 832 833
failed:
	kfree(nvec);
	return -ENOMEM;
}

static int __devexit tegra_nvec_remove(struct platform_device *pdev)
{
834 835 836 837 838 839 840
	struct nvec_chip *nvec = platform_get_drvdata(pdev);

	nvec_write_async(nvec, EC_DISABLE_EVENT_REPORTING, 3);
	mfd_remove_devices(nvec->dev);
	free_irq(nvec->irq, &nvec_interrupt);
	iounmap(nvec->base);
	gpio_free(nvec->gpio);
841
	destroy_workqueue(nvec->wq);
842 843
	kfree(nvec);

844 845 846 847 848 849 850 851 852 853 854 855
	return 0;
}

#ifdef CONFIG_PM

static int tegra_nvec_suspend(struct platform_device *pdev, pm_message_t state)
{
	struct nvec_chip *nvec = platform_get_drvdata(pdev);

	dev_dbg(nvec->dev, "suspending\n");
	nvec_write_async(nvec, EC_DISABLE_EVENT_REPORTING, 3);
	nvec_write_async(nvec, "\x04\x02", 2);
856
	nvec_disable_i2c_slave(nvec);
857 858 859 860

	return 0;
}

861 862
static int tegra_nvec_resume(struct platform_device *pdev)
{
863 864 865
	struct nvec_chip *nvec = platform_get_drvdata(pdev);

	dev_dbg(nvec->dev, "resuming\n");
866
	tegra_init_i2c_slave(nvec);
867 868 869 870 871 872 873 874 875 876
	nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING, 3);

	return 0;
}

#else
#define tegra_nvec_suspend NULL
#define tegra_nvec_resume NULL
#endif

877 878 879
static struct platform_driver nvec_device_driver = {
	.probe   = tegra_nvec_probe,
	.remove  = __devexit_p(tegra_nvec_remove),
880
	.suspend = tegra_nvec_suspend,
881 882
	.resume  = tegra_nvec_resume,
	.driver  = {
883 884 885 886 887 888 889 890 891 892 893
		.name = "nvec",
		.owner = THIS_MODULE,
	}
};

static int __init tegra_nvec_init(void)
{
	return platform_driver_register(&nvec_device_driver);
}

module_init(tegra_nvec_init);
894

895
MODULE_ALIAS("platform:nvec");
896 897 898
MODULE_DESCRIPTION("NVIDIA compliant embedded controller interface");
MODULE_AUTHOR("Marc Dietrich <marvin24@gmx.de>");
MODULE_LICENSE("GPL");